ABSTRACT
The LM5032 dual current mode PWM controller contains all the features needed to control an interleaved boost converter. The two outputs operate 180° out of phase and have separate current limit inputs for each channel. In addition to a high input voltage range, the controller contains all the auxiliary features needed to control a complete converter.

Contents
1 Introduction .. 2
2 Modes of Operation .. 2
3 Continuous Versus Discontinuous Mode ... 3
4 Selection of Boost Power Stage Components ... 3
5 Inductor Selection .. 4
6 Output Capacitor ... 4
7 Input Capacitor Selection .. 5
8 Power Switches Selection .. 6
9 Output Diode Selection ... 6
10 Compensation Components Selection ... 7
11 Prototype ... 7
12 Performance .. 10
13 Bill of Materials (BOM) .. 12

List of Figures
1 Interleaved Boost Basic Diagram ... 2
2 Inductor Current (I_L) Waveforms ... 3
3 Normalized Output Capacitor Ripple Current ... 5
4 Normalized Input Capacitor Ripple Current .. 6
5 Schematic of Prototype .. 8
6 Current Sense DC Offset Circuit .. 9
7 Photographs of the Prototype .. 9
8 Efficiency .. 10
9 Output Ripple .. 11
1 Introduction

A basic boost converter converts a DC voltage to a higher DC voltage. Interleaving adds additional benefits such as reduced ripple currents in both the input and output circuits. Higher efficiency is realized by splitting the output current into two paths, substantially reducing I^2R losses and inductor AC losses. Figure 1 shows the basic interleaved boost topology.

When Q1 turns on, current ramps up in L_1 with a slope depending on the input voltage, storing energy in L_1. D_1 is off during this time since the output voltage is greater than the input voltage. Once Q1 turns off, D_1 conducts delivering part of its stored energy to the load and the output capacitor. Current in L_1 ramps down with a slope dependent on the difference between the input and output voltage. One half of a switching period later, Q2 also turns on completing the same cycle of events. Since both power channels are combined at the output capacitor, the effective ripple frequency is twice that of a conventional single channel boost regulator.

![Figure 1. Interleaved Boost Basic Diagram](image)

2 Modes of Operation

The mode of operation can be analyzed based on one channel. Since both power channels share current and because both inductors are identical, each power channel behaves identically. Based on the amount of energy that is delivered to the load during each switching period, the boost converter can be classified into continuous or discontinuous conduction mode. If all the energy stored in the inductor is delivered to the load during each switching cycle, the mode of operation is classified as discontinuous conduction mode (DCM). In this mode the inductor current ramps down to zero during the switch off-time. If only part of the energy is delivered to the load, then the converter is said to be operating in continuous conduction mode (CCM). Figure 2 shows the inductor current waveforms for both modes of operation.

The mode of operation is a fundamental factor in determining the electrical characteristics of the converter. The characteristics vary significantly from one mode to the other.
3 Continuous Versus Discontinuous Mode

Both modes of operation have advantages and disadvantages. The main disadvantages in using CCM is the inherent stability problems caused by the right-half-plane zero in the transfer function. However, the switch and output diode peak currents are larger when the converter is operating in the DCM mode. Larger peak currents necessitate using larger current and power dissipation rated switches and diodes. Also, the larger peak currents cause greater EMI/RFI problems. Most modern designs use CCM because higher power densities are possible. For these reasons, this design is based on continuous conduction mode.

4 Selection of Boost Power Stage Components

The interleaved boost converter design involves the selection of the inductors, the input and output capacitors, the power switches and the output diodes. Both the inductors and diodes should be identical in both channels of an interleaved design. In order to select these components, it is necessary to know the duty cycle range and peak currents. Since the output power is channeled through two power paths, a good starting point is to design the power path components using half the output power. Basically, the design starts with a single boost converter operating at half the power. However, a trade-off exists that will depend on the goals of the design. The designer may use smaller components since currents are smaller in each phase. Or, larger components may be selected to minimize losses. Specifically, this design uses the criteria of room temperature operation over the entire input voltage range without the requirement of airflow. Obviously, there are many trade-offs possible, such as requiring external airflow that would allow the use of smaller components and more power per watt.

Knowing the maximum and minimum input voltages, the output voltage, and the voltage drops across the output diode and switch, the maximum and minimum duty cycles are calculated. Next, the average inductor current can be estimated from the load current and duty cycle. Assuming the peak-to-peak inductor current ripple to be a certain percentage of the average inductor current, the peak inductor current can be estimated. The inductor value is then calculated using the ripple current, switching frequency, input voltage, and duty cycle information. Finally, the boundary between CCM and DCM is determined which will determine the minimum load current.

Once the inductor value has been chosen and the peak currents have been calculated, the other components may be selected. Selection of the input and output capacitors differ from a single phase design because of the reduced ripple and increased effective frequency.
5 \textbf{Inductor Selection}

\[D_{\text{max}} = \frac{V_{\text{OUT}} + V_d - V_{\text{IN(MIN)}}}{V_{\text{OUT}} + V_d - V_{\text{(ON)}}} \]

\[D_{\text{min}} = \frac{V_{\text{OUT}} + V_d - V_{\text{IN(MAX)}}}{V_{\text{OUT}} + V_d - V_{\text{(ON)}}} \]

Where, \(V_{\text{OUT}} \) is the output voltage, \(V_d \) is the forward voltage drop of the output diode, and \(V_{\text{(ON)}} \) is the on stage voltage of the switching MOSFET. \(V_{\text{IN(MAX)}} \) is the maximum input voltage, and \(V_{\text{IN(MIN)}} \) is the minimum input voltage.

The average inductor current (maximum) per phase can be calculated knowing the output current, \(I_{\text{OUT}} \), remembering that the current per phase is one-half the total current. This is the origin of the 0.5 term in the numerator in Equation 3:

\[I_{\text{(avg-critical)}} = \frac{0.5 \times I_{\text{OUT}}}{1 - D_{\text{MAX}}} \]

As a starting point assume the peak inductor current ripple per phase, \(\Delta I_L \), to be a certain percentage of the average inductor current calculated in Equation 3. A good starting value of \(\Delta I_L \) is about 40\% or the output current, which is 20\% of the individual phase current. Inductor ripple will also determine the minimum output current for continuous mode operation, so some iteration may be necessary in choosing this parameter. The peak inductor current per phase is given by:

\[I_{\text{PEAK}} = I_{\text{(avg)}} + \frac{\Delta I_L}{2} \]

Knowing the switching frequency, \(f_s \), the required inductance value per phase can be selected using:

\[L_{\text{(MIN)}} = \frac{(V_{\text{IN(MAX)}} - V_{\text{(ON)}}) \times D_{\text{MAX}}}{f_s \times \Delta I_L} \]

At the boundary between CCM and DCM modes of operation, the peak inductor current per phase, \(I_{\text{PEAK}} \) is the same as the peak-to-peak inductor current ripple per phase, \(\Delta I_L \), as shown in Figure 2. Therefore, the average inductor current at the boundary is given by:

\[I_{\text{(avg-critical)}} = \frac{\Delta I_{\text{PEAK}}}{2} \]

From Equation 3 and Equation 6:

\[I_{\text{PEAK}} = \frac{I_{\text{OUT}}}{1 - D_{\text{MAX}}} \]

The critical value of the inductance per phase to maintain the converter in continuous mode related to output current is given by Equation 5 and Equation 7.

\[L_{\text{(MIN)}} = \frac{(V_{\text{IN(MIN)}} - V_{\text{ON}}) \times D_{\text{MAX}} \times (1 - D_{\text{MAX}})}{f_s \times I_{\text{OUT}}} \]

Knowing the minimum load current in a particular design \(L \) can be chosen. Obviously, there are trade-offs between minimum load current, percent ripple, and inductor size. Increasing the frequency helps in reducing inductor size.

6 \textbf{Output Capacitor}

In a boost converter, the output capacitor must be chosen to withstand relatively high ripple current compared to an equivalent power buck regulator. The high ripple current flows through the equivalent series resistance (ESR) of the capacitor. ESR increases the capacitor temperature and increases ripple voltage. First, calculate the worst case duty cycle for ripple, which is usually the maximum duty cycle (for this value, see Figure 3). Then, read the y axis value or normalized rms ripple in the output capacitor from Figure 3 using the two phase graphs.
Input Capacitor Selection

Then, multiply the output current by this number to get the actual RMS output capacitor ripple. Using the actual ripple, the capacitor can be selected. The capacitor must be chosen to withstand this RMS ripple current at extreme operating conditions. Frequently several capacitors in parallel can be selected. Next, use Equation 9 to determine the capacitance necessary to insure a given voltage ripple. In this case, the ESR is the dominate term, which determines the capacitor’s value. Both conditions, RMS rating and ESR value must be met. In Equation 9, \(f_s \) is double the frequency of an individual phase, since both phases are combined at the output capacitor.

\[
\Delta V_{\text{OUT}} = \frac{I_{\text{OUT(MAX)}} \times (1 - D_{\text{MIN}})}{f_s \times C_{\text{OUT}}} + I_{\text{PEAK}} \times \text{ESR}
\]

(9)

It is interesting to observe from Figure 3 that the reduction in RMS (and peak-to-peak) ripple by using a two phase converter vs. a single phase solution. At 50% duty cycle, ripple is nearly perfectly canceled, which occurs when \(V_{\text{IN}} \) is twice \(V_{\text{OUT}} \).

7 Input Capacitor Selection

Because an inductor is in series with the input supply in a boost converter, input capacitor selection is less severe than the output capacitor. In a two-phase design, there is a further reduction in input ripple due to ripple cancellation, allowing a smaller input capacitor than in a single phase design. The input ripple can be read from the graph in Figure 4. This graph is normalized according to

\[
I_{\text{RIPPLE(Normalized)}} = \frac{V_{\text{IN}}}{L \times f_s}
\]

(10)

where \(f_s \) is the switching frequency per phase.
8 Power Switches Selection

Each MOSFET should be selected based on several parameters. The drain-source breakdown should be greater than the maximum input voltage plus some margin for ringing. The $R_{DS(ON)}$ value will determine conduction losses and must be low enough to keep junction temperatures within specifications at the maximum drain current condition. Gate to source and gate to drain changes will contribute to AC losses. The thermal resistance rating will determine heatsink and airflow requirements. A more detailed calculation for the power dissipated in each MOSFET is given by:

$$P_{	ext{MOSFET}} = \left(\frac{I_{\text{OUT(\text{MAX})}}}{2 \times (1 - D)} \right) \times R_{DS(ON)} \times D \times 1.3 + V_{\text{IN(MAX)}} \times Q_g \times f_s + 0.5 \times V_{\text{IN(MAX)}} \times I_{\text{OUT}} \times f_s \times (t_g + t_f) \div (1 - D)$$

(11)

The first term is the I^2R term. The 1-D term in the denominator relates the output current to inductor current. The 2 in the denominator is necessary to get current per phase. The second term is the AC gate charge loss term that depends on phase frequency and the third term represents conduction switching loss.

9 Output Diode Selection

The output diode selection is based on voltage and current ratings, and reverse recovery time. The voltage rating should be V_{OUT} plus some margin for ringing. V_F should be as low as possible at the maximum output current specification to minimize conduction losses. Reverse recovery time t_r should be as low as possible to minimize switching losses. Choose a Schottky rectifier if voltage ratings permit, otherwise an ultra-fast rectifier is required.
10 Compensation Components Selection

Compensation is similar to an equivalent power single phase boost regulator with the same inductor value. There is a right-half-plane zero in the continuous conduction mode that will influence loop bandwidth. A conservative approach is to insure the loop gain crosses zero at lower than 1/4 the switching (per phase) frequency. The frequency of the right-half-plane zero is given by:

\[
\text{f}_{\text{REPZ}} = \frac{\text{R}_{\text{LOAD}} \times (1 - \text{D})^2}{2 \times \pi \times \text{L}} = \frac{\text{R}_{\text{LOAD}} \times \text{V}_{\text{IN}}^2}{2 \times \pi \times \text{L} \times \text{V}_{\text{OUT}}^2}
\]

11 Prototype

A prototype was constructed using the LM5032 as the controller. The design goal was an interleaved converter with high efficiency and operation at full power without air or a heatsink at room temperature environment. Power was designed around a limit of about 14 amps of input current, allowing the use of off the shelf surface mount inductors. Specifically, the specifications are:

\[
\begin{align*}
\text{V}_{\text{IN}} &= 12 \text{ to } 45 \text{ volts} \\
\text{V}_{\text{OUT}} &= 48 \text{ volts} \\
\text{I}_{\text{OUT}} &= 4.5 \text{ amps} \\
\text{V}_{\text{RIPPLE-OUT}} &= < 50 \text{ mV}
\end{align*}
\]

For a complete schematic of the prototype, see Figure 5.

The circuit is built around the LM5032, a 2 phase PWM controller with separate inputs for current limit and compensation for each channel. The separate inputs for the PWM comparator are combined in this design since we are implementing a two-phase, single output converter, not two independent converters. The two current limit inputs are used, since this insures current balance in each phase. Each output phase drives its own power channel consisting of switching FETs Q1 and Q2, Inductors L2 and L3, and output dual diode D2. The two power outputs are combined at the output capacitors C15-C20. The IC is internally configured to drive its two outputs 180 degrees out of phase.
A single feedback network consisting of error amplifier U4 and associated passive components drives both comp inputs that are tied together at the IC.

In order to reduce the sense resistor losses, a DC offset circuit was constructed to offset the current sense inputs by 185 mV. This allowed the use of lower value sense resistors in each phase, reducing I^2R losses. The circuit of Figure 6 illustrates the DC offset circuit.

![Figure 6. Current Sense DC Offset Circuit](image)

Since U3 is already in use as the error amplifier reference, the circuit only adds a few low current resistors. Resistors R23, R10, and the current sense resistors form a voltage divider from the 2 volt reference. With the values from Figure 1, the DC offset is 0.185 volts, effectively reducing the current limit threshold of 0.5 volts by that amount. As long as R23 is much larger than R10 and with R10 much larger than the sense resistors, the DC offset will not adversely interact with the actual sensed current waveform. More offset could be used, consistent with compressing the actual current signal vs. noise.

In order to further reduce losses, a switching bias supply was constructed with adjustable controller U2, an LM5009. As can be seen from the photograph of the actual prototype in Figure 7, this circuit is very small and offers a good solution for a bias supply. If a linear regulator or zener diode were used, in would be necessary to drop about 31 volts from the input supply at Vin(max). With an overhead current of 500 mA, a loss of about 16 watts was avoided. Diode D3 prevents the error amplifier from holding the comp pin of U1 high during startup, converting the error amplifier to a sink only configuration. The LM5032 contains an internal 5K pull-up resistor.
Referring to the left photograph in Figure 7, the two power inductors occupy the top part of the left photograph, with rectification accomplished with the common cathode Schottky diode located just below the inductors. The LM5032 PWM controller is located in the lower left portion of the board. On the bottom side of the board the bias supply is located near the upper right, with the two switching FETs at center right. The error amplifier is located near the top left of the board. No heat-sinking other than the copper in the PCB is used. A four layer board was used for compactness of design and heat dissipation properties.

12 Performance

![Figure 8. Efficiency](image)

Figure 8. Efficiency
Referring to the plots in Figure 8 taken at the DCM/CM boundary, efficiencies range from 95% to 98% up to the full 4 amps of output current, and over a 3.5:1 input voltage range. The very low current region where overhead bias currents dominate does have less efficiency, but this is true of all regulators. These plots illustrate the possibility of building a compact, high power boost converter without sacrificing excellent efficiency.

Input and output ripple reduction are some of the benefits of an interleaved converter. Since the output ripple is double the frequency of the individual phases and at a lower RMS current value, the designer has the choice of smaller output capacitors with the same ripple as a single phase converter, or using larger capacitors to achieve even lower output ripple. Effective ripple is a function of duty cycle. Figure 3 and Figure 4 illustrates the input and output ripple currents vs. duty cycle relationships. Figure 9 shows the output ripple of the prototype that is less than the 50mV target. Since ripple reduction is a function of duty cycle, the degree of ripple overlap is also a function of duty cycle. There is near perfect cancellation of ripple at 50% duty cycle. This opens the intriguing possibility of building a converter with little to no output ripple if the designer can limit Vin to the proper value for 50% duty cycle. In the more general case, ripple is reduced by as much as 50% compared to an equivalent power single phase converter. Likewise, inductor selection is flexible with the two phase design. One-half the single phase inductor value can be chosen, which makes each inductor smaller, but results in the same ripple currents as the single phase design. Or the inductors can remain the same value as in the single phase design, reducing the ripple by one-half. The proper trade-offs will depend on the overall design goal. Attention to ESR requirements will keep capacitors within temperature ratings and the output voltage ripple within specifications.
Table 1. Bill of Materials (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Parts</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C1, C2, C3, C4, C17, C18, C19</td>
<td>2.2 µF</td>
<td>CAP CER 2.2 µF 50V X7R 10% 1210</td>
<td>C3225X7R1H225K</td>
<td>TDK</td>
</tr>
<tr>
<td>8</td>
<td>C5, C6, C10, C12, C21, C22, C23, C25</td>
<td>0.1 µF</td>
<td>CAP CER .1 µF 100V X7R 10% 0805</td>
<td>C2012X7R2A104K</td>
<td>TDK</td>
</tr>
<tr>
<td>2</td>
<td>C7, C8</td>
<td>0.01 µF</td>
<td>CAP CERM .01 µF 50V X7R 0805</td>
<td>08055C103KAT2A</td>
<td>AVX</td>
</tr>
<tr>
<td>1</td>
<td>C9</td>
<td>22 µF</td>
<td>CAP CER 22 µF 10V X7R 1210</td>
<td>GRM32ER71A226KE20L</td>
<td>MURATA</td>
</tr>
<tr>
<td>3</td>
<td>C11, C13, C14</td>
<td>100 pF</td>
<td>CAP CER 100 pF 50V C0G 5% 0805</td>
<td>C2012C0G1H101J</td>
<td>TDK</td>
</tr>
<tr>
<td>2</td>
<td>C15, C16</td>
<td>150 µF</td>
<td>CAP 150 µF 63V ELECT FK SMD</td>
<td>EEVF-K1J151Q</td>
<td>PANASONIC</td>
</tr>
<tr>
<td>1</td>
<td>C20</td>
<td>0.1 µF</td>
<td>CAP CER .1 µF 100V X7R 10% 1210</td>
<td>C3216X7R2A104K</td>
<td>TDK</td>
</tr>
<tr>
<td>1</td>
<td>C24</td>
<td>470 pF</td>
<td>CAP CER 470 pF 50V 5% C0G 0805</td>
<td>GRM216C1H471JA01D</td>
<td>MURATA</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td></td>
<td>SCHOTTKY 60V 0.5A SOT-23</td>
<td>ZHCS506TA</td>
<td>ZETEX</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td></td>
<td>15 AMP 60 VOLT DUAL D2PAK</td>
<td>MBRB1560CT/31</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td></td>
<td>HIGH SPEED SWITCHING DIODE</td>
<td>CMHD4448</td>
<td>CENTRAL SEMI</td>
</tr>
<tr>
<td>4</td>
<td>J1, J2, J3, J4</td>
<td>I/O</td>
<td>TERM SCREW VERT SNAP-IN PC MNT</td>
<td>7693</td>
<td>KEYSTONE</td>
</tr>
<tr>
<td>3</td>
<td>J5, J6, J7</td>
<td>TP</td>
<td>TEST POINT PC MULTI PURPOSE WHT</td>
<td>5012</td>
<td>KEYSTONE</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>330 µH</td>
<td>INDUCTOR 330 µH LEADFREE</td>
<td>SDR0503-331KL</td>
<td>BOURNS</td>
</tr>
<tr>
<td>2</td>
<td>L2, L3</td>
<td>15 µH</td>
<td>INDUCTOR 15 µH, 2.3mohm, 28A RMS</td>
<td>SER2807H-153KL</td>
<td>COILCRAFT</td>
</tr>
<tr>
<td>2</td>
<td>Q1, Q2</td>
<td></td>
<td>N-CHANNEL MOSFETs N-CH 60V 50A</td>
<td>SUD50N06-09L-E3</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>160k</td>
<td>RES 160K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805160KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>10</td>
<td>R12, R13, R14, R15, R16, R17, R18, R19, R20, R21</td>
<td>0.11</td>
<td>RES .11 OHM 1/2W 1% 1206 SMD</td>
<td>RL1632R-R110-F</td>
<td>SUSUMU</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>110k</td>
<td>RES 110K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805110KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>2</td>
<td>R23, R24</td>
<td>10.0k</td>
<td>RES 10.0K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805100KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R25</td>
<td>4.75k</td>
<td>RES 4.75K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW08054K75KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R26</td>
<td>30.1k</td>
<td>RES 30.1K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW080530K1KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R27</td>
<td>10</td>
<td>RES 10.0 OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805100KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R28</td>
<td>24.9k</td>
<td>RES 24.9K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW080524K9KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R29</td>
<td>1.10k</td>
<td>RES ANTI-SULFUR 1.1K OHM 1% 0805</td>
<td>ERJ-S06F1101V</td>
<td>PANASONIC</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>22.1k</td>
<td>RES 22.1K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW080522K1KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>7.32k</td>
<td>RES 7.32K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW08057K32KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>4.02k</td>
<td>RES 4.02K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW08054K02KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>17.4k</td>
<td>RES 17.4K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW080517K4KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>3</td>
<td>R7, R10, R11</td>
<td>1.00k</td>
<td>RES 1.00K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805100KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>2</td>
<td>R8, R22</td>
<td>2.00k</td>
<td>RES 2.00K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW0805200KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>2</td>
<td>R9, R30</td>
<td>69.8k</td>
<td>RES 69.8K OHM 1/8W 1% 0805 SMD</td>
<td>CRCW080569K8KFKEA</td>
<td>VISHAY</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>LM5032</td>
<td>DUAL INTERLEAVED CM CONTROLLER</td>
<td>LM5032</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>LM5009</td>
<td>100V STEP DOWN SWITCHING REGULATOR</td>
<td>LM5009</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>1</td>
<td>U3</td>
<td>LM4040</td>
<td>MICROPwer SHUNT VOLTAGE REFERENCE</td>
<td>LM4040</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>LM8261</td>
<td>OP-AMP RR I/O HIGH CURRENT</td>
<td>LM8261</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Replication of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications
Audio
Amplifier.ti.com
Dataconverter.ti.com
www.dlp.com
www.ti.com/audio
www.amplifier.ti.com
www.dataconverter.ti.com
www.dlp.com
www.dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/omap
www.ti.com/wirelessconnectivity
Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging
www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated