
Application Report
SPMA054–July 2013

Tiva™ Application Update Using the USB DFU Class

DaveWilson

ABSTRACT
This application report provides a brief overview of the Device Firmware Upgrade (DFU) class, describes
the Tiva implementation in the USB boot loader (boot_usb) application, and also describes the host-side
“lmdfu” dynamic link library for Windows. Use of the standard USB DFU class on Tiva USB-enabled
microcontrollers offers a convenient and fast method of replacing main application images in
microcontroller Flash on boards configured to operate as USB devices.

Contents
1 DFU Overview ... 1
2 DFU Descriptors .. 2
3 DFU Requests ... 3
4 DFU State Machine ... 5
5 Tiva DFU Binary Protocol .. 6
6 Deviations From the DFU Specification .. 10
7 DFU Library for Windows ... 11
8 Conclusion .. 28
9 References ... 28

1 DFU Overview
The USB DFU class defines mechanisms that can be used by USB devices to write new firmware
application images to their internal storage and, optionally, to return the current firmware image to the
host. The class specifies a functional descriptor that the DFU device must return as part of its
configuration descriptor, a set of class-specific requests, and a state machine that controls the download
or upload operations.

The basic DFU specification defines the following operations:
• Firmware image download to a device (write operations)
• Firmware image upload from a device (read operations)
• Device status and state queries

It does not, however, specify the following:
• Address selection for downloaded or uploaded images
• The ability to erase blocks of Flash
• The ability to check that areas of memory are erased
• Methods to query the target device storage parameters (for example, Flash size and writeable region

addresses)

Tiva, TivaWare are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

DFU Descriptors www.ti.com

While these operations are not explicitly mentioned in the specification, they are typically supported by
DFU-device manufacturers via device-specific commands embedded in downloaded binary data. In this
implementation, care has been taken to ensure that a host-side application which is unaware of these
binary commands can still download a suitably wrapped binary file to the device using nothing more than
standard DFU download requests. More details of this are provided in Section 5.

1.1 Device Operating Modes
Unlike most device classes, the DFU class specifies two operating modes for the device: Run Time mode
and DFU mode, each of which publishes a different set of USB descriptors to the host. In Run Time mode,
the device operates using its normal USB class descriptors (for example, a printer operates as a printer
and a mass storage device offers mass storage device services), but also publishes an additional
interface descriptor and functional descriptor publicizing the fact that it is DFU-capable. In this mode, no
actual firmware upload or download is supported, but the DFU specification defines how a host can signal
the device to indicate that it should switch into the second mode in preparation for DFU operation.

In DFU mode, the device no longer publishes its standard device descriptors, instead it reports only its
DFU capabilities, all of which are accessed via a single interface and using the control endpoint, endpoint
0. The device descriptor published in this mode often contains a different product ID (PID) than the
descriptor published in Run Time mode, thus ensuring that the connected USB host only loads the DFU
device driver when the device is in DFU mode. In this mode, firmware download (write) and upload (read)
operations are possible. On exit from DFU mode, the device typically reboots and runs the main
application image, reverting to Run Time mode operation.

NOTE: The remainder of this document refers to the DFU mode only.

2 DFU Descriptors
In DFU mode, the device publishes the following USB descriptors:
• Device
• Configuration
• Interface
• DFU Functional

2.1 Device Descriptor
A standard device descriptor is published with the vendor ID assigned to the manufacturer of the device
(0x1CBE for Tiva examples) and a product ID, which is typically different from the one published during
Run Time mode operation. For the Tiva USB boot loader, product ID 0x00FF is used.

The bDeviceClass and bDeviceSubclass fields of the device descriptor are each set to 0x00 indicating that
the class and subclass are defined at the interface level.

2.2 Configuration Descriptor
A standard configuration descriptor is published by the device. In DFU mode, the bNumInterfaces field
must be set to 1 indicating that a single interface is present.

2.3 Interface Descriptor
A single interface descriptor is published with the DFU interface identified by bInterfaceClass set to 0xFE,
bInterfaceSubClass set to 0x01, and bInterfaceProtocol set to 0x02. The DFU specification allows different
programmable areas of the device memory to be identified through the use of multiple alternate settings
but the Tiva USB boot loader only supports a single alternate setting for the interface.

The interface supports no endpoints (bNumEndpoints is set to 0) since all DFU communication is carried
out via the default control endpoint, endpoint 0.

2 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com DFU Requests

2.4 DFU Functional Descriptor
The only device class-specific descriptor published by the device is the DFU functional descriptor, which
offers information on the DFU capabilities of the device and the size of data blocks that can be written to
or read from the device during download or upload operations. Table 1 shows the DFU functional
descriptor fields.

Table 1. DFU Functional Field Descriptions
Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor in bytes.
1 bDescriptorType 1 0x21 DFU FUNCTIONAL descriptor type.
2 bmAttributes 1 Bit Mask This field provides bit flags indicating DFU-specific device capabilities.

[7:4] Reserved
[3] bitWillDetach:

(1) indicates that the device will detach and reattach automatically on receipt of
the DFU_DETACH request whereas
(0) indicates that the host must issue a USB reset after the DFU_DETACH
request.

[2] bManifestationTolerant:
(0) indicates that the device must be reset after completion of a firmware
download operation whereas
(1) indicates that the device remains responsive and capable of receiving
further DFU requests after a download ends.

[1] bitCanUpload:
(1) indicates that the device is capable of uploading data to the host and
(0) indicates that this is not supported.

[0] bitCanDnload:
(1) indicates that the device supports firmware download operations and:
(0) indicates that download is not supported.
In the Tiva USB boot loader, this field is set to 0x07 to indicate that the device
is “manifestation tolerant” and that it can perform both upload and download
operations.

3 wDetachTimeOut 2 Number This field defines the number of milliseconds that the device waits for a USB
reset after receiving the DFU_DETACH request. The Tiva USB boot loader
does not support DFU_DETACH (since this is a Run Time mode request) and
the field is set to 0xFFFF.

5 wTransferSize 2 Number Defines the maximum number of bytes that the device can accept or provide in
each control endpoint transaction. For the Tiva USB boot loader, this value is
1024.

7 bcdDFUVersion 2 0x110 Identifies this device as DFU 1.1 compliant.

3 DFU Requests
All communication between the USB host and DFU device is made via a group of seven DFU-defined
requests sent using the default control endpoint, endpoint 0. Table 2 shows the DFU-defined requests.

Table 2. DFU-Defined Requests
bmRequestType bRequest wValue wIndex wLength Data

00100001b DFU_DETACH wTimeout Interface Zero None
00100001b DFU_DNLOAD wBlockNum Interface Length Firmware data
10100001b DFU_UPLOAD Zero Interface Length Firmware data
10100001b DFU_GETSTATUS Zero Interface 6 Status
00100001b DFU_CLRSTATUS Zero Interface Zero None
10100001b DFU_GETSTATE Zero Interface 1 State
00100001b DFU_ABORT Zero Interface Zero None

3SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

DFU Requests www.ti.com

• DFU_DETACH
This request is not supported by the Tiva USB boot loader since it only applies to the Run Time mode
operation. The request instructs the device that it should switch into DFU mode either immediately (if
the device DFU functional descriptor bitWillDetach attribute bit is set) or following the next USB reset.

• DFU_DNLOAD
The DFU_DNLOAD request is used to send binary firmware data to the device. This can include
target-specific commands in addition to the firmware data since the DFU specification does not define
the actual content or meaning of the payload of the download request. The size of data passed with
the request must be less than or equal to the wTransferSize specified in the DFU functional descriptor
(1024 for the Tiva implementation). After each transfer, the host must issue a DFU_GETSTATUS and
wait until the previous transfer has been processed prior to sending the next block of data.

• DFU_UPLOAD
The DFU_UPLOAD request is used to retrieve the existing firmware image from the device. As in the
download case, each transfer can be up to wTransferSize bytes. DFU_UPLOAD may also be used to
retrieve device-specific information in response to a command embedded in a previous DFU_DNLOAD
request.

• DFU_GETSTATUS
The DFU_GETSTATUS request returns information on the state of the DFU device and also acts as a
synchronization mechanism during download operations. The request must be made following each
DFU_DNLOAD and no more download requests issued until the returned state indicates that the
device can accept more download data.

This request returns a six-byte structure containing the fields shown in Table 3.

Table 3. DFU_GETSTATUS Field Descriptions
Offset Field Size Value Description

0 bStatus 1 Number An indication of the device status as a result of the execution of the most
recent request. The value 0 indicates that no error condition is present.

1 bwPollTim 3 Number The minimum time that the host should wait before sending another
eout DFU_GETSTATUS while polling for completion of a DFU_DNLOAD operation.

4 bState 1 Number The state that the device will transition to immediately after sending this
response.

5 iString 1 Index The index of any status description string that the device may offer. 0 indicates
that no string is available.

• DFU_CLRSTATUS
In cases where DFU_GETSTATUS has reported an error (non-zero value) in the bStatus field, this
request must be sent to clear the error condition before the host can issue any further download or
upload requests.

• DFU_GETSTATE
The DFU_GETSTATE request is similar to DFU_GETSTATUS in that it returns the current state of the
device. Unlike DFU_GETSTATUS, however, it does not cause any state machine transitions and only
returns the current device state and not the status information indicating the source of any error.

• DFU_ABORT
The DFU_ABORT request will return the device to IDLE state and abort any partially-complete upload
or download operation.

4 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com DFU State Machine

4 DFU State Machine
The DFU specification defines not only the collection of requests that a DFU device must support, but also
a detailed state machine that the device must implement. For each of the states, the specification defines
the action to be performed on receipt of each of the DFU requests and also various USB events, and also
the state that is to be transitioned to following that request or stimulus. The Tiva USB boot loader
implementation is designed to closely follow the state machine definition from the specification, making it
straightforward to understand the code after reading the specification. A couple of deviations from the
specification do exist to facilitate download command extensions and these are described later in this
document. The following states are used while the device is operating in DFU mode:
• dfuIDLE

The device enters dfuIDLE state whenever it first enters DFU mode and on completion of a download
or upload operation (unless the device is not “manifestation tolerant” – see dfuMANIFEST state for
more details). In this state, it is ready to start a new operation.

• dfuDNLOAD-SYNC
Once a DFU_DNLOAD request has been received, the device enters this state and remains here until
DFU_GETSTATUS is received, at which point it will transition to dfuDNLOAD-IDLE assuming the
download request processing has completed.

• dfuDNLOAD-IDLE
When a previous download request has completed and the device is ready to accept another transfer
of binary data, this state is entered.

• dfuUPLOAD-IDLE
Following a DFU_UPLOAD request, this device transitions from dfuIDLE to this state and remains
there until all the requested upload data has been transmitted to the host. In this state, further
DFU_UPLOAD requests may be issued by the host to retrieve subsequent data blocks. When all data
has been transferred, the device transitions back to dfuIDLE.

• dfuERROR
At any time when an error occurs, the device transitions into dfuERROR state. A DFU_GETSTATUS
request will result in details of the error being returned to the host. To clear the error,
DFU_CLRSTATUS must be sent, which results in the device transitioning back to dfuIDLE in
preparation for the start of a new operation.

• dfuMANIFEST-SYNC
Once a download operation completes and all data has been received by the device (as indicated by
the host sending a DFU_DNLOAD request with 0 in the wLength field of the request structure), this
state is entered. The next DFU_GETSTATUS request causes the Tiva USB boot loader to transition
back to dfuIDLE (since it is “manifestation tolerant”).

• dfuMANIFEST
Once a download operation is completed and the host has sent a DFU_GETSTATUS request, a
device that is not “manifestation tolerant” will enter this state during which it will finalize the
programming of the new firmware. Since the Tiva USB boot loader is “manifestation tolerant” it does
not support states dfuMANIFEST or dfuMANIFEST-WAIT-RESET. At the end of a download, the
device transitions to dfuMANIFEST-SYNC and, on completion of programming, directly back to
dfuIDLE.

• dfuMANIFEST-WAIT-RESET
This state is used by devices which are not manifestation tolerant to indicate that a download has
completed and that the device is waiting for the host to issue a USB reset and cause the device to
boot the new firmware.

5SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

Tiva DFU Binary Protocol www.ti.com

5 Tiva DFU Binary Protocol
The Tiva DFU boot loader implementation supports several commands that can be sent to the target
device to perform operations that are outside the scope of the existing DFU specification. This protocol is
defined in such a way, however, that a host application that is unaware of it may still be used to download
and upload firmware images. Using protocol commands, however, the application can access additional
features such as the ability to erase specific regions of Flash, query device parameters or download binary
data to particular addresses.

Each command in the Tiva C DFU binary protocol is sent to the target device as a DFU_DNLOAD request
with an 8 byte payload. The first byte of the payload is a command identifier and the following bytes are
command-specific. The Tiva device expects that any DFU_DNLOAD request received while in state
dfuIDLE will contain a command header. In other states, however, commands are not parsed, thus
allowing a host application unaware of the command protocol to download a correctly formatted firmware
image in multiple transfers without the need to inject commands into the download stream. In this case,
“correctly formatted” means that the image has been wrapped with a DFU suffix and a command prefix
structure containing the 8 byte command indicating that binary data is being sent. This wrapper can be
added by using the “dfuwrap” command line application, which is included in TivaWare™ releases for
USB-capable Tiva evaluation and development kits.

5.1 Tiva DFU Binary Protocol Query
Since the Tiva DFU binary protocol involves sending data via DFU_DNLOAD requests, it is desirable to be
able to determine whether or not a target device supports the protocol before attempting to use it. Sending
such commands to a device that does not expect them could cause corruption of the device firmware so a
special request is supported by the Tiva DFU boot loader allowing a client to determine whether the
protocol is supported. A correct response to this request, rather than a stall, indicates that the protocol is
supported.

The request is an IN request to the DFU interface on the control endpoint, endpoint 0 containing specific
values for the bRequest (USBD_DFU_REQUEST_TIVA, 0x42), wValue (REQUEST_TIVA_VALUE, 0x23)
and wLength (sizeof(tDFUQueryTivaProtocol), 4) parameters. A device supporting the Tiva DFU binary
protocol is expected to respond to a request containing these known values with a 4 byte structure
(tDFUQueryTivaProtocol) containing two marker pattern bytes (DFU_PROTOCOL_TIVA_MARKER) and a
version number. Receipt of the marker bytes by the host indicates that the protocol is supported and the
version number (currently DFU_PROTOCOL_TIVA_VERSION_1, 0x0001) can be used to determine the
set of features supported.

The protocol support request is shown in Table 4.

Table 4. Protocol Support Request
bmRequest Type bRequest wValue wIndex wLength Data
10100001b 0x42 0x23 Interface 4 A structure containing a 2 byte

marker and 2 byte version number is
returned by the device

A device supporting the protocol must respond with the following packed structure:
typedef struct
{

unsigned short usMarker; // Set to DFU_PROTOCOL_TIVA_MARKER
unsigned short usVersion; // Set to DFU_PROTOCOL_TIVA_VERSION_1

}
tDFUQueryTivaProtocol;

5.2 Tiva DFU Binary Protocol Commands
The following commands can be sent to the USB boot loader as the first 8 bytes of the payload to a
DFU_DNLOAD request. The boot loader expects any DFU_DNLOAD request received while in dfu_IDLE
state to contain a command header but will not look for commands unless the state is dfu_IDLE. This
allows an application that is unaware of the command header to download a DFUwrapped binary image
using a standard sequence of multiple DFU_DNLOAD and DFU_GETSTATUS requests without the need
to insert additional command headers during the download.

6 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com Tiva DFU Binary Protocol

The commands defined here and their parameter block structures can be found in the usblib\usbdfu.h
header file. In all cases where multi-byte numbers are specified, the numbers are stored in little-endian
format with the least significant byte in the lowest addressed location. The following definitions specify the
command byte ordering unambiguously, but care must be taken to ensure correct byte swapping if using
the command structure types defined in usbdfu.h on big-endian systems.

5.2.1 DFU_CMD_PROG
This command is used to provide the USB boot loader with the address at which the next download
should be written and the total length of the firmware image that is to follow. This structure forms the
header that is written to the DFU-wrapped file generated by the dfuwrap tool.

The start address is provided in terms of 1024 byte Flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary.

This command can be followed by up to 1016 bytes of firmware image data, this number being the
maximum transfer size minus the 8 bytes of the command structure.

The format of the command is as follows:
uint8_t ui8Data [8];
ui8Data[0] = DFU_CMD_PROG (0x01)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Start Block Number [7:0]
ui8Data[3] = Start Block Number [15:8]
ui8Data[4] = Image Size [7:0]
ui8Data[5] = Image Size [15:8]
ui8Data[6] = Image Size [23:16]
ui8Data[7] = Image Size [31:24]

5.2.2 DFU_CMD_READ
This command is used to set the address range whose content will be returned on subsequent
DFU_UPLOAD requests from the host. The start address is provided in terms of 1024 byte Flash blocks.
To convert a byte address to a block address, merely divide by 1024. The start address must always be
on a 1024 byte boundary.

To read back the contents of a region of Flash, the host should send a DFU_DNLOAD request with
command DFU_CMD_READ, start address set to the 1KB block start address and length set to the
number of bytes to read. The host should then send one or more DFU_UPLOAD requests to receive the
current Flash contents from the configured addresses. Data returned includes an 8 byte
DFU_CMD_PROG prefix structure unless the prefix has been disabled by sending a DFU_CMD_BIN
command with the bBinary parameter set to 1. The host should, therefore, be prepared to read 8 bytes
more than the length specified in the READ command if the prefix is enabled.

By default, the 8 byte prefix is enabled for all upload operations. This is required by the DFU class
specification, which states that uploaded images must be formatted to allow them to be directly
downloaded back to the device at a later time.

7SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

Tiva DFU Binary Protocol www.ti.com

The format of the command is as follows:
uint8_t ui8Data [8];
ui8Data[0] = DFU_CMD_READ (0x02)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Start Block Number [7:0]
ui8Data[3] = Start Block Number [15:8]
ui8Data[4] = Image Size [7:0]
ui8Data[5] = Image Size [15:8]
ui8Data[6] = Image Size [23:16]
ui8Data[7] = Image Size [31:24]

5.2.3 DFU_CMD_CHECK
This command is used to check a region of Flash to ensure that it is completely erased.

The start address is provided in terms of 1024 byte Flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary. The length
must also be a multiple of 4.

To check that a region of Flash is erased, the DFU_CMD_CHECK command should be sent with the
required start address and region length set, then the host should issue a DFU_GETSTATUS request. If
the erase check was successful, the returned bStatus value will be OK (0x00), otherwise it will be
errCheckErased (0x05).

The format of the command is as follows:
uint8_t ui8Data [8];
ui8Data[0] = DFU_CMD_CHECK (0x03)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Start Block Number [7:0]
ui8Data[3] = Start Block Number [15:8]
ui8Data[4] = Region Size [7:0]
ui8Data[5] = Region Size [15:8]
ui8Data[6] = Region Size [23:16]
ui8Data[7] = Region Size [31:24]

5.2.4 DFU_CMD_ERASE
This command is used to erase a region of Flash.

The start address is provided in terms of 1024 byte Flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary. The length
must also be a multiple of 4.

The size of the region to erase is expressed in terms of Flash blocks. The block size can be determined
using the DFU_CMD_INFO command.

The format of the command is as follows:
uint8_t ui8Data [8]
ui8Data[0] = DFU_CMD_ERASE (0x04)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Start Block Number [7:0]
ui8Data[3] = Start Block Number [15:8]
ui8Data[4] = Number of Blocks [7:0]
ui8Data[5] = Number of Blocks [15:8]
ui8Data[6] = Reserved - set to 0x00
ui8Data[7] = Reserved - set to 0x00

8 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com Tiva DFU Binary Protocol

5.2.5 DFU_CMD_INFO
This command is used to query information relating to the target device and programmable region of
Flash. The device information structure, tDFUDeviceInfo, is returned on the next DFU_UPLOAD request
following this command.

The format of the command is as follows:
uint8_t ui8Data [8]
ui8Data[0] = DFU_CMD_INFO (0x05)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Reserved - set to 0x00
ui8Data[3] = Reserved - set to 0x00
ui8Data[4] = Reserved - set to 0x00
ui8Data[5] = Reserved - set to 0x00
ui8Data[6] = Reserved - set to 0x00
ui8Data[7] = Reserved - set to 0x00

//***
//
// Payload returned in response to the DFU_CMD_INFO command.
//
// This is structure is returned in response to the first DFU_UPLOAD
// request following a DFU_CMD_INFO command. Note that byte ordering
// of multi-byte fields is little-endian.
//
//***
typedef struct
{

//
// The size of a flash block in bytes.
//
uint16_t ui16FlashBlockSize;

//
// The number of blocks of flash in the device. Total
// flash size is usNumFlashBlocks * usFlashBlockSize.
//
uint16_t ui16NumFlashBlocks;

//
// Information on the part number, family, version and
// package as read from SYSCTL register DID1.
//
uint32_t ui32PartInfo;

//
// Information on the part class and revision as read
// from SYSCTL DID0.
//
uint32_t ui32ClassInfo;

//
// Address 1 byte above the highest location the boot
// loader can access.
//
uint32_t ui32FlashTop;

//
// Lowest address the boot loader can write or erase.
//
uint32_t ui32AppStartAddr;

}
PACKED tDFUDeviceInfo;

9SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

Deviations From the DFU Specification www.ti.com

5.2.6 DFU_CMD_BIN
By default, data returned in response to a DFU_UPLOAD request includes an 8 byte DFU_CMD_PROG
prefix structure. This ensures that an uploaded image can be directly downloaded again without the need
to further wrap it, as required by the DFU specification. This can, however, prove awkward when pure
binary data is required, so the DFU_CMD_BIN command allows the upload prefix to be disabled or
enabled under host control.

The format of the command is as follows:
uint8_t ui8Data [8]
ui8Data[0] = DFU_CMD_BIN (0x06)
ui8Data[1] = 0x01 to disable upload prefix, 0x00 to enable
ui8Data[2] = Reserved - set to 0x00
ui8Data[3] = Reserved - set to 0x00
ui8Data[4] = Reserved - set to 0x00
ui8Data[5] = Reserved - set to 0x00
ui8Data[6] = Reserved - set to 0x00
ui8Data[7] = Reserved - set to 0x00

5.2.7 DFU_CMD_RESET
This command may be sent to the USB boot loader to cause it to perform a soft reset of the board. This
reboots the target system and, assuming that the main application image is present, runs the main
application. Note that a reboot also takes place if a firmware download operation completes and the host
issues a USB reset to the DFU device.

The format of the command is as follows:
uint8_t ui8Data [8]
ui8Data[0] = DFU_CMD_RESET (0x07)
ui8Data[1] = Reserved - set to 0x00
ui8Data[2] = Reserved - set to 0x00
ui8Data[3] = Reserved - set to 0x00
ui8Data[4] = Reserved - set to 0x00
ui8Data[5] = Reserved - set to 0x00
ui8Data[6] = Reserved - set to 0x00
ui8Data[7] = Reserved - set to 0x00

6 Deviations From the DFU Specification
The Tiva USB boot loader contains a couple of small deviations from the DFU specification. It is not
expected that these differences will materially impact host software accessing the device without
knowledge of the Tiva DFU binary protocol.
• State dfuDNBUSY is not supported.

After each DFU_DNLOAD request, the device transitions to dfuDNLOAD_SYNC state and remains
there until the previously downloaded data has been processed, at which point it transitions back to
dfuDNLOAD_IDLE state. This change was made to reduce the image size since it means that timers
do not need to be supported. The specification suggests that dfuDNBUSY state basically results when
the host sends DFU_GETSTATUS too frequently while the device is programming a block of Flash yet
the Tiva implementation is capable of responding to DFU_GETSTATUS while programming is ongoing.

• The device will transition back to state dfuIDLE on completion of a DFU_DNLOAD request, which
contained a Tiva-specific command other than DFU_CMD_PROG rather than transitioning into
dfuDNLOAD_IDLE state.
If the previous DFU_DNLOAD request contained binary data to be written to Flash, the state
transitions to dfuDNLOAD_IDLE as required by the specification. By doing this, the device is ready to
accept a new command once a previous command is complete, yet the expected state transitions are
maintained while flashing an image to the microcontroller.

• The Tiva USB boot loader does not support run time states (appIDLE and appDETACH).
If an application wishes to support both run time and DFU modes, it must include the software
necessary to respond to at least the DFU_DETACH request and transfer control to the boot loader.

10 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com DFU Library for Windows

7 DFU Library for Windows
The DFU Library for Windows is a DLL offering a high-level application interface allowing communication
with attached USB-DFU equipped Tiva devices. Functions are provided to allow the host application to
determine the number and type of DFU devices currently attached to the system, to query DFU-related
parameters from those devices, to download new firmware images, to upload existing images and to
erase sections of the DFU device Flash memory.

This DLL is included as part of the device driver, which is installed when the DFU device is first placed on
the host’s USB bus. The device driver can be found in the windows_drivers directory of a TivaWare
software installation. TivaWare can be downloaded from http://www.ti.com/tool/sw-tm4c.

The dfuprog example application, which is part of the SW-USB-win “Windows-side examples for USB kits”
package, is also downloadable from http://www.ti.com/tool/SW-TM4C-USB-WIN and makes use of the
LMUSB DLL interface as does the latest version of the LM Flash Programmer.

7.1 Window Messages
Various functions in the LMDFU library allow the caller to provide a window handle that receives periodic
status messages during time-consuming operations. The library sends the messages shown in Table 5.

Table 5. Windows Messages
Message WPARAM LPARAM Description
WM_DFU_DOWNLOAD Total transfer count at tLMDFUHandle A download operation has started

completion
WM_DFU_UPLOAD Total transfer count at tLMDFUHandle An upload operation has started

completion
WM_DFU_VERIFY Total transfer count at tLMDFUHandle A verify operation has started

completion
WM_DFU_ERASE Total transfer count at tLMDFUHandle An erase operation has started

completion
WM_DFU_PROGRESS Transfers completed tLMDFUHandle Provides progress information on the current

operation. The completed transfer count will
increment to the value provided in the download,
upload, verify or erase message sent at the start
of the operation.

WM_DFU_ERROR 0 tLMDFUHandle An error was detected and the current operation
has been aborted.

WM_DFU_COMPLETE 0 tLMDFUHandle The previous operation has completed
successfully.

11SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/SW-TM4C-USB-WIN
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

DFU Library for Windows www.ti.com

7.2 Data Structures

7.2.1 tLMDFUDeviceInfo
This structure is returned from a call to LMDFUDeviceOpen and provides information about the opened
device.
typedef struct
{

unsigned short usVID;
unsigned short usPID;
unsigned short usDevice;
unsigned short usDetachTimeOut;
unsigned short usTransferSize;
unsigned char ucDFUAttributes;
unsigned char ucManufacturerString;
unsigned char ucProductString;
unsigned char ucSerialString;
unsigned char ucDFUInterfaceString;
bool bSupportsTivaExtensions;
bool bDFUMode;
unsigned long ulPartNumber;
char cRevisionMajor;
char cRevisionMinor;
char pcPartNumber[10];

}
tLMDFUDeviceInfo;

usVID Vendor ID published in the device descriptor.
usPID Product ID published in the device descriptor.
usDevice BCD device release number published in the device descriptor.
usDetachTimeOut Device detach timeout published in the DFU functional descriptor.
usTransferSize Maximum number of bytes that the device can accept per control-write

transaction as published in the DFU functional descriptor.
ucDFUAttributes Contains the device attributes from the DFU functional descriptor. Bits

in this value indicate whether the device is capable of upload and/or
download, and whether it is able to continue communication after
completing a download (whether it is “manifestation tolerant”).

ucManufacturerString Index of the manufacturer name string published in the device
descriptor.

ucProductString Index of the product name string published in the device descriptor.
ucSerialString Index of the serial number string published in the device descriptor.
ucDFUInterfaceString Index of the interface string published in the DFU interface descriptor.
bSupportsTiva Extensions Set to true if the DFU device supports the Tiva DFU binary protocol or

false otherwise.
bDFUMode Set to true if the device is currently operating in DFU mode or false if

operating in runtime mode.
ulPartNumber Hexadecimal number indicating the Stellaris part number on the target

device. This value is only valid if bSupportsStellarisExtensions is true.
For example, if the device contains an lm3s3748 part, this field will be
set to 0x3748.

cRevisionMajor Hexadecimal number indicating the major revision of the Tiva part on
the target device. Major revision ‘A’ is represented by 0x00, ‘B’ by 0x01
and so on. This value is only valid if bSupportsTivaExtensions is true.

cRevisionMinor Hexadecimal number indicating the minor revision of the Tiva part on
the target device. This value is only valid if bSupportsTivaExtensions is
true.

12 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com DFU Library for Windows

pcPartNumber An ASCII string identifying the target part. The string will contain the
portion of the part number following the "TM" prefix which is assumed to
be present on all Tiva parts. If the target device is an lm3s Stellaris part,
this string will contain the full part number including the common "lm3s"
prefix.

7.2.2 tLMDFUParams
This structure is returned in response to a call to LMDFUParamsGet and provides information on the
writable area of the Flash address space on the device.
typedef struct
{

unsigned short usFlashBlockSize;
unsigned short usNumFlashBlocks
unsigned long ulFlashTop;
unsigned long ulAppStartAddr;

}
tLMDFUParams;

usFlashBlockSize Size of an individual Flash block on the device.
usNumFlashBlocks Total number of blocks of Flash in the device. The total Flash size is

(usNumFlashBlocks * usFlashBlockSize).
ulFlashTop Address 1 byte above the highest location that the DFU boot loader can

access. This will typically be at the very top of Flash but some
implementations may reserve some space at the top of Flash for
parameter storage in which case this will be reflected in ulFlashTop.

ulAppStartAddr Lowest address that the DFU boot loader can write or erase.

7.3 API Functions
Table 6. API Functions

Title .. Page

LMDFUInit —Initializes the DLL for use by the host application. .. 14
LMDFUDeviceOpen —Opens a DFU device and returns a handle to the caller. ... 14
LMDFUDeviceClose —Closes a DFU device and, optionally, returns it to its runtime configuration. 15
LMDFUDeviceStringGet —Retrieves a Unicode string descriptor from a DFU device....................................... 16
LMDFUDeviceASCIIStringGet —Retrieves an ASCII string descriptor from a DFU device................................. 17
LMDFUParamsGet —Query DFU download-related parameters from a Tiva device... 18
LMDFUIsValidImage —Determines whether the supplied firmware image is a correctly formatted DFU image. 19
LMDFUDownload —Downloads a DFU-formatted firmware image to a target device. 20
LMDFUDownloadBin —Downloads a binary firmware image to a target device.. 22
LMDFUErase —Erases a section of the device Flash... 24
LMDFUBlankCheck —Checks a section of the device Flash to ensure that it has been erased. 25
LMDFUUpload —Reads back a section of the device Flash. .. 26
LMDFUStatusGet —Queries the current status of the DFU device. .. 27
LMDFUErrorStringGet —Returns an ASCII string describing the passed error code. 28

13SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUInit — Initializes the DLL for use by the host application. www.ti.com

LMDFUInit Initializes the DLL for use by the host application.

Prototype tLMDFUErr
LMDFUInit(void)

Parameters None.

Description This function must be called by the host application before any other entry point in the
library. It initializes the global data required to access DFU devices.

Returns Returns DFU_OK on success.

LMDFUDeviceOpen Opens a DFU device and returns a handle to the caller.

Prototype tLMDFUErr
LMDFUDeviceOpen(int iDeviceIndex,

tLMDFUDeviceInfo *psDevInfo,
tLMDFUHandle *phHandle)

Parameters

iDeviceIndex Zero-based index indicating which DFU-capable device is to be opened.
psDevInfo Structure that is filled in with information relating to the DFU device that

has been opened.
phHandle Points to storage that will be written with a valid DFU device handle on

success.

Description This function opens a DFU device and returns information on the device state and
capabilities.

Note that this function will open DFU devices that are currently in runtime mode. The
caller must ensure that a device is in DFU mode prior to making any further requests
that are not supported in runtime mode. Currently, this DLL does not contain a function
to cause a switch from runtime to DFU mode and it is assumed that DFU devices used
with this DLL will have some means to allow you to start them in DFU mode. Depending
on the configuration of the boot loader in use, the DFU mode may be entered by
resetting the board with the select button pressed.

The returned psDevInfo structure contains a flag, bDFUMode, which is set to true if the
device is operating in DFU mode or false if operating in runtime mode.

Handles allocated by this function must be closed using a matching call to
LMDFUDeviceClose().

LMDFUDeviceOpen() and LMDFUDeviceClose() may be used to enumerate DFU
devices on the bus by opening devices in a loop, incrementing iDeviceIndex until
DFU_ERR_NOT_FOUND is returned.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_INVALID_ADDR if psDevInfo or phHandle is NULL.
• DFU_ERR_MEMORY if it was not possible to allocate system memory to support the

request.
• DFU_ERR_NOT_FOUND if a DFU device with index iDeviceIndex could not be found

attached to the system.
• DFU_ERR_UNKNOWN if the device was found but an error was reported while trying to

open it.

14 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUDeviceClose — Closes a DFU device and, optionally, returns it to its runtime configuration.

LMDFUDeviceClose Closes a DFU device and, optionally, returns it to its runtime configuration.

Prototype tLMDFUErr
LMDFUDeviceClose(tLMDFUHandle hHandle,

bool bReset)

Parameters

hHandle Handle of the DFU device that is to be closed. This handle was previously
returned from a call to LMDFUDeviceOpen().

bReset Indicates whether to leave the device in DFU mode (false) or reset it and
return to runtime mode (true).

Description This function closes a DFU device previously opened using a call to
LMDFUDeviceOpen(). If the bReset parameter is true, the device is reset and returned
to its run time mode of operation. If bReset is false, the device is left in DFU mode and
can be reopened again without the need to perform a mode switch.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.

15SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUDeviceStringGet — Retrieves a Unicode string descriptor from a DFU device. www.ti.com

LMDFUDeviceStringGet Retrieves a Unicode string descriptor from a DFU device.

Prototype tLMDFUErr
LMDFUDeviceStringGet(tLMDFUHandle hHandle,

unsigned char ucStringIndex,
unsigned short usLanguageID,
char *pcString,
unsigned short *pusStringLen)

Parameters

hHandle Handle of the DFU device from which the string is to be queried. This
handle was previously returned from a call to LMDFUDeviceOpen().

ucStringIndex Index of the string that is to be queried and found in either a USB device
descriptor or the tLMDFUDeviceInfo structure returned following a call to
LMDFUDeviceOpen().

usLanguageID ID of the language for the returned string. This ID must exist in the device’s
string table.

pcString Points to a buffer into which the returned Unicode string will be written.
pusStringLen Points to a variable that contains the size of the pcString buffer (in bytes)

on entry. If the string is read, this variable is updated to show the number
of bytes written into the pcString buffer.

Description This function retrieves Unicode (UTF16) strings from the DFU device. If the requested
string is available in the chosen language, DFU_OK is returned and the string is written
into the supplied pcString buffer and *pusStringLen updated to provide the length of the
returned string in bytes.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcString or pusStringLen is NULL.
• DFU_ERR_NOT_FOUND if the string requested cannot be found.

16 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUDeviceASCIIStringGet — Retrieves an ASCII string descriptor from a DFU device.

LMDFUDeviceASCIIStringGet Retrieves an ASCII string descriptor from a DFU device.

Prototype tLMDFUErr
LMDFUDeviceASCIIStringGet(tLMDFUHandle hHandle,

unsigned char ucStringIndex,
char *pcString,
unsigned short *pusStringLen)

Parameters

hHandle Handle of the DFU device from which the string is to be queried. This
handle was previously returned from a call to LMDFUDeviceOpen().

ucStringIndex Index of the string that is to be queried and found in either a USB device
descriptor or the tLMDFUDeviceInfo structure returned following a call to
LMDFUDeviceOpen().

pcString Points to a buffer into which the returned ASCII string will be written.
pusStringLen Points to a variable that contains the size of the pcString buffer (in bytes)

on entry. If the string is read, this variable is updated to show the number
of characters written into the pcString buffer.

Description This function retrieves a string descriptor from the DFU device using the first language
supported by the device. If the requested string is available, the Unicode string
descriptor is converted to 8-bit ASCII and written into the buffer pointed to by pcString
and *pusStringLen is updated to provide the length of the returned string.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcString or pusStringLen is NULL.
• DFU_ERR_NOT_FOUND if the string requested cannot be found.

17SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUParamsGet — Query DFU download-related parameters from a Tiva device. www.ti.com

LMDFUParamsGet Query DFU download-related parameters from a Tiva device.

Prototype tLMDFUErr
LMDFUParamsGet(tLMDFUHandle hHandle,

tLMDFUParams *psParams)

Parameters

hHandle Handle of the DFU device whose parameters are being queried. This
handle was previously returned from a call to LMDFUDeviceOpen().

psParams Points to a structure which will be written with the device’s DFU
parameters.

Description This function allows an application to query various parameters related to the Tiva DFU
device that it has opened. These parameters are the size of a Flash block, the number of
blocks the device supports and the address region that is writeable.

The bottom of the Flash address range is always considered read-only since this
contains the DFU boot loader code itself. Depending on the application, a section of
Flash at the top of the range may also be reserved for persistent application parameter
storage and marked read-only to the DFU host.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcString is NULL.
• DFU_ERR_UNSUPPORTED if the target DFU device does not support Tiva C DFU

binary protocol extensions.
• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

18 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUIsValidImage — Determines whether the supplied firmware image is a correctly formatted DFU image.

LMDFUIsValidImage Determines whether the supplied firmware image is a correctly formatted DFU
image.

Prototype tLMDFUErr
LMDFUIsValidImage(tLMDFUHandle hHandle,

unsigned char *pcDFUImage,
unsigned long ulImageLen,
bool *pbTivaFormat)

Parameters

hHandle Handle of the DFU device that the firmware image is destined to be used
with. This handle was previously returned from a call to
LMDFUDeviceOpen().

pcDFUImage Points to the first byte of the firmware image to check.
ulImageLen Number of bytes in the image data pointed to by pcDFUImage.
pbTivaFormat Pointer that is written to true if the supplied data appears to start with a

valid Tiva DFU prefix structure. If the data ends in a valid DFU suffix
structure but does not contain the Tiva prefix, this value will be written to
false.

Description This function checks a provided binary to determine whether it is a correctly formatted
DFU image or not. A valid image contains a 16 byte suffix with a checksum and the IDs
of the intended target device. An image is considered to be valid if the following criteria
are met:
• The CRC of the whole block calculates to 0 (that is, the CRC of all but the last 4

bytes equals the CRC stored in the last 4 bytes).
• The "DFU" suffix marker exists at the correct place at the end of the data block.
• The vendor and products IDs read from the expected positions in the DFU suffix

match the VID and PID of the device whose handle is passed.

Additionally, if these conditions are met, the data is examined for the presence of a Tiva
DFU prefix. This structure contains the address at which to Flash the image and also the
length of the payload.

The pbTivaFormat pointer is written to true if the following additional criteria are met:
• The first byte of the data block is 0x01.
• The unsigned long in bytes 4 through 7 of the image matches the value of the length

of the block minus the DFU suffix (length read from the suffix itself) and Tiva prefix (8
bytes).

• The unsigned short in bytes 2 and 3 of the image forms a sensible Flash block
number (address/1024) for a Tiva device.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors and the passed image contains a

valid DFU suffix structure.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcDFUImage or pbTivaFormat is NULL.
• DFU_ERR_UNSUPPORTED if the device VID and PID do not match those in the DFU

image suffix structure.
• DFU_ERR_INVALID_FORMAT if the firmware image provided does not appear to

contain a valid DFU suffix structure.

19SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUDownload — Downloads a DFU-formatted firmware image to a target device. www.ti.com

LMDFUDownload Downloads a DFU-formatted firmware image to a target device.

Prototype tLMDFUErr
LMDFUDownload(tLMDFUHandle hHandle,

unsigned char *pcDFUImage,
unsigned long ulImageLen,
bool bVerify,
bool bIgnoreIDs,
HWND hwndNotify)

Parameters

hHandle Handle of the DFU device to which a new firmware image is to be
downloaded. This handle was previously returned from a call to
LMDFUDeviceOpen().

pcDFUImage Pointer to the first byte of the DFU-formatted firmware image to download.
ulImageLen Length of the firmware image pointed to by pcDFUImage. This is the length

of the whole image including the Tiva prefix and DFU suffix structures.
bVerify Should be set to true if the download is to be verified (by reading back the

image and checking it against the original data) or false if verification is not
necessary.

bIgnoreIDs Should be set to true if the DFU image is to be downloaded regardless of
the fact that the DFU suffix contains a VID or PID that differs from the
target device. If set to false, the call will fail with DFU_ERR_UNSUPPORTED
if the device VID and PID do not match the values in the DFU suffix.

hwndNotify Handle of a window to which periodic notifications will be sent indicating
the progress of the operation. If NULL, no status notifications will be sent.

Description This function downloads a DFU-formatted binary to the device. A valid binary contains
both the standard DFU footer suffix structure and also a Tiva prefix informing the device
of the address to which the image is to be written. If the data passed does not appear to
contain this information, DFU_ERR_INVALID_FORMAT will be returned and the image will
not be written to the device Flash. The dfuwrap tool provided in TivaWare software
releases can be used to produce a firmware file containing the required prefix and suffix.

This function is synchronous and will not return until the operation is complete. To
receive periodic status updates during the operation, a window handle may be provided.
This window will receive WM_DFU_PROGRESS messages during the download
operation allowing an application to update its user interface accordingly.

To Flash a pure binary image without the DFU suffix or Tiva prefix, use
LMDFUDownloadBin() instead of this function.

Note that the Tiva prefix structure contains the address at which the image is to be
flashed so no parameter exists here to provide this information.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_DNLOAD_FAIL if the device reported an error during image download.
• DFU_ERR_VERIFY_FAIL if bVerify is true and the image read back after download

does not match the image originally sent.
• DFU_ERR_CANT_VERIFY if the device is not manifestation tolerant and does not

return to idle state after the download completes.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcDFUImage is NULL.

20 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUDownload — Downloads a DFU-formatted firmware image to a target device.

• DFU_ERR_UNSUPPORTED if the target DFU device does not support download
operations or, if bIgnoreIDs is false and the device VID and PID do not match those
in the DFU image suffix structure.

• DFU_ERR_INVALID_FORMAT if the firmware image provided does not appear to
contain a valid DFU suffix structure.

• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

21SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUDownloadBin — Downloads a binary firmware image to a target device. www.ti.com

LMDFUDownloadBin Downloads a binary firmware image to a target device.

Prototype tLMDFUErr
LMDFUDownloadBin(tLMDFUHandle hHandle,

unsigned char *pcBinaryImage,
unsigned long ulImageLen,
unsigned long ulStartAddr,
bool bVerify,
HWND hwndNotify)

Parameters

hHandle Handle of the DFU device to which a new firmware image is to be
downloaded. This handle was previously returned from a call to
LMDFUDeviceOpen().

pcBinaryImage Pointer to the first byte of the binary firmware image to download. This
image must not contain a Tiva DFU prefix structure.

ulImageLen Length of the firmware image pointed to by pcDFUImage.
ulStartAddr Flash address at which the image is to be written. If this parameter is set to

0 and the target device supports Tiva DFU binary extensions, the binary
image will be downloaded to the currently-configured application start
address.

bVerify Should be set to true if the download is to be verified (by reading back the
image and checking it against the original data) or false if verification is not
necessary.

bIgnoreIDs Should be set to true if the download is to be verified (by reading back the
image and checking it against the original data) or false if verification is not
necessary.

hwndNotify Handle of a window to which periodic notifications will be sent indicating
the progress of the operation. If NULL, no status notifications will be sent.

Description This function downloads a pure binary image containing no DFU suffix or Tiva header to
the device at an address supplied by the caller.

This function is synchronous and will not return until the operation is complete. To
receive periodic status updates during the operation, a window handle may be provided.
This window will receive WM_DFU_PROGRESS messages during the download
operation allowing an application to update its user interface accordingly.
To Flash a DFU-formatted image, use LMDFUDownload() instead of this function.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_DNLOAD_FAIL if the device reported an error during image download.
• DFU_ERR_VERIFY_FAIL if bVerify is true and the image read back after download

does not match the image originally sent.
• DFU_ERR_CANT_VERIFY if the device is not return to idle state after the download

completes.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pcBinaryImage is NULL or ulStartAddr does not

coincide with the start of a Flash block or any part of the image would fall outside the
range of Flash addresses that are writeable.

• DFU_ERR_UNSUPPORTED if the target DFU device does not support Tiva DFU binary
protocol extensions.

• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.

22 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUDownloadBin — Downloads a binary firmware image to a target device.

• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

23SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUErase — Erases a section of the device Flash. www.ti.com

LMDFUErase Erases a section of the device Flash.

Prototype tLMDFUErr
LMDFUErase(tLMDFUHandle hHandle,

unsigned long ulStartAddr,
unsigned long ulEraseLen,
bool bVerify,
HWND hwndNotify)

Parameters

hHandle Handle of the DFU device whose Flash is to be erased. This handle was
previously returned from a call to LMDFUDeviceOpen().

ulStartAddr Address of the first byte of Flash to be erased. This must correspond to a
Flash block boundary, typically multiples of 1024 bytes. If this parameter is
set to 0 the entire writeable Flash region will be erased.

ulEraseLen Number of bytes of Flash to erase. This must be a multiple of the Flash
block size, typically 1024 bytes.

bVerify Should be set to true if the erase is to be verified (by reading back the
Flash blocks and ensuring that all bytes contain 0xFF) or false if
verification is not necessary.

hwndNotify Handle of a window to which periodic notifications will be sent indicating
the progress of the operation. If NULL, no status notifications will be sent.

Description This function erases a section of the device Flash and, optionally, checks that the
resulting area has been correctly erased before returning.

The function is synchronous and will not return until the operation is complete. To
receive periodic status updates during the operation, a window handle may be provided.
This window will receive WM_DFU_PROGRESS messages during the erase operation
allowing an application to update its user interface accordingly.

The start address provided must correspond to the start of a Flash block within the
writeable address region and the length must indicate an integral number of blocks. The
block size, number of blocks and writeable region addresses can be determined by
calling LMDFUParamsGet().

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_DNLOAD_FAIL if bVerify is true and the blank check following erase failed.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if ulStartAddr does not coincide with the start of a Flash

block.
• DFU_ERR_INVALID_SIZE if ulEraseLen is not a multiple of the Flash block size.
• DFU_ERR_UNSUPPORTED if the target DFU device does not support Tiva DFU binary

protocol extensions.
• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

24 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUBlankCheck — Checks a section of the device Flash to ensure that it has been erased.

LMDFUBlankCheck Checks a section of the device Flash to ensure that it has been erased.

Prototype tLMDFUErr
LMDFUBlankCheck(tLMDFUHandle hHandle,

unsigned long ulStartAddr,
unsigned long ulLen)

Parameters

hHandle Handle of the DFU device whose Flash is to be checked. This handle was
previously returned from a call to LMDFUDeviceOpen().

ulStartAddr Address of the first byte of Flash to check. This must correspond to a Flash
block boundary, typically multiples of 1024 bytes. If this parameter is set to
0 the entire writeable Flash region will be checked

ulLen Number of bytes of Flash to check. This must be a multiple of 4.

Description This function checks a region of the device Flash and reports whether or not it is blank
(with all bytes containing value 0xFF).

The function is synchronous and will not return until the operation is complete.

The start address provided must correspond to the start of a Flash block within the
writeable address region. Writeable region addresses and block size can be determined
by calling LMDFUParamsGet().

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_DNLOAD_FAIL if the region described by ulStartAddr and ulLen is not

completely blank.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if ulStartAddr is not a multiple of 1024.
• DFU_ERR_INVALID_SIZE if ulLen is not a multiple of 4.
• DFU_ERR_UNSUPPORTED if the target DFU device does not support Tiva DFU binary

protocol extensions.
• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

25SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUUpload — Reads back a section of the device Flash. www.ti.com

LMDFUUpload Reads back a section of the device Flash.

Prototype tLMDFUErr
LMDFUUpload(tLMDFUHandle hHandle,

unsigned char *pcBuffer,
unsigned long ulStartAddr,
unsigned long ulImageLen,
bool bRaw,
HWND hwndNotify)

Parameters

hHandle Handle of the DFU device whose Flash is to be read. This handle was
previously returned from a call to LMDFUDeviceOpen().

pcBuffer Points to a buffer of at least ulImageLen bytes into which the returned data
will be written. If bRaw is set to false, the buffer must be 24 bytes longer
than the actual data requested to accommodate the DFU prefix and suffix
which are added during the upload process.

ulStartAddr Address of the first byte of Flash to be read.
ulImageLen Number of bytes of Flash to read. If bRaw is set to false, this length must

be increased by 24 bytes to accommodate the DFU prefix and suffix added
during the upload process.

bRaw Indicates whether the returned image will be wrapped in a Tiva prefix and
DFU standard suffix. If false, the wrappers will be omitted and the raw data
returned. If true, the wrappers will be included allowing the returned image
to be written to a device later by calling LMDFUDownload().

hwndNotify Handle of a window to which periodic notifications will be sen indicating the
progress of the operation. If NULL, no status notifications will be sent.

Description This function reads back a section of the device Flash into a buffer supplied by the
caller. The data returned may be either raw data containing no DFU control prefix and
suffix or a DFU-wrapped image suitable for later download via a call to
LMDFUDownload(). If a DFU-wrapped image is requested, the buffer pointed to by
pcBuffer must be 24 bytes larger than the number of bytes of device Flash which is to be
read. For example, to read 1024 bytes of Flash wrapped as a DFU image, ulImageLen
must be set to (1024 + 24) and pcBuffer allocated accordingly.

The function is synchronous and will not return until the operation is complete. To
receive periodic status updates during the operation, a window handle may be provided.
This window will receive WM_DFU_PROGRESS messages during the erase operation
allowing an application to update its user interface accordingly.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if ulStartAddr is not a multiple of 1024.
• DFU_ERR_INVALID_SIZE if the buffer provided is too small to hold the image prefix

and suffix (when bRaw is false).
• DFU_ERR_UNSUPPORTED if the target DFU device does not support Tiva DFU binary

protocol extensions.
• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

26 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

www.ti.com LMDFUStatusGet — Queries the current status of the DFU device.

LMDFUStatusGet Queries the current status of the DFU device.

Prototype tLMDFUErr
LMDFUStatusGet(tLMDFUHandle hHandle,

tDFUStatus *pStatus)

Parameters

hHandle Handle of the DFU device whose Flash is to be requested. This handle
was previously returned from a call to LMDFUDeviceOpen().

pStatus Points to storage which will be written with the DFU status returned by the
device.

Description This call may be made to receive detailed error status from the connected DFU device.
The status value returned is an error code as defined in the DFU_UPLOAD Request
section of the USB Device Firmware Upgrade Specification located at
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf.

Returns Returns one of the following error codes:
• DFU_OK if the operation completed without errors.
• DFU_ERR_HANDLE if hHandle is NULL.
• DFU_ERR_INVALID_ADDR if pStatus is NULL.
• DFU_ERR_TIMEOUT if the control transaction times out.
• DFU_ERR_STALL if the device stalls the request indicating an error.
• DFU_ERR_DISCONNECTED if the device has been disconnected.
• DFU_ERR_UNKNOWN if an unexpected error is reported by the device.

27SPMA054–July 2013 Tiva™ Application Update Using the USB DFU Class
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

LMDFUErrorStringGet — Returns an ASCII string describing the passed error code. www.ti.com

LMDFUErrorStringGet Returns an ASCII string describing the passed error code.

Prototype char *
LMDFUErrorStringGet(tLMDFUErr eError)

Parameters

eError is the error code whose description is being queried.

Description This function is provided for debug and diagnostic purposes. It maps the return code
from an LMDFU function into a human readable string suitable for, for example, debug
trace output.

Returns Returns a pointer to an ASCII string describing the return code.

8 Conclusion
USB device firmware upgrade allows the high speed of the USB interface to be used to quickly and easily
update application binary images on a target device. Making use of the Tiva DFU DLL on Windows, DFU
functionality can very easily be added to new or existing host applications supporting those target devices.

9 References
• TivaWare™ Boot Loader User's Guide (SPMU301)
• Universal Serial Bus Device Class Specification for Device Firmware Upgrade, Version 1.1

http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
• Universal Serial Bus Specification, Revision 2.0 http://www.usb.org/developers/docs/
• TivaWare™ Peripheral Driver Library for C Series

28 Tiva™ Application Update Using the USB DFU Class SPMA054–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPMU301
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/docs/
http://www.ti.com/tool/sw-tm4c-drl
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA054

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Tiva Application Update Using the USB DFU Class
	1 DFU Overview
	1.1 Device Operating Modes

	2 DFU Descriptors
	2.1 Device Descriptor
	2.2 Configuration Descriptor
	2.3 Interface Descriptor
	2.4 DFU Functional Descriptor

	3 DFU Requests
	4 DFU State Machine
	5 Tiva DFU Binary Protocol
	5.1 Tiva DFU Binary Protocol Query
	5.2 Tiva DFU Binary Protocol Commands
	5.2.1 DFU_CMD_PROG
	5.2.2 DFU_CMD_READ
	5.2.3 DFU_CMD_CHECK
	5.2.4 DFU_CMD_ERASE
	5.2.5 DFU_CMD_INFO
	5.2.6 DFU_CMD_BIN
	5.2.7 DFU_CMD_RESET

	6 Deviations From the DFU Specification
	7 DFU Library for Windows
	7.1 Window Messages
	7.2 Data Structures
	7.2.1 tLMDFUDeviceInfo
	7.2.2 tLMDFUParams

	7.3 API Functions

	8 Conclusion
	9 References

