AN-1286 Compensation for the LM3478 Boost Controller

ABSTRACT

The LM3478 is a low side N-Channel controller for switching regulators. Like many switching controllers, the added flexibility in component selection can cause problems for users when determining the compensation scheme. It is the goal of this application report to present a decent groundwork to allow the reader to select with confidence the correct compensation components. To achieve this we look at the small signal models for the feedback loop to determine how each component interacts and eventually calculate the desired compensation.

Contents

1 Overview ... 2
2 Error Amplifier ... 4
3 Total Loop Gain ... 5
4 Stability ... 5
5 Putting It Together .. 5

List of Figures

1 Overview of LM3478 Current Mode Control Boost Regulator.. 2
2 Uncompensated Loop Gain ... 7
3 Loop Gain with Dominant Compensation Pole.. 8
4 Loop Gain Magnitude.. 8
5 Phase Margin of Loop Gain .. 8

All trademarks are the property of their respective owners.
1 Overview

The first question that is often asked is: Why is compensation necessary? Any DC-DC converter that regulates the output voltage utilizes negative feedback to ensure accuracy across line and load changes. An incorrect compensation scheme could lead to a phase reversal of the loop causing positive feedback and an erratic uncontrolled output. A minor problem that is typically encountered is an over or under-damped response of the output when a load transient is experienced. This is a sign that the loop stability could be optimized.

Before compensation components can be selected and the response measured, the first step to undertake is to understand the operation of the controller and feedback loops. It is assumed that you are already familiar with the basic operation of the switcher covered in *LM3478 High-Efficiency Low-Side N-Channel Controller for Switching Regulator* (SNVS085). Examining the block diagram of the LM3478 boost regulator in Figure 1, it can be clearly seen that two feedback loops exist. This is a unique feature that is indicative of a current mode control switching regulator.

The first loop is the output voltage loop created by VOUT passing through the resistor divider into an error amplifier. The output of the error amplifier is referred to as the control voltage, VC, which is one of the two inputs to the PWM comparator.

The other input to the comparator is the second feedback loop. With current mode control architecture the switch current is sensed and is used to determine, in conjunction with the control voltage, when the FET should be turned off. To achieve this the switch current is measured across the external sense resistor before being summed with an internal ramp. The slope compensation ramp is present to prevent a large signal stability issue that is inherent in current mode control. While this ramp voltage is included in our small signal models, its requirement and adjustment will not be discussed here. For more information about the slope compensation, please consult the LM3478 datasheet.

Figure 1 shows the overall block diagram of the LM3478 with its application circuit. The next step is to derive the small signal equation for the entire loop. To simplify the analysis the loop can be effectively divided into three separate parts. The first transfer function that will be examined is the control voltage, VC, to the output voltage, VOUT. This takes into account the effects of the current loop, switch, and the output filter stage such as the inductor and output capacitor.

![Figure 1. Overview of LM3478 Current Mode Control Boost Regulator](image-url)
The equation can be written as:

\[
T = A_{DC} \frac{\left(1 + \frac{s}{\omega_{z1}}\right) \left(1 - \frac{s}{\omega_{z2}}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 - \frac{s}{\omega_{p2}} + \frac{s^2}{\left(\frac{\omega_{p1}}{2}\right)^2}\right)}
\]

(1)

At first inspection the equation consists of two zeros, one of which is in the right half plane, a single pole and a complex pole pair. The DC gain of the system is written ACM and can be calculated by the equation:

\[
A_{CM} = \frac{(D'(\omega_0 L_n \parallel R_{LOAD} \parallel R_{LOAD}))}{R_{SN}}
\]

(2)

where

\[
\omega_0 L_n = \frac{\omega_0 L}{D^3 \pi n}
\]

(3)

and

\[
n = 1 + \frac{2 \times S_n}{S_c}
\]

(4)

and

\[
S_c = \frac{V_{IN} \times f_s}{R_{SN}}
\]

(5)

and

\[
S_n = \frac{V_{IN}}{L}
\]

(6)

This is a rather long formula that incorporates the slope compensation and the inductor into the equation. It has been provided for completeness, however in this analysis the equation has been reduced to a simpler and more manageable form. You will find this simplification works extremely well and no real noticeable difference will be seen in the analysis. Therefore for all LM3478 compensation calculations this equation should be used:

\[
A_{CM} = \frac{D' R_{LOAD}}{2 R_{SN}}
\]

(7)

The next step is to calculate the two zeros that were found in the control to output equation. The first zero is created by the output capacitor and its associated equivalent series resistance:

\[
\omega_{z1} = \frac{1}{C_{OUT} R_{ESR}}
\]

(8)

The second zero is actually a right half plane zero. When examining its response on a bode plot it has the effect of increasing the gain by 20dB/decade like a left hand plane zero, but causing a 90 degree drop in phase like a pole. Its occurrence can be related to the application circuit by thinking of the response of the output voltage. If the output voltage starts dropping the switch will turn on to increase the current through the inductor. This causes the output voltage to drop even lower since the output current is provided solely by the output capacitor during this time. It is this effect that can be thought of as the source of the right half plane zero, which explains why it does not occur in a buck converter.

\[
\omega_{z2} = \frac{R_{LOAD} \left(\frac{V_{IN}}{V_{OUT}}\right)^2}{L}
\]

(9)
Looking at the denominator of the equation the poles can be calculated. The first pole is from the output capacitor and the load resistance and can be expressed as:

$$\omega_{p1} = \frac{1}{C_{OUT} R_{LOAD}}$$ \hspace{1cm} (10)

The complex pole pair occurs at half the switching frequency and will be simply attributed to sampling theory for the sake of length in this application note. A Q factor also appears that can be calculated based on the inductor current slopes and duty-cycle:

$$\omega_s = 2 \times \pi \times f_s$$

$$Q = \frac{1}{\pi \left(D \frac{S_o}{S_n} + \frac{1}{2} - D \right)}$$ \hspace{1cm} (11)

2 Error Amplifier

This completes the equation of the control to output transfer function. The second stage that needs to be analyzed is the error amplifier. Of particular interest, we will derive the transfer function from the feedback pin to the control voltage. To achieve this, the error amplifier block diagram has been converted to a small signal model.

As can be seen, the LM3478 uses a \(g_m \) amplifier for the error amplifier. With this model the equation can be written by inspection as:

$$A_{comp} = A_{EA} \frac{1 + \frac{s}{\omega_{32}}}{1 + \frac{s}{\omega_{23}}}$$ \hspace{1cm} (12)

The DC gain of the system \(A_{EA} \) is simply the output conductance multiplied by the output resistance of the amplifier. These values can be found in the electrical characteristics table of the datasheet.

$$A_{EA} = g_m \times R_{OUT}$$ \hspace{1cm} (13)

The single zero is formed by the two external compensation components that are added at the COMP pin of the LM3478, the capacitor and resistor.

$$\omega_{32} = \frac{1}{C_{C1} R_{C1}}$$ \hspace{1cm} (14)

The error amplifier pole is formed by the combination of the output resistance of the error amplifier and the external compensation capacitor. An additional pole can be added with the introduction of another capacitor \(C_{C2} \) in parallel. However, for most power supplies this is not necessary.

$$\omega_{32} = \frac{1}{C_{C1} R_{OUT}}$$ \hspace{1cm} (15)
The last transfer function that needs to be derived in the loop is from the output voltage, VOUT, to the feedback pin. This can be calculated by inspection and is simply a voltage divider, caused by the feedback resistors. This can be written as a combination of the resistors or the output voltage and feedback voltage for convenience:

\[A_{FB} = \frac{R_{FB2}}{R_{FB1} + R_{FB2}} = \frac{V_{FB}}{V_{OUT}} \]

(16)

3 Total Loop Gain

Now that the transfer function for the separate circuits has been calculated the loop gain can be calculated by multiplication of these functions. We can then express the total loop gain as T:

\[T = A_{DC} \frac{1 + s/\omega_{z2}}{1 + s/\omega_{z1}} \frac{1 + s/\omega_{z3}}{1 + s/\omega_{p1}} \]

(17)

The DC gain of the system is also a result of the product of DC terms in the three transfer functions and can be calculated by the equation:

\[A_{DC} = A_{CM}A_{EA}A_{FB} \]

(18)

4 Stability

Now that the loop gain, T, has been defined from the application parameters it is possible to use this to determine system stability and hence calculate the correct compensation components. To calculate the stability we will use a simple procedure invoking the Nyquist Stability Theorem. A special case of this theorem states that the stability of a system can be determined by analysis of the phase margin. To calculate the phase margin the crossover frequency, \(f_c \), first needs to be determined. This is defined as the frequency where the magnitude of the loop (|T|) is unity, equal to 0 dB. The phase of the loop gain, T, can then be calculated at this frequency and the difference between it and 180 degrees is the phase margin. Expressing it as an equation:

\[||T(\omega = 2 \times \pi \times f_c)|| = 1 = 0 \text{ dB} \]

(19)

\[\Phi_m = 180^\circ + \text{angle}T(\omega = 2 \times \pi \times f_c) \]

(20)

To design for an exact phase margin we need to know the desirable range for which our switching regulator should reside. If phase margin is less than or equal to 0 degrees the system will be unstable. Therefore a positive number is always required. But increasing the phase margin excessively causes the system to become over-damped, while a lower phase margin will create an under-damped response. For the sake of simplicity it will be stated that a good value for the LM3478 phase margin is in the range of 30 to 100 degrees.

5 Putting It Together

Now that the system has been modeled and the desired stability understood the compensation section can be designed. This is usually the last stage completed after the inductor and output capacitor selection. However, it might be prudent to revise these values if a better compensation scheme could be obtained. For instance, the output capacitor could be increased to bring in a pole to adjust the phase margin for improved settling on transient response.

To start selecting the compensation components it is good practice to have an idea where the crossover frequency should occur. With a boost converter like the LM3478 the right half plane zero causes severe difficulty with the loop response. Therefore, it is best to locate the crossover frequency one decade before this RHP zero occurs. If there is ever a choice between crossover frequencies it is best to choose the higher frequency.

Once the known equations have been calculated, the easiest way to set the compensation components is to use algebra on the graph technique for drawing bode plots. This allows the user to graphically place the pole and zero combinations to create the best response possible.
Design Example

To illustrate how to set the compensation for the LM3478 an example circuit will be used. Conditions:

Vin = 5V
Vout = 12V
Iload = 1.5A
Fs = 400KHz

Components:
L = 3.3uH
Cout = 150uF
ESR = 50mOhm

Calculations:

\[D = \frac{V_{OUT} - V_{IN}}{V_{OUT}} = \frac{12 - 5}{12} = 0.58 \] \hspace{2cm} (21)

Duty-Cycle:

\[R_{LOAD} = \frac{V_{OUT}}{I_{LOAD}} = \frac{12}{1.5} = 8\Omega \] \hspace{2cm} (22)

\[D' = 1 - D = 1 - 0.58 = 0.42 \]

Control to Output Transfer Function

\[A_{cin} = \frac{D' R_{LOAD}}{2 R_{SSN}} = \frac{0.42 \times 8}{2 \times 0.01} = 167 \text{ V/V} \] \hspace{2cm} (23)

\[\omega_{o1} = \frac{1}{C_{OUT} R_{ESR}} = \frac{1}{150\mu F \times 0.05\Omega} = 133,333 \text{ rad/sec} \] \hspace{2cm} (24)

\[\omega_{o2} = \frac{R_{LOAD} \left(\frac{V_{IN}}{V_{OUT}} \right)^2}{L} = \frac{8 \left(\frac{5}{12} \right)^2}{3.3\mu H} = 420,875 \text{ rad/sec} \] \hspace{2cm} (25)

\[\omega_{o3} = \frac{1}{C_{OUT} R_{LOAD}} = \frac{1}{150\mu F \times 8k\Omega} = 833 \text{ rad/sec} \] \hspace{2cm} (26)

\[Q = \frac{1}{\pi \left(D \frac{S_e}{S_n} + \frac{1}{2} - D \right)} = \frac{1}{\pi \left(0.42 \frac{S_e}{S_n} + 0.5 \times 0.58 \right)} = 0.38 \] \hspace{2cm} (27)

where:

\[S_e = 3,320,000 \text{ A/Sec} \]
\[S_n = 1,515,151 \text{ A/Sec} \]

Vout to Control Voltage:

\[A_{EA} = g_m R_{OUT} = 800\mu \text{mho} \times 50k\Omega = 38 \text{ V/V} \]

\[A_{FB} = \frac{R_{FB2}}{R_{FB1} + R_{FB2}} = \frac{V_{FB}}{V_{OUT}} = \frac{1.26}{12} = 0.105 \text{ V/V} \] \hspace{2cm} (28)

Therefore, the DC magnitude of the loop gain can be calculated:

\[A_{DC} = A_{comp} A_{cin} A_{fb} = 167 \times 38 \times 0.105 = 665 \text{ V/V} \]

\[A_{DC} = 20 \log_{10}(665) = 66 \text{ dB} \]
Since the RHP zero occurs at \(\sim 67\text{KHz} \) \((420,875 \text{ rad/sec})\) the cross-over frequency should be set approximately a decade lower or \(\sim 6\text{KHz} \). A point to remember is that this zero will decrease with heavier loads and lower input voltages. Therefore, a worst case condition would be with the minimum input voltage and maximum load. If a 10% tolerance was expected on the input rail this would mean we should set the cross-over frequency below 5KHz.

Using algebra on the graph we can now create our first bode plot without the compensation poles and zeroes. For simplicity Q was assumed to be equal to 0.5, which means that an identical real pole pair would be located at half the switching frequency. This is a reasonable first pass approximation given that the value for Q was found to be 0.38

![Figure 2. Uncompensated Loop Gain](image)

The next step is to calculate the exact placement of the compensation pole and zero to get the desired response. First, we will decide on the pole placement to get the crossover frequency desired before using the zero to obtain the phase margin. Typically this process can undergo multiple revisions, including the power components.

Knowing that we want a cross-over frequency below 5KHz we can observe that the magnitude in the range of 1KHz - 5KHz is 25dB to 35dB. To ensure adequate roll-off the compensation pole was chosen to be \(\sim 30\text{Hz} \) which is 2 decades back from the middle of the range. This also corresponded to a capacitor of 0.1\(\mu \)F that is a commonly available size.

\[
\omega_0 = \frac{1}{C_1R_{\text{OUT}}} = \frac{1}{0.1\mu F \times 50k\Omega} = 31\text{Hz}
\]

(29)

Updating the bode it can be seen that the magnitude is well below unity before the RHP zero occurs.
Putting It Together

The last component necessary is the compensation resistor which sets a zero in the loop gain. It will be necessary to introduce this zero in the proximity of the cross-over frequency (~1KHz), because looking at the second bode plot the phase margin will be close to zero. This is because 2 poles have already occurred a decade before which introduces a phase change of 180 degrees. Therefore a zero in this location would correspond to approximately 45 degrees of phase margin. The bandwidth can also be increased safely as the gain is lower than ~40dB before the next zero is introduced. Choosing a value of 1000 Ohms:

$$\omega_2 = \frac{1}{C_1 R C_1} = \frac{1}{0.1 \mu F \times 1 k\Omega} = 1,590 Hz$$

(30)

Now that the values have been obtained a full bode plot generated from the derived equation can be plotted and modifications made if necessary. As can be seen, the crossover frequency is 2KHz with a phase margin of 60 degrees.

Overall this method represents a simple analysis that can be performed to design an effective compensation network. It should be remembered that variations in all the components will occur, therefore bench analysis should always be used to verify stability.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Applications Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications

- Automotive and Transportation: www.ti.com/automotive
- Communications and Telecom: www.ti.com/communications
- Computers and Peripherals: www.ti.com/computers
- Consumer Electronics: www.ti.com/consumer-apps
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Security: www.ti.com/security
- Space, Avionics and Defense: www.ti.com/space-avionics-defense
- Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated