

AN-1900 LM3150 Evaluation Boards

1 Introduction

The LM3150 evaluation boards are designed to provide the design engineer with a fully functional power converter based on Constant On-Time with Emulated Ripple mode control to evaluate the LM3150 and the entire LM315x family of parts. The evaluation board is pre-configured to use the LM3150 with the output voltage pre-set to 3.3V, with a typical max load current of 10A. There are three different boards that are configured for 250 kHz, 500 kHz, and 750 kHz respectively. The printed circuit board consists of 4 layers of FR4 material with the top and bottom layers using 2 ounce copper and the inner layers using 1 ounce copper. The board size is 2.9" x 2.9".

The evaluation board allows for a variety of configurations, and this multifunctional capability is used to also accept the fixed output versions of the LM3150 such as the LM3151-3.3, LM3152-3.3, and the LM3153-3.3.

The performance of the synchronous rectifier buck evaluation boards are as follows:

- Switching Frequency: 250 kHz
 - Input Range: 6V to 36V
 - Output Voltage: 3.3V
 - Output Current: 0 to 10A
- Switching Frequency: 500 kHz
 - Input Range: 6V to 24V
 - Output Voltage: 3.3V
 - Output Current: 0 to 10A
- Switching Frequency: 750 kHz
 - Input Range: 8V to 17V
 - Output Voltage: 3.3V
 - Output Current: 0 to 10A

All trademarks are the property of their respective owners.

2 Evaluation Board Schematic

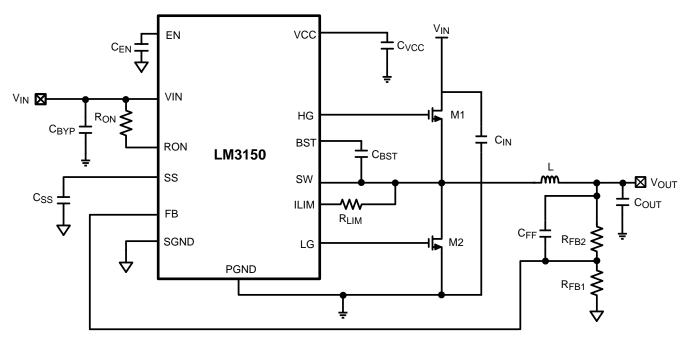


Figure 1. Evaluation Board Schematic

3 Powering and Loading Considerations

Read this entire section prior to attempting to power the evaluation board.

3.1 Quick Setup Procedure

Step 1: Set the input power supply current limit to 10A. Turn off the input power supply. Connect the power supply to the V_{IN} terminals.

Step 2: Connect the load, with up to 10A capability, to the V_0 terminals. Positive connection to V_0 and the negative connection to GND.

Step 3: The EN pin should be left open for normal operation.

Step 4: Set the input source voltage to 12V and the load to 0.1A. The load voltage should be in regulation with a nominal 3.3V output.

Step 5: Slowly increase the load current while monitoring the load voltage at the V_o and GND terminals. It should remain in regulation with a nominal 3.3V output as the load is increased up to 10A.

Step 6: Slowly sweep the input source voltage over the operating voltage range corresponding to selected evaluation board as indicated in the introduction section. The load voltage should remain in regulation with a nominal 3.3V output.

Step 7: The shutdown function can be verified by applying 0V to the EN pin.

3.2 Testing the Fixed Version Parts

The fixed output versions can also be mounted on the LM3150 evaluation boards with few modifications to the default configuration as indicated below. This is achievable because pins 7 and 8 are not internally connected on the fixed version parts.

- 1. Replace U1, LM3150, with a fixed version part such as the LM3152
- 2. Short Rfb2
- 3. Remove Rfb1
- 4. Remove Cff

Ensure that the remaining components on the evaluation board will meet your design specifications by using the provided circuit calculator tools.

3.3 Alternate Ripple Injection

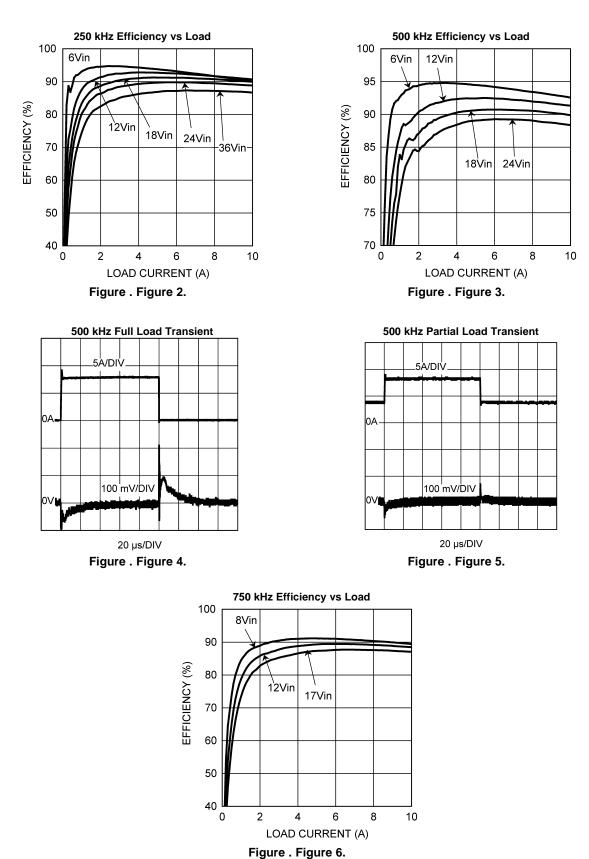
Certain designs may benefit from another ripple injection technique that utilizes a resistor and capacitor to integrate the voltage across the inductor and then couple that signal through a capacitor to the FB pin. This technique is commonly found in COT controllers and may benefit designs that have high output voltage such as 12V and a low-side FET that has a low R_{DSON} and require low output voltage ripple. The evaluation board allows for this configuration allowing the placement of Rr, Cr, and Cac. After the proper components for Rr, Cr, and Cac have been chosen mount them on the evaluation board and remove Cff.

A quick efficiency check is the best way to confirm that everything is operating properly. If something is amiss you can be reasonably sure that it will affect the efficiency adversely. Few parameters can be incorrect in a switching power supply without creating losses and potentially damaging heat.

3.4 Improving Efficiency

It is also well known that efficiency may be improved slightly by placing a Schottky diode across the lowside FET. The Schottky diode has a much lower forward voltage drop than the internal diode of the FET and a faster turn-on time. This evaluation board allows for a Schottky diode to be placed on footprint D1.

The internal VCC regulator provides a supply voltage to both the high-side and low-side FET drivers. The high-side FET driver receives it's supply voltage through a internal diode that has a forward voltage drop as high as 1V. This may impact the drivers ability to turn on the high-side FET fully and therefore cause a loss in efficiency depending upon which FET is chosen. The footprint Dbst allows for placement of a Schottky diode that will have a much smaller forward drop and therefore increase the driver supply voltage and allow for improved efficiency for certain FETs.


3.5 Output Voltage Ripple Measurement

The output voltage ripple measurement is usually taken directly across the output capacitors utilizing extremely short scope probe leads. To help make this measurement slightly easier, a footprint Cf has been included that will allow for a 1 μ F or less 0805 or 1206 capacitor to be mounted directly across the output voltage terminals that will allow for approximate measurement of the ripple voltage.

З

4 **Performance Characteristics**

5 Bill of Materials

Bill of Materials

Designator	Qty	Part Number	Description	Value	Vendor
U1	1	LM3150	Simple Switcher Controller	LM3150	Texas Instruments
Cbst	1	C2012X7R1C474K	Ceramic, X7R, 16V, 10%	0.47 µF	TDK
Сbyp	1	C2012X7R1H104K	Ceramic, X7R, 50V, 10%	0.100 µF	TDK
Cen	1	C1608X7R1H102K	Ceramic, X7R, 50V, 10%	1000 pF	TDK
Cff	1	VJ0805Y561KXACW1BC	Ceramic, X7R, 50V, 10%	560 pF	Vishay
Cin1, Cin2	2	50HVH56M	Aluminum Electrolytic, 50V, 20%	56 µF	Sanyo
Cin3	1	GRM31MR71H474KA01L	Ceramic, X7R, 50V 10%	0.47µF	Murata
Co1, Co2	2	PCF0J221MCL1GS	Polymer Aluminum, 6.3V, 20%	220 µF	Nichicon
Css	1	VJ0805Y683KXXA	Ceramic, 0805, 25V, 10%	0.068 µF	Vishay
Cvcc	1	GRM21BR71C475KA73L	Ceramic, X7R, 16V, 10%	4.7 µF	Murata
EN	1	5002	Terminal, Single Pin	White	Keystone
L1	1	SER2013-362ML	Shielded Drum Core, 1.82 mΩ	3.6 µH	Coilcraft
M1	1	SI7850DP	NFET, $R_{DS(ON)}$ @4.5V=25 m Ω	60V	Vishay
M2	1	SI7478DP	NFET, $R_{DS(ON)}$ @4.5V=8.8 m Ω	60V	Vishay
PGND, PGND, Vin, Vo	4	1598-2	Turret Terminal	Triple	Keystone
Rfb1	1	CRCW08054K99FKEA	1%, 0.125W	4.99 kΩ	Vishay
Rfb2	1	CRCW080522K6FKEA	1%, 0.125W	22.6 kΩ	Vishay
Rlim	1	CRCW08051K40FKEA	1%, 0.125W	1.40 kΩ	Vishay
Ron	1	CRCW0805115KFKEA	1%, 0.125W	115 kΩ	Vishay
SW	1	5015	Surface Mount Test Point		Keystone
Rr, Cr, Cin3, Cac, Dbst, D1			Not Installed, See Text		

Table 1. 250 kHz Bill of Materials

	EXAS ISTRUMENTS
--	--------------------

Designator	Qty	Part Number	Description	Value	Vendor
U1	1	LM3150	Simple Switcher Controller	LM3150	Texas Instruments
Cbst	1	C2012X7R1C474K	Ceramic, X7R, 16V, 10%	0.47 µF	TDK
Cbyp	1	C2012X7R1H104K	Ceramic, X7R, 50V, 10%	0.100 µF	TDK
Cen	1	C1608X7R1H102K	Ceramic, X7R, 50V, 10%	1000 pF	TDK
Cff	1	VJ0805A271JXACW1BC	Ceramic, X7R, 50V, 10%	270 pF	Vishay
Cin1	1	EEVFK1J101P	Aluminum Electrolytic, , 63V, 20%	100 µF	Panasonic
Cin2, Cin3	2	GMK325BJ106KN-T	Ceramic, X7R, 50V, 20%	10 µF	Taiyo Yuden
Co1, Co2	2	EEF-UE0J151R	Polymer Aluminum, 6.3V, 20%	150 µF	Panasonic
Css	1	VJ0805Y683KXXA	Ceramic, 0805, 25V, 10%	0.068 µF	Vishay
Cvcc	1	GRM21BR71C475KA73L	Ceramic, X7R, 16V, 10%	4.7 μF	Murata
EN	1	5002	Terminal, Single Pin	White	Keystone
L1	1	MVR1271C-162ML	Shielded Drum Core, 2.53 m Ω	1.65 µH	Coilcraft
M1,M2	2	RJK0305DPB	NFET, R _{DS(ON)} @4.5V=10 mΩ	30V	Renesas
PGND, PGND, Vin, Vo	4	1598-2	Turret Terminal	Triple	Keystone
Rfb1	1	CRCW08054K99FKEA	1%, 0.125W	4.99 kΩ	Vishay
Rfb2	1	CRCW080522K6FKEA	1%, 0.125W	22.6 kΩ	Vishay
Rlim	1	CRCW08051K91FKEA	1%, 0.125W	1.91 kΩ	Vishay
Ron	1	CRCW080556K2FKEA	1%, 0.125W	56.2 kΩ	Vishay
SW	1	5015	Surface Mount Test Point		Keystone
Rr, Cr, Cac, Dbst, D1			Not Installed, See Text		

Table 2. 500 kHz Bill of Materials

Table 3. 750 kHz Bill of Materials

Designator	Qty	Part Number	Description	Value	Vendor
U1	1	LM3150	Simple Switcher Controller	LM3150	Texas Instruments
Cbst	1	C2012X7R1C474K	Ceramic, X7R, 16V, 10%	0.47 µF	TDK
Сьур	1	C2012X7R1H104K	Ceramic, X7R, 50V, 10%	0.100 µF	TDK
Cen	1	C1608X7R1H102K	Ceramic, X7R, 50V, 10%	1000 pF	TDK
Cff	1	CC0805JRNP09BN151	Ceramic, NP0, 50V, 5%	150 pF	Yageo
Cin1	1	EEE-FK1V151P	Aluminum Electrolytic, 63V, 20%	150 µF	Panasonic
Cin2, Cin3	2	GMK325BJ106KN-T	Ceramic, X7R, 50V, 20%	10 µF	Taiyo Yuden
Co1, Co2	2	EEF-UE0J151R	Polymer Aluminum, 6.3V, 20%	150 µF	Panasonic
Css	1	VJ0805Y683KXXA	Ceramic, 0805, 25V, 10%	0.068 µF	Vishay
Cvcc	1	GRM21BR71C475KA73L	Ceramic, X7R, 16V, 10%	4.7 µF	Murata
EN	1	5002	Terminal, Single Pin	White	Keystone
L1	1	XPL7030-102ML	Shielded Drum Core, 1.9 mΩ	1 µH	Coilcraft
M1	1	RJK0305DPB	NFET, R _{DS(ON)} @4.5V=10 mΩ	30V	Renesas
M2	1	RJK0329DPB	NFET, R _{DS(ON)} @4.5V=2.4 mΩ	30V	Renesas
PGND, PGND, Vin, Vo	4	1598-2	Turret Terminal	Triple	Keystone
Rfb1	1	CRCW08054K99FKEA	1%, 0.125W	4.99 kΩ	Vishay
Rfb2	1	CRCW080522K6FKEA	1%, 0.125W	22.6 kΩ	Vishay
Rlim	1	CRCW08051K91FKEA	1%, 0.125W	1.91 kΩ	Vishay
Ron	1	CRCW080556K2FKEA	1%, 0.125W	56.2 kΩ	Vishay
SW	1	5015	Surface Mount Test Point		Keystone
Rr, Cr, Cac, Dbst, D1			Not Installed, See Text		

6 PCB Layout

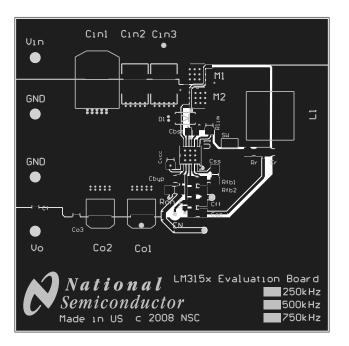


Figure 7. Top Layer

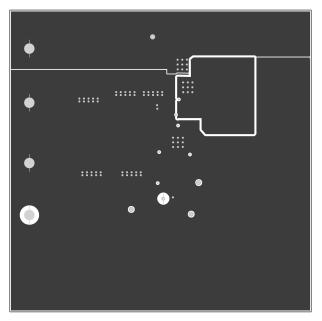


Figure 8. Inner Copper 1

PCB Layout

www.ti.com

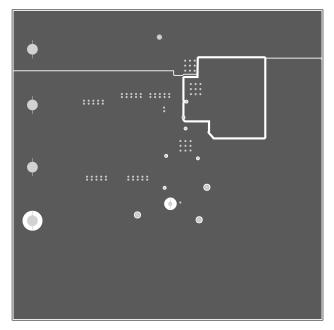
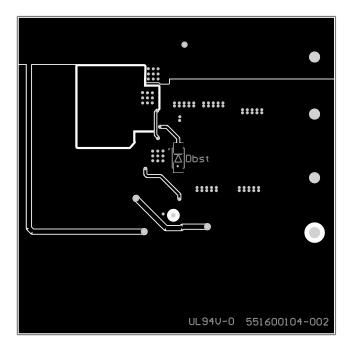



Figure 9. Inner Copper 2

7 Full Schematic

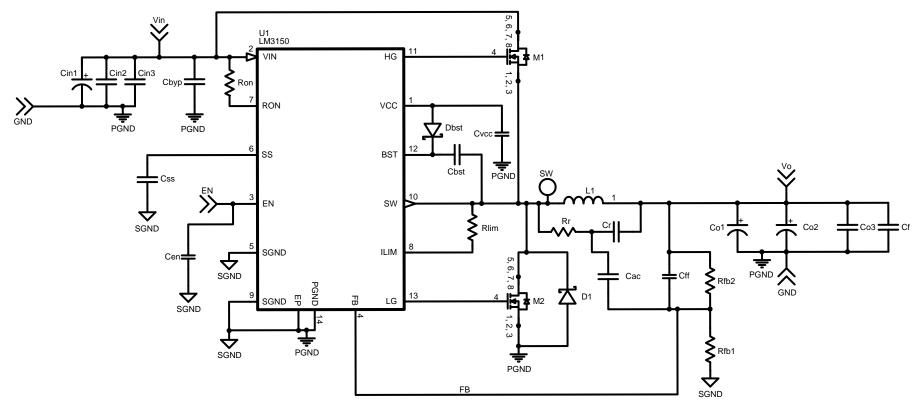


Figure 11. Full Evaluation Board Schematic

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated