A Multi-Band GSM/GPRS Power Amplifier Controller

As shown in Figure 1, the LMV243 consists of a 45 dB log amp detector for sensing the RF output power level of a PA and an error amplifier to close the control loop as in a servo control.

Advantage Of Using 45 dB Log Amp Detector

Typically, a GSM/GPRS PA requires a control voltage Vapc from 0.1+ to 2.0+ Volts for power levels from 0 dBm to 35 dBm. The baseband chip can usually provide a DC pulse voltage of 100 mV to 2V through a Digital-to-Analog Converter (DAC). The resolution of the profile and min./max. range depends on the firmware and performance of the DAC. With a 45 dB detection range, the LMV243 can detect RF power from about 0 dBm down to -45 dBm. For a GSM band, it requires a coupling factor of 35 dB or higher. This loosely-coupled coupler can easily be implemented by a resistive divider or a microstrip line.

Equations For Calculating The Attenuation

On the other hand, if an off-the-shelf LTCC coupler is used, an additional attenuation, L in dB, between the RF input of the LMV243 and the output of the LTCC coupler is needed. Depending on PCB layout constraints and personal preference of RF engineers, either the T- or π-networks (Figure 2) can be used to add the additional attenuation.

Following are the equations for calculating the necessary resistors for the π-network:

\[
R_1 = \frac{50}{10^{-L/10}} \quad \text{and} \quad R_2 = \frac{1}{10^{L/10} \cdot \frac{1}{R_3}}
\]
Following are the equations for calculating the necessary resistors for the T-network, and where L is the attenuator loss in dB and is a positive number:

\[R_1 = \frac{10^{0.1L}}{10} \quad \text{and} \quad R_2 = R_1 \times 10^{0.1L} + R_1 \]

Choose The Right \(R_c \), \(C_f \) To Match The Performance Of Different PA

After choosing the right coupling factor (-35 dB or even more), you must then choose the feedback capacitor \(C_f \) to close the control loop. Typically, you can choose the \(C_f \) between 22 pF to 100+ pF depending on the performance of individual power amplifiers and the voltage profile of Vamp. Sometimes, a small \(R_p \) may be needed to compensate the stability of the servo loop. A small \(C_f \) will have a fast response in the envelope and may cause overshoot in the time mask and a big \(C_f \) may cause delay. So an optimized \(C_f \) and \(R_p \) should be chosen together with a set of Vamp profiles to meet the GSM specification. A recommended application circuit is shown in Figure 3.

LMV243 Evaluation Board Meets GSM Spec

National has developed an LMV243 demo-board for multi-band GSM/GPRS power amplifiers with a single Vapc pin. The LMV243 has been tested in the demo-board to control the GSM/GPRS power amplifier. A picture of the demo-board can be seen in Figure 4, and Figure 5 shows how the LMV243 passes the GSM transmit time mask at a high-output power level.

![Figure 4: Demoboard](image)

![Figure 5: GSM Transmit Time Mask at Full Output Power](image)

Additional Information

- amplifiers.national.com

Visit The National Edge, our online technical journal for an archive of Application Briefs and other interesting information, edge.national.com
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade. Buyers acknowledge and agree that they must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failures to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated