ABSTRACT
The LM201xx family offers a full range of features and options enabling a FPGA designer to fully customize their power solution to meet the system application needs. Full details of the many options and useful features of the entire LM201xx family can be found in the device-specific data sheets at http://www.ti.com/ww/en/simple_switcher_dc_dc_converters/index.html.

Contents
1 FPGA Power Supply Requirements ... 2
2 Example FPGA Power Supply Design .. 3
3 Design Features ... 4

List of Figures
1 Example FPGA Power Design .. 3
2 Input Capacitor Current Comparison of LM20134/LM20154 (out of phase) and LM20154/LM20154-Based (in phase) Buck Regulators ... 4
3 Multiple Sequencing Options .. 5
FPGA Power Supply Requirements

1 FPGA Power Supply Requirements

There are several high performance FPGAs currently on the market such as the Xilinx Virtex and Spartan series, and the Altera Cyclone and Stratix series. All of these require multiple power rails including the FPGA core, the I/O, as well as additional rails for powering clocks, PLLs, transceivers, and other circuitry. The core voltage in FPGAs can currently be as low as 0.9 V with the current demand for this rail being highly dependent on the utilization of the FPGA. FPGA manufacturers offer power estimation software that assists you in identifying your power needs based on the performance requirements of the design. The I/O rail can also have demanding power needs depending on the number of I/O registers employed in the FPGA design. Most of the latest generation FPGAs have internal POR circuitry that can eliminate the need for power rail sequencing. Select FPGAs specify input inrush currents for particular power-up sequences and others require sequencing rails to avoid start-up or latch-up problems. Start-up time requirements for FPGA rails are varied ranging from 100-200 µs at the fastest and 50-100 ms at the slowest.
2 Example FPGA Power Supply Design

Figure 1. Example FPGA Power Design

- **LM20145**
 - Core: 1.1V @ 5A
 - I/O: 1.8V @ 4A
 - VIN: 3V - 5V
 - Enable
 - RT
 - COMP
 - GND
 - SW
 - FB
 - PGOOD
 - SS/TRK

- **LM20154**
 - VIN: 3V - 5V
 - Enable
 - SYNC_OUT
 - COMP
 - GND
 - SW
 - FB
 - PGOOD
 - SS/TRK

- **LM20133**
 - VIN: 3V - 5V
 - SYNC
 - COMP
 - GND
 - SW
 - FB
 - PGOOD
 - SS/TRK

- **AUX: 2.5V @ 3A**

Figure 1. Example FPGA Power Design
For the purposes of illustration, an example FPGA power supply design is shown in block diagram form in Figure 1. This design features a LM20145 supplying a core voltage of 1.1 V capable of delivering up to 5A, a LM20154 supplying an I/O voltage arbitrarily chosen as 1.8 V capable of delivering up to 4A, and a LM20133 supplying an auxiliary rail of 2.5 V at 3A. Output voltage rails can regulate within 1.5% over temp and are also easily scaled by a resistor divider between the output and the FB pin. All of the devices are packaged in a slim exposed pad 16-pin HTSSOP package enabling a compact power supply design. Additionally, they are pin-to-pin compatible so output current capability can be easily scaled to the FPGA design’s power requirements simply by choosing different devices in the family.

3 Design Features

One of the features highlighted in this design is the many useful frequency synchronization options available. The LM20145 has a resistor adjustable frequency that can be tuned to keep switching noise within a particular spectrum. The LM20133 is a sync-in part that can be synchronized to an external clock signal to achieve the same effect. In this case, the LM20133 is synchronized to the sync-out signal coming from the LM20154, which has the added benefit of synchronizing the two parts 180° out of phase. This reduces input ripple current on the input power supply and can reduce the input capacitor requirements. Figure 2 shows an example of input ripple current reduction using out of phase converters.

![Figure 2. Input Capacitor Current Comparison of LM20134/LM20154 (out of phase) and LM20154/LM20154-Based (in phase) Buck Regulators](image)

All of the devices have flexible sequencing options as shown in Figure 3. In the example design, the LM20145 is “tracked” off of the I/O rail by using the SS pin with a resistive voltage divider. This type of sequencing, known as simultaneous sequencing, allows the voltage difference between the two rails to be minimized, which can eliminate parasitic conduction paths between the two rails. The precision EN pin on the LM20133 allows it to be sequentially sequenced by the LM20154 using a voltage divider from the I/O rail. Another method for sequencing involves attaching the PGOOD pin of one part to the EN pin of another. In that case, the second part enables when the output of the first has reached 94% (typ) of its final value.
Figure 3. Multiple Sequencing Options
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

www.ti.com/audio
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity

Applications
Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/spacer-avionics-defense
www.ti.com/video

www.ti.com/omap
www.ti.com/e2e-community

www.ti.com/e2e-community

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated