LP2995

DDR-SDRAM Termination Simplified Using A Linear Regulator

Literature Number: SNVA524
With the advent of DDR-SDRAM as the industry standard for memory in desktop computers, laptops and videocards, power management has become a focal point for system designers. Active termination of bus interconnects has required the use of another regulator, increasing cost and system complexity. To specifically address this issue, National Semiconductor has just released the LP2995 DDR Termination Linear Regulator, offering a linear topology in a marketplace dominated by switches. The implementation of this architecture has been made possible by careful examination of the system requirements. It is the intent of this article to illustrate the actual requirements of DDR-SDRAM termination and compare the two solution topologies.

With the memory migration from SDRAM to DDR-SDRAM, higher bus speeds and data transfer rates are attainable. As a consequence of the increased bandwidth, transmission problems have begun to appear. The length of the memory interconnects, coupled with the multiple stubs that are required for supporting DIMMs result in signal reflection causing data corruption. This problem has required more attention as speeds have increased from DDR200 (100 MHz clock) to DDR266 (133 MHz clock) to the newly released DDR333 (166 MHz clock). Concerned with the integrity of the signals at these high frequencies, JEDEC sought to create an industry standard for low voltage, high speed signaling as an improvement over LVTTL. The result was an active termination scheme called SSTL (Stub Series Termination Logic).

The JEDEC definition of SSTL-2 for 2.5V memory called for an active termination using a V_TT output voltage. This voltage is required to track a reference, VREF, which is created by dividing the memory power rail exactly in half. With the JEDEC specification defining the voltage tolerance on the individual rails, power delivery calculations have been left to the system designers. It is easily identifiable that V_TT needs to sink and source current, the problem is determining the magnitude. Historically, numbers were generated based on a macroscopic viewpoint of the system using static worst case conditions. These approximate calculations defined the solution, by stating the following requirements:

- V_TT must sink and source current
- Maximum output current is 3A

Based on this definition, only one clear choice existed: a synchronous switcher had to be used. To meet these existing requirements a plethora of switchers were designed to tackle this exact application from various manufacturers. The end solution was typically a synchronous PWM buck controller. A representation of a typical circuit implementing this topology can be seen in Figure 2.

![Figure 2: Synchronous PWM Switcher Topology](image)

The synchronous buck switcher, while providing a feasible solution does not present an ideal or even optimal DDR termination regulator. Limitations exist that are inherent with the topology and the practical implementation. Several examples include:

- **Board Space:** Due to the complexity of this solution, a controller with high pin count is required to drive two external MOSFETs. Coupled with an inductor and the associated capacitors this implementation can occupy a significant amount of board area. This can be extremely critical in laptops and videocards where real estate is at a premium.
- **Cost:** The high component count required for the application translates directly into increased cost.
- **Performance:** The most fundamental requirement for any DDR termination regulator is performance. While the task of creating a 1.25V reference signal within ±200 mV window is trivial, the challenge in designing a switching power supply is limiting the switching noise and EMI. Signal interference resulting in data loss is possible if switching harmonics are present on the bus. Though not impossible to limit, it poses an increase in cost and development time to reduce the effects.

The JEDEC definition of SSTL-2 for 2.5V memory called for an active termination using a V_TT output voltage. This voltage is required to track a reference, VREF, which is created by dividing the memory power rail exactly in half. With the JEDEC specification defining the voltage tolerance on the individual rails, power delivery calculations have been left to the system designers. It is easily identifiable that V_TT needs to sink and source current, the problem is determining the magnitude. Historically, numbers were generated based on a macroscopic viewpoint of the system using static worst case conditions. These approximate calculations defined the solution, by stating the following requirements:

- V_TT must sink and source current
- Maximum output current is 3A
The initial assumption that 3A were required for the maximum output current, resulting in the selection of the buck switcher, was actually an oversight. The cause of this problem was that the worst case conditions were incorrect resulting in over design of the regulator.

To counter this problem, National Semiconductor approached the power delivery calculations from a memory architecture and control point of view to define an entirely new solution. From an in-depth analysis of the PC memory it becomes apparent that 3A are not required. The exact analysis is not included in this article due to length, however, several of the key points have been highlighted:

- DDR-SDRAM is a dynamic system, static assumptions of a 133 MHz clock (266 MHz data rate) are not realistic when applied to the regulator requirements.
- Theoretical peak calculations are not obtainable for sustained durations. Data cannot be clocked every edge indefinitely. Delays such as CAS latencies are an important assessment in every memory access.
- Significant current cancellation can occur from complementary signals such as data strobes.
- Two line conditions are insufficient for a complete model. Recycling and transitional periods need to be incorporated.
- Even periodic refresh affixes the average output current required by the regulator.

Coupled with technical analysis, confirmed by empirical measurements, National Semiconductor found that the average currents required are closer to 200 mA. Worst case conditions, simulated by intensive memory burn-in tests, result in little deviation from this figure. This new design target meant that an entirely new topology can be used: LINEAR, bestowing all its advantages.

Leveraging the results found from the measurements, National Semiconductor addressed the shortcomings of the switcher topology and created a new standard in DDR bus termination by releasing the LP2995. The LP2995 utilizes an exclusive linear topology to create the VTT output voltage and the reference output, VREF, for the chipset and DIMMs. A typical application circuit for the LP2995 can be seen in Figure 3.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the products are specifically designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated