Integration Simplifies TFT Power Designs

Literature Number: SNVA526
Integration Simplifies TFT Power Designs

The LM2710 and LM2711 contain a current mode, Pulse Width Modulated (PWM) DC/DC step-up regulator with a 1.6A switch. This allows boosting the voltage from a Lithium Ion battery to 8V with enough current for powering large displays. It can run at 600 kHz or 1.25 MHz allowing for easy filtering and small external component sizes, and includes external compensation allowing for the use of low ESR ceramic output capacitors. The current mode design gives it a fast transient response needed for TFT power. An internal softstart feature is also included to reduce inrush current when powering up with the option of using a softstart pin to customize.

Flat-panel video screens are becoming increasingly popular as the cost decreases and the performance increases. One major attraction of these screens is the vast amount of space saved versus the CRT displays that have been the standard for years. Another factor driving their popularity is the vast performance improvements over the past few years. They are now capable of brilliant full motion video. Like all electronics, flat screens stand to gain further improvements in performance and a reduction in overall size by way of integrating the electronic building blocks.

Current TFT-LCD (Thin Film Transistor Liquid Crystal Display) flat-panel designs incorporate a good number of circuit blocks to operate. One of these is a DC/DC step-up regulator for panel power with two discrete charge pump circuits connected to generate positive and negative bias voltages. Some others include an operational amplifier to control the common backplane (V_{COM}), one or more buffers to control the column drivers (called Gamma buffers), and a controllable switch for row driver control. The following circuits can aide design by integrating some or all of these functions onto one integrated circuit. For a quick reference of our TFT switchers, please see Table 1.

<table>
<thead>
<tr>
<th>TFT Switchers</th>
<th>Switch Current</th>
<th>V_{COM} Amplifier</th>
<th>Gamma Buffer(s)</th>
<th>Internal Row Control Switch</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2622</td>
<td>1.65A</td>
<td></td>
<td></td>
<td></td>
<td>MSOP-8</td>
</tr>
<tr>
<td>LM2700</td>
<td>2.5A</td>
<td></td>
<td></td>
<td></td>
<td>TSSOP-14</td>
</tr>
<tr>
<td>LM2702</td>
<td>2A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>TSSOP-16</td>
</tr>
<tr>
<td>LM2710</td>
<td>1.6A</td>
<td></td>
<td>4</td>
<td></td>
<td>TSSOP-20</td>
</tr>
<tr>
<td>LM2711</td>
<td>1.6A</td>
<td></td>
<td>4</td>
<td></td>
<td>TSSOP-20</td>
</tr>
</tbody>
</table>

Table 1

Figure 1: LM2710 in An 8V Configuration

Highlights
- Operates from 1 or 2 Cell Li-Ion Batteries
- Low Profile TSSOP Packages
- High Level of Integration for Reduced Size and Increased Performance
- Adjustable Output Voltage
- High Overall Circuit Efficiency

TFT Switchers Switch Current V_{COM} Amplifier Gamma Buffer(s) Internal Row Control Switch Package
LM2622 1.65A
LM2700 2.5A
LM2702 2A 1 1 1 TSSOP-16
LM2710 1.6A 1 4 TSSOP-20
LM2711 1.6A 4 TSSOP-20

Figure 1: LM2710 in An 8V Configuration

National Semiconductor
The Sight & Sound of Information
the startup time. Also integrated into these parts are four Gamma buffers for use with the column drivers. The LM2710 even adds a \(V_{COM} \) buffer for controlling the common backplane. All buffers are rail-to-rail and can source/sink 50 mA with a high slew rate which is desirable for a TFT application. Figure 1 shows the LM2710 in an 8V configuration.

LM2702

The LM2702 contains a current mode, PWM 600 kHz DC/DC step-up regulator with a 2.0A switch and softstart. This allows it to supply even more power at 8V or 10V. It also includes external compensation and has a high transient response just as the LM2710/11. Its softstart feature also allows for customizing the startup time to the users needs. Figure 2 shows the LM2702 used in a 10V configuration. The LM2702 contains one Gamma buffer and also includes a \(V_{COM} \) amplifier for the backplane and an internal controllable P-channel MOSFET (PMOS) switch for controlling the row drivers. A delay pin is included which allows the user to delay turn on of the PMOS switch to a set time after the switching regulator is powered up. The switch, amplifier, and buffer are all capable of the high slew rates required for the task.

Both of these solutions cut down on the component count and amount of board space needed for these functions of driving a TFT-LCD display. The integration of these functions also improves overall system performance and system efficiency. For standalone switchers suitable for large panel TFT power, see the LM2622 and the LM2700. Keep watching National Semiconductor for higher performance and levels of integration in the future.

Figure 1: LM2710 in an 8V Configuration

Figure 2: LM2702 In A 10V Configuration

Additional information

Visit The National Edge, our online technical journal for an archive of Application Briefs and other interesting information. edge.national.com
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use. Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated