Inverting Comparator With Hysteresis Circuit

Design Goals

<table>
<thead>
<tr>
<th>Output</th>
<th>Thresholds</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>0</sub> = HIGH</td>
<td>V<sub><i>L</i></sub></td>
<td>V<sub>cc</sub></td>
</tr>
<tr>
<td>V<sub><i>i</i></sub> < V<sub><i>L</i></sub></td>
<td>2.5V</td>
<td>300 mV</td>
</tr>
<tr>
<td>V<sub><i>i</i></sub> > V<sub><i>H</i></sub></td>
<td>2.2V</td>
<td>3V</td>
</tr>
</tbody>
</table>

Design Description

Comparators are used to differentiate between two different signal levels. With noise, signal variation, or slow-moving signals, undesirable transitions at the output can be observed with a constant threshold. Setting upper and lower hysteresis thresholds eliminates these undesirable output transitions. This circuit example will focus on the steps required to design the positive feedback resistor network necessary to obtain the desired hysteresis for an inverting comparator application.

Design Notes

1. The accuracy of the hysteresis threshold voltages are related to the tolerance of the resistors used in the circuit, the selected comparator’s input offset voltage specification, and any internal hysteresis of the device.
2. The TLV7041 has an open-drain output stage, so a pull-up resistor is needed.
Design Steps

1. Select the lower biasing resistor, \(R_2 \). This resistor can be modified for any design. In this case, it is assumed that power conservation is necessary, therefore, \(R_2 \) is selected to be large.
 \[R_2 = 500k \, \Omega \]

2. Select the switching thresholds for when the comparator will transition from high to low (\(V_L \)) and low to high (\(V_H \)). \(V_L \) is the necessary input voltage for the comparator output to transition low and \(V_H \) is the required input voltage for the comparator to output high.

\[V_L = 2.2V \text{ and } V_H = 2.5V \]

3. Analyze the circuit when the input voltage is \(V_H \). At this point, \(V_o = 3V = V_{pu} \) and the transition to a logic low is initiated in the comparator output. Using Kirchhoff's Current Law, solve for an equation for \(R_1 \).

4. Analyze the circuit when the input voltage is \(V_L \). At this point, \(V_o = 0V \) and the transition to a logic high is initiated in the comparator output. Using Kirchhoff's Current Law, solve for an equation for \(R_1 \).
5. After defining some constants, set the two equations for R_1 equal to obtain a quadratic equation for R_4.

Constants:

\[
\begin{align*}
A &= \frac{V_{\text{BE}}}{V_i} - 1 \\
B &= V_{\text{REF}} - V_H \\
C &= \frac{V_H}{R_2} \\
D &= V_{PU} - V_H
\end{align*}
\]

Simplified Quadratic for R_4:

\[
\left(\frac{B}{A} - C \times R_2 \right) \times R_4^2 + \left[\frac{A}{A} \times \left(R_2 + R_3 \right) - C \times R_2 \times R_3 + D \times R_2 \right] \times R_4 + \left(\frac{B}{A} \times R_2 \times R_3 \right) = 0
\]

a. If the output stage is push-pull, then make the following modifications to the above equations:

\[
\begin{align*}
R_3 &= 0 \\
V_{PU} &= V_{CC} \\
D &= V_{CC} - V_H
\end{align*}
\]

6. Solve the quadratic equation for R_4 and pick the most logical result.

\[
R_4 = 808.88\,\Omega \,\cong \, 809\,\Omega
\]

7. Calculate R_1 by substituting the value for the "A" constant into the equation for R_1 found in step 4.

\[
\begin{align*}
R_1 &= \frac{V_{\text{BE}} - V_i}{V_i \times \left(\frac{R_2 + R_4}{R_2 \times R_4} \right)} = \left(\frac{V_{\text{BE}}}{V_i} - 1 \right) \times \left(\frac{R_2 \times R_4}{R_2 + R_4} \right) = A \times \left(\frac{R_2 \times R_4}{R_2 + R_4} \right) \\
R_1 &= 112.36\,\Omega \,\cong \, 112\,\Omega
\end{align*}
\]
Inverting Comparator With Hysteresis Circuit

DC Transfer Simulation Results

![DC Transfer Simulation Graph]

Transient Simulation Results

![Transient Simulation Graph]
Design References

See *Analog Engineer's Circuit Cookbooks* for TI's comprehensive circuit library.

For more information on many comparator topics including hysteresis, propagation delay and input common mode range please see training.ti.com/ti-precision-labs-op-amps.

Design Featured Comparator

<table>
<thead>
<tr>
<th>TLV7031 / TLV7041</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Type</td>
<td>PP (7031) / OD (7041)</td>
</tr>
<tr>
<td>V_{cc}</td>
<td>1.6V to 6.5V</td>
</tr>
<tr>
<td>V_{IHCM}</td>
<td>Rail-to-rail</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>±100µV</td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>7mV</td>
</tr>
<tr>
<td>I_{q}</td>
<td>335nA/Ch</td>
</tr>
<tr>
<td>t_{pd}</td>
<td>3µs</td>
</tr>
<tr>
<td>#Channels</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

www.ti.com/product/tlv7041

Design Alternate Comparator

<table>
<thead>
<tr>
<th>TLV1701</th>
<th>TLV7011 / TLV7021</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Type</td>
<td>Open Collector</td>
<td>PP (7011) / OD (7021)</td>
</tr>
<tr>
<td>V_{cc}</td>
<td>2.2V to 36V</td>
<td>1.6V to 5.5V</td>
</tr>
<tr>
<td>V_{IHCM}</td>
<td>Rail-to-rail</td>
<td>Rail-to-rail</td>
</tr>
<tr>
<td>V_{HYS}</td>
<td>N/A</td>
<td>4.2mV</td>
</tr>
<tr>
<td>V_{OS}</td>
<td>±500µV</td>
<td>±500µV</td>
</tr>
<tr>
<td>I_{q}</td>
<td>55µA/Ch</td>
<td>5uA</td>
</tr>
<tr>
<td>t_{pd}</td>
<td>560ns</td>
<td>260ns</td>
</tr>
<tr>
<td>#Channels</td>
<td>1, 2, 4</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated