Varn Khanna

ABSTRACT

Texas Instruments introduced the LDC1000 in 2012, the industry’s first inductance to digital converter. LDC1000 revolutionized the world of proximity sensing by delivering increased reliability, high resolution, and lower total system cost.

The LDC1000 was soon followed by second generation multi-channel LDC devices like the LDC161x and LDC131x. With up to four sensing channels and 28 bits of resolution the second generation of LDC devices opened the technology up to a wider range of applications and simplified system design. However, TI firmly believed that Inductive sensing could be simplified further. The LDC0851 is a differential inductive switch with a push/pull output that does not require digital programming to enable simpler designs and lower system cost. This Application Note is a three-step guide to becoming a LDC0851 power user.

Contents

1 LDC0851 - The Working Principle .. 2
2 Off to Prototyping – The Three Cs ... 4
3 Summary .. 9
4 References ... 9
1 LDC0851 - The Working Principle

An AC current flowing through an inductor will generate an AC magnetic field. If a conductive material, such as a metal object, is brought into the vicinity of the inductor, the magnetic field will induce a circulating current (eddy current) on the surface of the conductor.

The eddy current is a function of the distance, size, and composition of the conductor. The eddy current generates its own magnetic field, which opposes the original field generated by the sensor inductor. By opposing the original field, the original field is weakened; this produces a reduction in inductance compared to the inductor's free space inductance.

An EM field appropriate for sensing can be generated using an L-C resonator. One topology for an L-C tank is a series R-L-C construction, as shown in Figure 2. To simplify the inductor amplitude calculations, the parallel electrical model is generally used. For inductive sensing applications, the resistive element represents parasitic circuit losses and is not a discrete component.

The decrease in the effective inductance of the LC resonator caused by a conductive target moving closer to the resonator can be observed as an increase in its resonating frequency (f_{SENSOR}) given by Equation 1.

$$f_{\text{SENSOR}} = \frac{1}{2\pi} \sqrt{\frac{2}{L \times C}}$$
The LDC0851 measures the change in the inductance of the LC tank resonator (usually a PCB coil) as a conductive object moves closer to it. The LDC0851 comes in an eight pin DFN package. A functional block diagram of the LDC0851 and pin out is shown in Figure 3.

The LDC0851 has two sensing channels LREF and LSENSE. When the inductances on the LSENSE and LREF channels differ by a preconfigured ratio (\(\kappa \), determined by the voltage level on the ADJ pin) the part toggles its digital output. A simplified view of the LDC0851 operation is shown in Figure 4.
Off to Prototyping – The Three Cs

The LDC0851 EVM is a great prototyping tool. It is available to order online and provides an excellent starting point for any LDC0851 application. A picture of the LDC0851 EVM is shown in Figure 5.

Figure 5. LDC0851 EVM

The LDC0851 EVM comes with a 20-mm diameter sensing coil in a stacked coil configuration (explained in Section 2.1) and an onboard potentiometer that can be used to set different switching thresholds (explained in Section 2.2). The stacked coil sensor can be snapped off and replaced with any other LDC0851 compatible sensor. For more information on the LDC0851 EVM refer to the LDC0851EVM User’s Guide (SNLU194).

The next few sections discuss designing and verifying a custom LDC0851 Proximity Sensing System.

2.1 Step 1: Choose the Sensors

Before beginning to prototype with the LDC0851 there are some key system considerations that need to be kept in mind. Starting off, it is important to know the switching distance - this is the distance between the sensor and the conductive target where one wants the LDC0851 to switch. The switching distance dictates the Sensor Coil Diameter which needs to be at least 2.5 times greater than the switching distance for reliable performance. Generally speaking, it is always a good idea to choose the biggest sensor dimensions an application allows. In a few applications, sensor design is restricted by space constraints and smaller sensors are preferred. How small of a sensor a user will be able to use with LDC0851 is guaranteed by the Maximum Sensor Current defined in the data sheet EC table (section 7.5 of SNOSCZ7). The Maximum Sensor Current value differs for the 1.8-V and 3.3-V domain, the value being higher at 3.3 V which equates to the LDC0851 being able to support a smaller sensors at higher supply levels.

A LDC0851 compatible sensor can be easily selected by keeping the sensor minimum inductance in mind. At 1.8 V, the minimum sensor inductance is typically around 2.5 μH, while at 3.3 V is around 1.8 μH. Additionally, it is important to note that the inductance of the sensor will go down to half of its original value when the target is almost touching the sensor.

Table 1 provides a handy list of small LDC0851 compatible spiral PCB coils sizes and their inductance values in free space.
Matched coils for both LSENSE and LREF channels are recommended for better switching accuracy. Matched coils also increase temperature stability and make it easier to calculate switching thresholds.

After choosing the correct sensing coil, the minimum sensor capacitor required on LCOM can be calculated using Equation 2:

$$C_{TOTAL} = \frac{1}{2268 \times 10^{12} \times L_{SENSOR}}$$

where

- C_{TOTAL} is the sum of the sensor capacitance, the board and the pin parasitic capacitances on the LCOM channel.

A smaller cap results in a higher resonating frequency and is usually preferred as it enables faster sampling rates. The LDC0851 sampling rate is given by Equation 3:

$$\text{Sampling Rate} = 231 \times 10^{-6} \times f_{Sensor}$$

A subtle point to note here is that higher sensor frequency would result in a slight increase in power consumption. A user can accurately estimate LDC0851 power consumption by walking through steps defined in section 8.4 of SNOSCZ7.

Sensor configuration and placement in an application are also very important. LREF and LSENSE coils are usually placed next to each other in a side by side configuration. For a cleaner mechanical design or for applications that are space constrained, consider using a stacked coil configuration. A stacked coil configuration places the reference coil right underneath the sense coil which results in a smaller more compact sensor footprint.

Figure 6 shows a comparison of side by side and stacked coil configurations:

Figure 6. Side by Side and Stacked Coil Configurations (PCB Side View)

The LDC0851 online Webench design tool can automatically generate stacked coil sensor designs with user defined PCB manufacturing rules. A screenshot of the WEBENCH tool is shown in Figure 7.
This section highlighted key considerations for choosing the correct sensor for your LDC0851 application. Before moving to the next step, ensure that the reference and sense sensors along with the sensor capacitor are connected correctly as highlighted in Figure 3. The pins Vdd and GND should be connected to an appropriate voltage source.
2.2 Step 2: Configure the LDC0851

The LDC0851 can be configured in two operational modes, detailed in the following sections.

2.2.1 Basic Operation Mode

Physical Object used to define Switching Threshold.

This is by far the simplest method of configuring the LDC0851 and works well in applications like door open/close and event counting. This configuration is also recommended for applications requiring precise switching performance over temperature.

For this mode ensure that the ADJ pin is grounded before enabling the part.

Select a metal target and place it in front of Lref sensor separated by a distance d_{REF}. The fixed metal target results in a fixed inductance for the LREF channel. When the movable metal target comes close enough to the Lsense coil such that the LSENSE channel inductance drops below the LREF channel's fixed inductance the LDC0851's output switches low.

In this configuration, the d_{REF} is the switching distance for the LDC0851.

![Figure 8. Basic Operation Mode](image-url)

2.2.2 Threshold Adjust Mode

ADJ pin used to define Switching Threshold.

This mode is useful when placing a fixed physical object in front of Lref is impractical or if there are space constraints in the application. Stacked coil configurations are primarily used in Threshold Adjust Mode.

For this mode, ensure that the Lref is not obstructed by any conducting object.

Choose an appropriate switching distance and calculate the ADJ code (ζ, $1 \leq \zeta < 16$) needed from Equation 4:
\[d_{\text{SWITCH}} = d_{\text{COIL}} \times 0.4 \times \left(1 - \frac{\zeta}{16}\right) \]

where
- \(d_{\text{COIL}} \) is the diameter of the sensing coil

Set the ADJ level to the voltage corresponding to the ADJ code \((\zeta, 1 \leq \zeta < 16)\) which can be calculated from Equation 5:

\[\text{ADJ}_{\text{LEVEL}} = \frac{V_{\text{DD}}}{32} (\zeta + 1) \]

It is important to remember that Equation 5 gives us the center of the voltage range for each code \((1 < \zeta < 16)\).

\(\text{Figure 9. Threshold Adjust Mode} \)
2.3 Step 3: Calibrate and Verify the Setup

The previous two sections talked about choosing the correct sensor and the appropriate operational mode for an application. If the directions were followed correctly the remaining steps should be trivial.

Enabling the part and bringing a conductive target close to the Lsense coil beyond the switching threshold should now make the OUT pin toggle low. Seldom, due to small mismatch in the sensors on Lref and Lsense or the cables/traces connecting them to the LDC0851 the switching threshold may vary slightly. To tweak the switching threshold you can try different ADJ levels taking into account the following:

- The farthest switching distance is obtained with ADJ code 0 (ADJ pin grounded) while the closest switching distance is obtained with ADJ code 15.
- The max sensing distance is should always be limited to 0.4x the sensor coil diameter. The enable pin will need to be toggled every time the ADJ level is changed.

Equation 4 should provide a good estimation of the switching thresholds for verification purposes. Figure 10 below shows an example of switching characteristics with a plot of Switching Distance vs ADJ Code for a 10mm Spiral PCB inductor. The data was collected using the LDC0851 EVM and a custom PCB coil in Threshold Adjust mode with the LREF and LSENSE sensors in a side by side configuration. During the measurement no target was present in front of the LREF sensor and the threshold was adjusted using the EVM’s onboard potentiometer.

![Figure 10. Threshold Adjust Mode Switching Performance](image)

3 Summary

This document highlighted the simplicity of prototyping a proximity sensing solution with the LDC switch. The LDC0851 can support an enormous amount of applications some of which may require a little more effort. Detailed design procedures and all the necessary information about the switching characteristics of the LDC0851 are included in the data sheet.

4 References

1. SNOA930, Chris Oberhauser, LDC Sensor Design
2. SNOSCZ7, LDC0851 Data Sheet
3. LDC_Tools, Sensor Design Spreadsheet
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video
TI E2E Community	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated