AN-2157 Constant Current Constant Voltage Buck Converter With LM25085, or, Implementing Accurate Current Limit With LM25085

Vijay Choudhary

ABSTRACT

In many applications, a constant-current constant-voltage (CC/CV) dc source is needed. The I-V characteristic of a constant-current constant-voltage (CC/CV) source is shown in Figure 1. This application report presents an external op-amp based accurate current limit circuit suitable for CC/CV operation when the required constant current range is very narrow.

Contents

1 Description .. 1

List of Figures

1 CC/CV Output Characteristic .. 1
2 LM25085 With Accurate Current Limit Circuit Based on LM321 and LMV431A 2
3 I-V Characteristics of LM25085 With Accurate Current Limit Circuit 3

1 Description

LM25085 Constant-On-Time (COT) PFET controller provides an easy, cost-effective buck converter solution with excellent transient response. The high side PFET switch makes hundred percent duty cycle operation possible. Non-synchronous operation results in higher efficiency at low load.
An external current limit circuit (Figure 2) can be implemented for accurate control of LM25085 output current. The parts needed for external current limit are highlighted in blue. The operational amplifier LM321 is used in difference amplifier configuration to sense the voltage across a 20mΩ sense resistor in series with the load. The amplified current sense signal is compared to the internal reference of the LMV431A shunt regulator. If the amplified sensed signal amplitude exceeds the internal reference (1.2V) of LMV431A, the shunt regulator pulls down the current sense (ISEN) pin of LM25085, thereby, terminating the ‘ON’ pulse. A proportional-integral (PI) type compensation is used with the shunt regulator to provide low current sense error. The operation should be experimentally verified over the input voltage and load current range of the application. Figure 3 shows the resulting I-V characteristics of the converter output for different input voltages. The external current sense circuit results in a sharp knee in I-V curve and very accurate current limit.

Figure 2. LM25085 With Accurate Current Limit Circuit Based on LM321 and LMV431A
Figure 3. I-V Characteristics of LM25085 With Accurate Current Limit Circuit
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.