LM8261, LM8272

Unlimited Capacitive Load Drive Op Amp Takes Guesswork Out Of Design

Literature Number: SNOA808
Application Brief

Unlimited Capacitive Load Drive Op Amp Takes Guesswork Out Of Design

Whether or not an op amp circuit is capable of driving a capacitive load successfully, depends on several factors:

• Op amp internal architecture (e.g. \(R_{\text{out}} \), phase margin, compensation, etc.)
• Closed loop gain and output loading
• Load capacitance value

Driving a capacitor also entails the op amp’s output current capability since changing the voltage across a capacitor requires an adequate supply of current from the op amp. This article will present a lab method to measure amplifier stability under closed loop condition. In addition, a new op amp architecture will be presented that would ease this class of applications by using an internal mechanism to improve stability.

Closed Loop Phase Margin Measurement

One of the internal op amp parameters which effects cap load drive performance is \(R_{\text{out}} \), output impedance. In fact, an ideal op amp with zero output impedance would be able to drive “any” capacitance with no phase margin (PM) degradation. However, in reality, for almost all cases, \(R_{\text{out}} \) cannot be ignored. By using a network analyzer (HP4195A or equivalent) and the circuit shown in Fig. 1, it is possible to measure closed loop performance under capacitive loading.

Fig. 1: Circuit To Measure Phase Margin Under Capacitive Loading

This plot has been corrected for 26 dB gain loss through \(R_s \) and the RHS axis is made to read phase margin directly. In fact, with the LM8272, the PM stays positive for any and all capacitors, as can be seen from Fig. 3 plot:

Fig. 3: LM8272 Phase Margin Vs. Capacitive Loading

The DUT (device under test) will operate under closed loop DC and open loop AC conditions. Therefore, the measured results will be a true representation of loop gain including the effect of \(C_L \). The resultant T/R measurement (magnitude and phase) will aid in determining the PM for a given \(C_L \). One such plot done for LM8272, unlimited capacitance load drive op amp, is shown in Fig. 2:

Fig. 2: LM8272 Loop Gain Vs. Frequency

National Semiconductor
The Sight & Sound of Information
It can be shown that the PM degradation for LM 8272 with the chosen capacitor values is less than what would be expected if the op amp open loop parameters (i.e. dominant pole frequency) stayed fixed. The LM 8272 has specifically been designed such that a heavy capacitive load will internally shift the dominant pole frequency higher. This feature is intended to keep the phase shift around the loop to less than 180° under any capacitive load. The LM 8272 architecture is explained further below.

However, it is important to remember that as in most op amps, the addition of a series isolation resistor between the output and the load improves the settling and overshoot performance.

LM 8272 Architecture

To understand how LM 8272 achieves unlimited capacitive load drive capability, its internal block diagram is shown in Fig. 4:

The output stage is comprised of complementary NPN and PNP common-emitter stages to permit voltage swing to within a Vce(sat) of either supply rail. Q9 supplies the sourcing and Q10 supplies the sinking current load. Output current limiting is achieved by limiting the Vce of Q9 and Q10. The frequency compensation circuit includes Miller capacitors from collector to base of each output transistor (Ccomp9 and Ccomp10). At light capacitive loads, the high frequency gain of the output transistors is high, and the Miller effect increases the effective value of the capacitors thereby stabilizing the op amp. Large capacitive loads greatly decrease the high frequency gain of the output transistors thus lowering the effective internal Miller capacitance. The internal pole frequency increases at the same time a low frequency pole is created at the op amp output due to the large load capacitor. In this fashion, the internal dominant pole compensation, which works by reducing the loop gain to less than 0 dB when the phase shift around the feedback loop is more than 180°, varies with the amount of capacitive load and becomes less dominant when the load capacitor has increased enough. Hence, the op amp is very stable even at high values of load capacitance resulting in the uncharacteristic feature of stability under all capacitive loads.

In conclusion, readily available op amps have always suffered from inability to drive capacitive loads and instabilities associated with that. A new op amp design, LM 8272 (Dual) and LM 8261 (Single) have mostly alleviated this problem to the extent that these devices can even be used as voltage buffers with heavy capacitors sitting right at their output.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade. Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td></td>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td></td>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td></td>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td></td>
<td>RFID</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
<td>OAMP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated