LM2750

Thermal Performance of National's LLP Package, Highlighting the LM2750 Regulated Voltage Converter

Literature Number: SNVA523
National’s Leadless Leadframe Package (LLP) provides excellent power dissipation capability in a very small package footprint. The LLP is a chip scale package that requires minimum PCB footprint area. Unlike conventional leaded plastic packages, the LLP contains pads on the bottom of the package for PCB mounting, as shown in Figure 1. One obvious benefit of the self-contained pads is that, by not extending beyond the edges of the plastic, PCB area is not wasted to accommodate connectivity. Another key benefit of LLP is achieved with the exposed die attach pad (DAP), the large pad in the center of the package (see Figure 1). This pad acts as an “embedded heat-sink,” efficiently dissipating heat away from the part through the PCB. The terrific thermal dissipation that this special pad provides allows high-power parts packaged in the LLP to operate without overheating, even at elevated ambient temperatures.

Both the LLP-10 and the SOT23-6 occupy a 3 mm x 3 mm footprint
• LLP-10 has a smaller profile: 0.8 mm height vs. the 1.1 mm height of the SOT23-6
• The junction-to-ambient thermal resistance \(\theta_{JA} \) of the LLP-10 is 54º C/W. The \(\theta_{JA} \) of the SOT23-6 is 218º C/W. (\(\theta_{JA} \) measured according to the JEDEC standard)*

Without occupying any extra board area, and with a lower profile, the LLP-10 is over 4 times more efficient at dissipating heat away from the silicon than the SOT23-6. This tremendous advantage allows parts in the LLP to consume much more power without overheating than similar parts packaged in the SOT-23 (or other similar low power packages).

LM2750 in the LLP-10
A National part that benefits greatly from the thermal dissipation properties of the LLP is the LM2750. The LM2750 is a power supply integrated circuit that provides a regulated 5.0V output from an input voltage in the range of 2.9V to 5.6V. The part is capable of supplying up to 120 mA of output current.

For power dissipation purposes, the architecture of the LM2750 can be modeled as a switched capacitor voltage doubler followed by a linear regulator, as shown in Figure 2. The power dissipated in the LM2750 can be approximated by:

\[
P_d = P_{IN} - P_{OUT} = V_{IN} \times (2 \times I_{OUT} + I_Q) - V_{OUT} \times I_{OUT}
\]

The equation above takes the input current of the LM2750 to be equal to twice the output current, as should be expected with a switched capacitor doubler. The equation also contains an additional supply current factor (I_Q). Evaluation of the LM2750 has shown this input current approximation to be very accurate, and I_Q has been measured to be 5 mA (typ.).
If the input voltage is taken to be 5.5V, and the output current is set to 120 mA, the power dissipated in the LM2750 can be calculated:

\[P_{\text{D}} = \frac{5.5 \times (2 \times 120 \text{ mA} + 5 \text{ mA})}{5.0 \times 120 \text{ mA} - 750 \text{ mW}} \]

If a 54°C/W junction-to-ambient thermal resistance is assumed for the LLP, the result is a 40°C rise in die temperature within the LM2750. Thus, even under these demanding conditions, the LM2750 can be operated in an ambient temperature of 85°C and the die temperature will not exceed the maximum junction temperature operating rating of 125°C.

If the LM2750 were in a SOT23-6 package, with a \(\theta_{JA} \) of 218°C/W, the junction temperature under identical electrical and environmental conditions would be 256°C. In actuality, thermal protection circuitry would prevent the die temperature from ever exceeding 170°C. The part could not possibly operate under such extremes, and would have to be derated. With an input voltage of 5.5V and an ambient temperature of 95°C, the maximum output current that the LM2750 could provide if it were in a SOT23-6 package would be only 25 mA, much less than the 120 mA capability of the LLP-packaged LM2750.

If the input voltage is taken to be 5.5V, and the output current is set to 120 mA, the power dissipated in the LM2750 can be calculated:

\[P_{\text{D}} = 5.5 \times (2 \times 120 \text{ mA} + 5 \text{ mA}) - 5.0 \times 120 \text{ mA} = 750 \text{ mW} \]

If a 54°C/W junction-to-ambient thermal resistance is assumed for the LLP, the result is a 40°C rise in die temperature within the LM2750. Thus, even under these demanding conditions, the LM2750 can be operated in an ambient temperature of 85°C and the die temperature will not exceed the maximum junction temperature operating rating of 125°C.

If the LM2750 were in a SOT23-6 package, with a \(\theta_{JA} \) of 218°C/W, the junction temperature under identical electrical and environmental conditions would be 256°C. In actuality, thermal protection circuitry would prevent the die temperature from ever exceeding 170°C. The part could not possibly operate under such extremes, and would have to be derated. With an input voltage of 5.5V and an ambient temperature of 95°C, the maximum output current that the LM2750 could provide if it were in a SOT23-6 package would be only 25 mA, much less than the 120 mA capability of the LLP-packaged LM2750.

Summary

The LLP package is clearly a superior power package that gives excellent thermal dissipation in a very small size. In this brief, only the LLP-10 has been mentioned. There are several other LLP packages available, with pin counts ranging from 6 to 56. Please refer to www.national.com for more information on all of National’s LLP offerings. A final note regarding thermal performance of the LLP: To achieve maximum performance from the package, the PCB should be designed to aid LLP thermal dissipation. Metal on the PCB helps dissipate heat away from the part. Connecting the DAP to large areas of top-side metal and/or internal power planes (through vias) is not only recommended, it may be required. For more information on issues concerning PCB design related to the LLP, please refer to Application Note AN-1187.

Additional Information

Visit The National Edge, our online technical journal for an archive of Application Briefs and other interesting information. edge.national.com

Thermal dissipation figures obtained according to the following JEDEC standards: LLP-JESD51-1, SOT-23, JESD51-3
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements concerning such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated