ABSTRACT

The LP8860-Q1 device is an automotive LED driver with boost converter to support infotainment display, automotive cluster, and lighting applications. In order to support a wide range of application conditions for automotive, LP8860-Q1 offers various settings for boost compensation with EEPROM registers. This document provides additional details for several device EEPROM registers, expanding on descriptions in the LP8860-Q1 data sheet.

Contents

1 Boost Compensation Registers of LP8860-Q1 .. 2

List of Figures

1 Boost I_{RAMP} Delay Function .. 2
2 Boost LLC Current Setting ... 3
3 Boost Compensation – I Term .. 4
4 Boost Compensation – P Term ... 5

List of Tables

1 Boost Compensation Registers .. 2
2 Boost I_{RAMP} Settings .. 3

Trademarks

All trademarks are the property of their respective owners.
Boost Compensation Registers of LP8860-Q1

Table 1. Boost Compensation Registers

<table>
<thead>
<tr>
<th>EEPROM addr(Hex)</th>
<th>Bit</th>
<th>Name</th>
<th>Data Sheet Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>5</td>
<td>BOOST_EN_IRAMP_DELAY</td>
<td>Boost current ramp delay enable (for adjusting conversion ratio/stability, 35% of period)</td>
</tr>
<tr>
<td>71</td>
<td>6:5</td>
<td>BOOST_SEL_IND</td>
<td>Boost artificial current ramp peak value, A/s. Select value higher than (I_{RAMP _ GAIN} = 1.2 \times 0.5 \times \frac{(V_{OUT _ max} - V_{IN _ min})}{0.7 \times L \times 60000}), where (V_{IN}, V_{OUT}) are boost input and output voltage, (L) - inductance, H. 25-mΩ (R_{SENSE}) is suggested</td>
</tr>
<tr>
<td></td>
<td>4:3</td>
<td>BOOST_SEL_IRAMP</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>7:6</td>
<td>BOOST_LLCC_SEL</td>
<td>Light load comparator control. Selects boost PFM entry threshold (compensator current)</td>
</tr>
<tr>
<td>5:4</td>
<td></td>
<td>BOOST_SEL_JITTER_FILTER</td>
<td>Boost jitter filter selection</td>
</tr>
<tr>
<td>3:2</td>
<td></td>
<td>BOOST_SEL_I</td>
<td>Boost PI compensator control: integral part</td>
</tr>
<tr>
<td>1:0</td>
<td></td>
<td>BOOST_SEL_P</td>
<td>Boost PI compensator control: proportional part</td>
</tr>
<tr>
<td>75</td>
<td>7:6</td>
<td>BOOST_OFFTIME_SEL</td>
<td>Boost time off selection</td>
</tr>
<tr>
<td>5:4</td>
<td></td>
<td>BOOST_BLANKTIME_SEL</td>
<td>Boost blank time selection</td>
</tr>
</tbody>
</table>

1.1 EEPROM Address 0x70[5] - BOOST_EN_IRAMP_DELAY

Boost artificial current ramp (\(I_{RAMP} \)) is disabled for the first 35% of period for every switching cycle when the bit is high. This gives more margin of boost compensator current from given minimum available compensator current decided by boost design. This can be useful at low switching frequency (a few hundred kHz) where required compensator current is higher than high switching frequency; hence, low switching frequency tends to have less current margin from minimum available compensator current.

![Figure 1. Boost \(I_{RAMP} \) Delay Function](image)

Recommended setting: Enable this function for low switching frequency (100 kHz to 600 kHz) monitoring boost output waveform. If boost output waveform is stable and reaches target voltage at maximum load condition, this function is not needed.
1.2 **EEPROM Address 0x71[6:3] – BOOST_SEL_IND, BOOST_SEL_IRAMP**

Boost artificial current ramp (I_{RAMP} shown in Figure 1) peak value, A/s. For a peak current mode boost converter without a artificial current ramp, sub-harmonic oscillation occurs with a duty cycle > 50%. By adding a current ramp greater than the down slope of the inductor current, the oscillation can be damped. Use Equation 1 to calculate required I_{RAMP_GAIN}:

$$I_{RAMP_GAIN} = 1.2 \times 0.5 - \frac{(V_{OUT_max} - V_{IN_min})}{(0.7 \times L \times 60000)}$$

where
- L : Inductance

Recommended setting: Select 20% or a little higher value than calculated value from Table 2.

<table>
<thead>
<tr>
<th>BOOST_SEL_IRAMP[1:0]</th>
<th>BOOST_SEL_IND[1:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>130</td>
</tr>
<tr>
<td>01</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>37</td>
</tr>
</tbody>
</table>

1.3 **EEPROM Address 0x74[7:6] – BOOST_SEL_LLC**

BOOST_SEL_LLC is a light load comparator control — it selects boost PFM entry threshold. The load current of entering PFM is a function of the LLC setting, the slope of artificial current ramp, and inductor current ramp. Lower current value sets PWM operation threshold to lighter load.

- 00 = 5 μA (boost switches from PFM to PWM early at light loads)
- 01 = 10 μA
- 10 = 15 μA
- 11 = 20 μA (boost operates in PFM mode to higher loads)
Recommended setting:
- High LLC setting: efficiency ↑, chance of audible noise ↑ (high \(V_{\text{OUT}}\) ripple by PFM mode switching)
- Low LLC setting: efficiency ↓, chance of audible noise ↓ (low \(V_{\text{OUT}}\) ripple by PWM mode switching)
- For automotive applications, audible noise matters more than efficiency; therefore, lowest LLC is recommended.

1.4 **EEPROM Address 0x74[5:4] – BOOST_SEL_JITTER_FILTER**

EEPROM Address 0x74[5:4] is a low pass filter added on the internal FB signal to filter out noise to improve output switching jitter:
- 00 = bypass
- 01 = 300 kHz
- 10 = 60 kHz
- 11 = 30 kHz

Recommended setting: Use default value (may vary with EEPROM versions). Higher setting (lower frequency) can lower phase margin of AC loop.

1.5 **EEPROM address 0x74[3:2] – BOOST_SEL_I**

EEPROM address 0x74[3:2] controls the DC gain of loop control. The higher setting increases DC gain and loop bandwidth to improve transient response but lower phase and gain margin of loop:
- 00 = 1
- 01 = 2
- 10 = 3
- 11 = 4

Recommended setting: Use default value (01b), which is an optimal value from simulation and IC validation. Figure 3 shows a simplified diagram of phase-gain graph and may not apply for all frequency ranges.

![Figure 3. Boost Compensation – I Term](image-url)
1.6 EEPROM Address 0x74[1:0] – BOOST_SEL_P

EEPROM Address 0x74[1:0] controls the proportional term of the loop compensation. The lower setting increases loop bandwidth by moving the internal zero to the lower frequency:

- 00 = 1
- 01 = 2
- 10 = 3
- 11 = 4

Lower bandwidth by high P setting will also cause slower boost response and potentially higher voltage ripple during transition time (external noise, load change, boost SW itself).

Figure 4. Boost Compensation – P Term

Recommended setting: Use default value (01b), which is an optimal value from simulation and IC validation. Figure 4 shows a simplified diagram of phase-gain graph and may not apply for all frequency ranges.
1.7 **EEPROM Address 0x75[7:6] – BOOST_OFFTIME_SEL**

EEPROM Address 0x75[7:6] sets the off time of every boost switching period to control the maximum duty ratio of boost:

- 00 = 131 ns
- 01 = 68 ns
- 10 = 38 ns
- 11 = 24 ns

Recommended setting: An off-time that is too high limits boost duty ratio, which limits conversion ratio. Calculate required boost duty ratio at target switching frequency, and select off-time to make possible duty ratio higher than required value.

Example: $V_{\text{IN}} = 9 \text{ V}$, $V_{\text{OUT}} = 35 \text{ V}$, switching frequency = 2.2 MHz

- Required duty ratio = $(35 - 9) / 35 = 74.3\%$
- T of 2.2 MHz = 454 ns
- If setting is 00b = 131 ns, maximum duty ratio = $(454 - 131) / 454 = 71.1\%$, so this setting cannot be selected.
- If setting is 01b = 68 ns, maximum duty ratio = $(454 - 68) / 454 = 85\%$, so this setting can be selected; however, actual efficiency will be less than 100\%, and this increases the required duty ratio, so a shorter off-time setting (38 ns) is a safer choice.

TI recommends using 1 step shorter off-time setting than calculated value. However, avoid using minimum off-time setting (24 ns). This setting often makes violates the conditions of maximum duty ratio of boost, and the operation can be unstable.

1.8 **EEPROM Address 0x75[5:4] – BOOST_BLANKTIME_SEL**

EEPROM Address 0x75[5:4] sets the minimum on-time of every boost switching period to control the minimum duty ratio of boost:

- 00 = 162 ns
- 01 = 88 ns
- 10 = 63 ns
- 11 = 40 ns

Recommended setting: Blank time that is too high limits lowest output voltage. Calculate the minimum required boost duty ratio at target switching frequency and select blank-time value to make possible duty ratio lower than required value.

Example: $V_{\text{IN}} = 18 \text{ V}$, $V_{\text{OUT}} = 25 \text{ V}$, switching frequency = 2.2 MHz

- Required duty ratio = $(25 - 18) / 25 = 28\%$
- T of 2.2 MHz = 454 ns
- If setting is 00b = 162 ns, minimum on duty ratio = $162 / 454 = 35.7\%$, so this setting cannot be selected.
- If setting is 01b = 63 ns, minimum on duty ratio = $63 / 454 = 13.9\%$, so this setting can be selected.

Avoid using minimum blank-time setting (40 ns). This short blank time may cause wrong boost current sensing during transient period. 63 ns or 88 ns are good enough for most of application conditions.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (“TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated