ABSTRACT

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
1 Introduction

The short and long term reliability of National Semiconductor’s interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.

However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

2 Factors Affecting Device Reliability

Figure 1 shows the well known “bathtub” curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

![Figure 1. Failure Rate vs Time](image)

Infant mortality, the high failure rate from time t0 to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary “units of measure” for device reliability are inversely related:

\[
MTBF = \frac{1}{\text{Failure Rate}}
\]

Although the “bathtub” curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t1 and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.

Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.
3 Failure Rates vs Time and Temperature

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor \(F \) and is defined by the following equation:

\[
F = \frac{X_1}{X_2} = \exp \left[\frac{E}{K} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \right]
\]

Where:
- \(X_1 \) = Failure rate at junction temperature \(T_1 \)
- \(X_2 \) = Failure rate at junction temperature \(T_2 \)
- \(T \) = Junction temperature in degrees Kelvin
- \(E \) = Thermal activation energy in electron volts (ev)
- \(K \) = Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30\(^\circ\) rise in junction temperature, say from 130\(^\circ\)C to 160\(^\circ\)C, results in a 10 to 1 increase in failure rate.

![Figure 2. Failure Rate as a Function of Junction Temperature](image)

4 Device Thermal Capabilities

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figure 3 and Figure 4.

Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.

Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.

Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

\[
T_j = T_a + P_D (\theta_J)
\]

Where:
- \(T_j \) = Die junction temperature
Determining Device Operating Junction Temperature

$$T_A = \text{Ambient temperature in the vicinity device}$$

$$P_D = \text{Total power dissipation (in watts)}$$

$$\theta_{JA} = \text{Thermal resistance junction-to-ambient}$$

θ_{JA}, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All interface circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions—these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA}.

Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using interface components.

![Figure 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)](image)

Figure 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

Figure 4. Thermal Flow (Predominant Paths)

5 Determining Device Operating Junction Temperature

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, θ_{JA}, worst-case ambient operating temperature, $T_A(\text{max})$, the only unknown parameter is device power dissipation, P_D. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.

The junction temperature of a device with a total package power of 600 mW at 70°C in a package with a thermal resistance of 63°C/W is 108°C.

$$T_J = 70°C + (63°C/W) \times (0.6W) = 108°C$$

(4)

The next obvious question is, "how safe is 108°C?"

6 Maximum Allowable Junction Temperatures

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is 150°C. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is 175°C. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.

Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16-pin molded package, the maximum allowable temperature is 150°C; at this point no power dissipation is allowable. The power capability at 25°C is 1.98W as given by the following calculation:

\[P_D @ 25°C = \frac{T_j(max) - T_A}{\theta_{JA}} = \frac{150°C - 25°C}{63°C/W} = 1.98W \]

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

\[\text{Derating Factor} = -\frac{1}{\theta_{JA}} \]

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16-pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature (70°C in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below 150°C—the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be 150°C. Any intersection that occurs above this line will result in a junction temperature in excess of 150°C and is not an appropriate operating condition.

![Figure 5. Package Power Capability vs Temperature](image)

The thermal capabilities of all interface circuits are expressed as a power capability at 25°C still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above 25°C, reduce the package power capability stated by the derating factor which is expressed in mW/°C. For our example—a \(\theta_{JA} \) of 63°C/W relates to a derating factor of 15.9 mW/°C.

7 Factors Influencing Package Thermal Resistance

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.
7.1 DIE SIZE

Figure 6 shows a graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases—this relates directly to having a larger area with which to dissipate a given power.

![Thermal Resistance vs Die Size](image)

Figure 6. Thermal Resistance vs Die Size

7.2 PIN COUNT

For higher pin count packages such as Plastic Quad Flat Packages (PQFPs), Figure 7 shows the range of thermal resistances for a number of different package pin counts, from 44 to 160-lead. Better thermal dissipation is achieved with the larger packages. The values observed depend on the die and corresponding paddle sizes.

![Thermal resistance for the PQFP family of packages](image)

(1) The bars on the data points indicate the variation of the thermal resistance. This variation is dependent on the device size and the die attach paddle size.

Figure 7. Thermal resistance for the PQFP family of packages

7.3 LEAD FRAME MATERIAL

Figure 8 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16-pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame—these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.
7.4 BOARD vs SOCKET MOUNT

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 9 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

An example of the thermal resistance observable for board mounted packages is illustrated in Figure 10. In this case, the typical thermal resistance is shown for three TO-263 packages mounted on a PC board with 1 oz copper. A rapid drop in thermal resistance is observed, albeit the gain has diminishing returns as the copper surface area is enlarged.

For products with high current ratings (>3A), thermal resistance may be lower. Consult product datasheet for more information.

Figure 10. Thermal Resistance (typ.) for 3-, 5-, and 7-L TO-263 packages mounted on 1 oz. (0.036mm) PC board foil
7.5 AIR FLOW

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. Forced convection around packages mounted on boards can be divided into laminar flow and turbulent flow. The transition from laminar to turbulent occurs at a typical velocity of 180 feet per minute (180 LFPM). In laminar flow, the fluid particles follow a smooth path, while on the other hand, turbulent flow is characterized by irregular motion of fluid "eddies" in which particles are continuously re-arranged and mixed. Greater heat transfer is obtained with turbulent flow. Figure 11 and Figure 12 illustrate the impact of air flow on the thermal resistance of a 16-pin DIP and a 100-pin PQFP, respectively. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

![Figure 11. Thermal Resistance vs Air Flow (16-pin DIP)](image)

Figure 11. Thermal Resistance vs Air Flow (16-pin DIP)

(1) The package has a die attach paddle size of 260x260 mil. The data also shows the effect on two different device sizes.

Figure 12. Effect of air flow on a 100 lead PQFP mounted on a JEDEC thermal board

7.6 OTHER FACTORS

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.

Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case (θ_{JC}). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.
National Semiconductor Package Capabilities

Figure 13 and Figure 14 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Interface Circuits product family. Figure 13 is a composite of the copper lead frame molded package. Figure 14 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

![Graph](image)

(1) Molded (N Package) DIP(see next note) Copper Leadframe—HTP Die Attach Board Mount—Still Air
(2) Packages from 8- to 20-pin 0.3 mil width
 22-pin 0.4 mil width
 24- to 40-pin 0.6 mil width

Figure 13. Thermal Resistance vs Die Size vs Package Type (Molded Package)

9 Ratings On Interface Circuits Data Sheets

In conclusion, all National Semiconductor Interface Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from ±10% to ±15% due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the interface data sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.

The package power ratings are specified as a maximum power at 25°C ambient with an associated derating factor for ambient temperatures above 25°C. It is easy to determine the power capability at an elevated temperature. The power specified at 25°C should be reduced by the derating factor for every degree of ambient temperature above 25°C. For example, in a given product data sheet the following will be found:

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Maximum Power Dissipation at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity Package</td>
<td>1509 mW</td>
</tr>
<tr>
<td>Molded Package</td>
<td>1476 mW</td>
</tr>
</tbody>
</table>

NOTE: Derate cavity package at 10 mW/°C above 25°C; derate molded package at 11.8 mW/°C above 25°C.

If the molded package is used at a maximum ambient temperature of 70°C, the package power capability is 945 mW.

\[
P_D @ 70°C = 1476 \text{ mW} - (11.8 \text{ mW/°C}) \times (70°C - 25°C) = 945 \text{ mW}
\]
(1) Cavity (J Package) DIP (see next note) Poly Die Attach Board Mount—Still Air

(2) Packages from 8- to 20-pin 0.3 mil width
 22-pin 0.4 mil width
 24- to 48-pin 0.6 mil width

Figure 14. Thermal Resistance vs Die Size vs Package Type (Cavity Package)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated