ABSTRACT

Inductive sensing is a contactless, magnet-free sensing technology that can measure the position, motion, or composition of a metal or conductive target as well as detect the compression, extension or twist of a spring. TI's LDC1000 is the world’s first single channel inductance-to-digital converter, enabling inductive sensing by utilizing springs and coils as inductive sensors to deliver better performance, better reliability and greater flexibility than existing sensing solutions, at a lower system cost.

The LDC1000 can be used with a single sensor coil or multiple coils using a signal switch to multiplex the coils. The signal switch can be a relay or a silicon analog switch. In this application note, the different topologies and techniques of sensor multiplexing are discussed, including some examples as well as tradeoffs that would need to be made during system design. Note that these topologies and techniques also apply to LDC1041 and LDC1051.

1 Multiplexing Topologies

There are two possible topologies for multiplexing.

1.1 1-to-N Topology

Figure 1 illustrates an example of the 1-to-N topology, where two 1:N switches are required to sample N number of LC sensors. Figure 1 shows a 1-to-2 multiplexer topology.

![Figure 1. 1-to-2 Multiplexer Topology](image)

The advantages of the 1:N multiplexing is that the LC tank sensors are relatively well isolated from each other electrically, and the performance is predictable if the switch is properly chosen.

1.2 Cross-Bar Topology

In the cross-bar topology, the switches are connected to a matrix of lines, as shown in Figure 2. The advantage of the cross-bar topology is that it requires a fewer number of switches to multiplex a given number of LC tank sensors.

Unlike with the 1:N topology where N switches are required to multiplex N number of LC tank sensors, with the cross-bar topology, N switches can multiplex N^2 sensors.
The disadvantage of the crossbar is that when not selected, the sensors are disconnected only on one side. The side that remains connected to the LDC1000 creates a stray capacitance on the active sensor that can lower the active sensor’s resonant frequency as well as pick up any interfering environmental noise.

Figure 2. Cross-Bar Topology

2 Using an Analog Switch

Silicon analog switches offer a small footprint area and low cost, and are ideal for LDC1000 multiplexing in many applications. However, they are not ideal switches. They have an inherent resistance and capacitance, R_{ON} and C_{ON}, which are the resistance and ground-referred capacitance, respectively, of an analog switch in the “closed” state.

When an LC tank sensor is connected to the LDC1000 using an analog switch, the switch adds a capacitance from each of the inputs pins, INA and INB, to ground, as well as a series resistance between the INA and INB pins and the sensor. This can be modeled by a simplified circuit, shown in Figure 3.

Figure 3. Simplified Model of Analog Switch

3 Selecting an Analog Switch

The analog switches that work well with the LDC1000 for the purpose of multiplexing are those with small C_{ON}. C_{ON} is usually a function of temperature, and varies from part to part. To minimize the impact of the parasitic capacitances on the operation of the sensor, C1, as in Figure 3, must be set to a value much larger than C_{ON}.

The general guideline for selecting R_{ON} is that it is less than 50 Ω. A higher value of R_{ON} will increase the chance of the output stage clipping, causing inaccurate R_p and frequency measurements.
The switch’s analog voltage range should include 0 to 5 V. If the operational range of the analog switch does not support 5 V, then the LDC1000 provides the functionality to reduce its oscillation amplitude down to 2 V or even 1 V (this is set in the register LDC_Configuration / Amplitude field – bits 4:3 of address 0x04). However, this reduced voltage swing generally comes at the cost of increased measurement noise.

4 Analog Switch Selection Examples

The SN74LV4052A is a low cost, 2-channel 4:1 analog switch. It can be used with LDC1000 to multiplex 4 coils. Since it has a C_{ON} of about 20 pF, a 200 pF or greater value should be used for the sensor capacitor. This analog switch has a typical R_{ON} of 25 Ω at room temperature.

The TS3USB30 is a high performance, 2x2:1 analog switch. It has a very low capacitance and resistance, which makes it suitable for more challenging applications where only a very small switch capacitance can be tolerated. TS3USB30’s C_{ON} is less than 7 pF, ideal for switching high frequency LC sensors. Its very low R_{ON} of 10 Ω makes it useful in special applications, such as in anti-cross-coupling multiplexing, described later in this application note.

5 Using a Relay

Some relays are very well suited for LDC1000 multiplexing. These are usually categorized as RF relays or telecom relays. Their small contact capacitance and low on-resistance makes them better switches than most silicon analog switches, especially for high tank frequency applications. However, relays generally have a larger footprint and may require higher current or voltages for switching. Also, relays may have a longer switching time, typically on the order of several milliseconds. Finally, while relays are very reliable, they are mechanical in nature, and will eventually wear out (though several million cycles is common).

The following is a list of examples of RF relays that can be considered:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM03GR</td>
<td>TE Connectivity</td>
</tr>
<tr>
<td>G6K-2F-Y DC3</td>
<td>Omron</td>
</tr>
<tr>
<td>AGQ21003</td>
<td>Panasonic Electric Works</td>
</tr>
</tbody>
</table>

6 Mitigating Crosstalk Between Closely Placed Coils

In multiplexed coil applications, if two coils are placed very close to each other, the inactive LC tank sensors can pick up energy from the active LC tank sensor and cause interaction between the two circuits leading to unstable oscillations. To prevent such crosstalk, the rule of thumb is to have the center-to-center distance between the two coils be at least twice the diameter of one coil.

If the application requires that the coils be placed close to each other, the technique illustrated in Figure 4 should be used to separate the frequency of the active and inactive LC tank sensors.
L1 and L2 are the printed sensor coils that are placed close to each other. As can be seen in Figure 4, the active LC tank sensor (the one selected by the multiplexer) is shunted with an additional capacitor C3. In this example, the resonant frequency of the active sensor is 2.9 MHz, while the inactive sensor resonates at 3.5 MHz. Figure 5 shows that a coil with a quality factor, Q, of 20 (typical for printed coils) would attenuate by 20 dB the signal from the nearby coil for the two-tank example explained above. This attenuation is significant enough to eliminate the crosstalk effect.

In this multiplexed-coil implementation, a portion of the LC tank resonant current goes through the switch. This will decrease the natural RP of the sensor and lower the sensitivity. Therefore, the switch used in this implementation must have a lower $R_{(ON)}$ than in other multiplexing topologies.

Figure 4. Anti-Crosstalk Scheme

Figure 5. Attenuation in Cross-Coupled Energy

7 Timing Considerations

When the oscillator circuit of the LDC1000 is switched from one LC tank sensor to another, the new oscillation takes a certain time to establish. The time needed for the oscillator frequency to settle can be as long as several hundred cycles, and should be experimentally determined.
Figure 6 shows the optimized sample sequence for the applications that can guarantee that the time from MUX select to the completed reading of the SPI register 21 is less than the ODR (output data rate). This includes the time the SPI reading is held by a microprocessor interrupt. In many systems, this requirement can be easily met, and the sequence gives the shortest sampling cycle time.

![Figure 6. Multiplexing Sequence 1](image)

Figure 7 shows the optimized sample sequence for the applications that cannot guarantee that the time from MUX select to completed reading of the SPI register 21 is less than the ODR (output data rate). Due to the time required to read the SPI register 21, the sampling time may be compromised.

![Figure 7. Multiplexing Sequence 2](image)
8 Conclusion

By using signal switches, the LDC1000 can be used with multiple sensor coils. The 1:N topology offers an easy design approach and component selection. The Cross-Bar topology can sample more coils with limited switch channels. In high performance applications, relays can be considered. Multiple sensors bring the potential problem of inter-coil interference. By adding an extra capacitor across the INA and INB pins the crosstalk can be effectively eliminated. Optimized sample sequences are introduced.

Learn more about inductive sensing with an inductance-to-digital converter by visiting the links below:

- Buy the LDC1000EVM from the TI eStore to experience the industry's first LDC
- Request samples of the LDC1000
- Download the data sheet
- Watch a video demonstration on how to achieve high resolution sensing with the LDC1000 and a PCB coil
- Download our Guide to Inductive Sensing infographic to learn how to build an inductive sensor using an LDC
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
amplifier.ti.com

Amplifiers

Data Converters
dataconverter.ti.com

DLP® Products
www.dlp.com

DSP
dsp.ti.com

Clocks and Timers
www.ti.com/clocks

Interface
interface.ti.com

Logic
logic.ti.com

Power Mgmt
power.ti.com

Microcontrollers
microcontroller.ti.com

RFID
www.ti-nc.com

OMAP Applications Processors
www.ti.com/omap

Wireless Connectivity
www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
www.ti.com/automotive

Communications and Telecom
www.ti.com/communications

Computers and Peripherals
www.ti.com/computers

Consumer Electronics
www.ti.com/consumer-apps

Energy and Lighting
www.ti.com/energy

Industrial
www.ti.com/industrial

Medical
www.ti.com/medical

Security
www.ti.com/security

Space, Avionics and Defense
www.ti.com/space-avionics-defense

Video and Imaging
www.ti.com/video

www.ti.com/e2e

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated