
SPNA117A– May 2010
Submit Documentation Feedback

Programming TMS570LS20x/10x Flash Using Flash API 1

Copyright © 2010, Texas Instruments Incorporated

Application Report
SPNA117A – May 2010

Programming TMS570LS20x/10x Flash Using Flash API
AEC Automotive Safety Application

ABSTRACT
The Texas Instrument's TMS570 products have Flash memory that can store data or machine code for
execution. This document provides a high-level overview of the TMS570 Flash architecture and Flash API,
focusing on the erasing and programming of TMS570 Flash using Flash API.
Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/SPNA117.

Contents
1 Introduction ... 1
2 TMS570LS20x/10x Flash Overview ... 1
3 Programming Flash Using Flash API ... 4
4 Example ... 7
5 References ... 8
Appendix A Flash API Function Description .. 9

List of Figures
1 Flash Module Block Diagram ... 2
2 ECC Word Memory Map .. 2
3 Flash Cell Structure .. 3
4 Flash Cell 0/1 Threshold in Different Reads ... 3

List of Tables
1 Source Files in Project ... 7
2 Project Files .. 7
3 Flash API Function Description .. 9
4 Flash API Function Parameter Description .. 10

1 Introduction
TMS570 platform devices are implemented with embedded Flash memories. Flash API defines a set of
software peripheral functions intended to program/erase the Flash module. This application report explains
how to call those functions to program/erase the Flash memories.

2 TMS570LS20x/10x Flash Overview

TMS570LS20x/10 has integrated Flash memory for nonvolatile data storage. Usually, the Flash memory
consists of several Flash banks, which is a group of Flash sectors. The smallest unit that can be erased in
a Flash memory is a complete Flash sector. For example, TMS570LS20216S has four Flash banks: bank0
has 10 sectors and the other three banks have 4 sectors in each bank. See the device-specific data sheet
for bank/sector configuration.

Code Composer Studio, nowECC are trademarks of Texas Instruments.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A
http://www.ti.com/lit/zip/SPNA117

Copyright © 2010, Texas Instruments Incorporated

32 bit data word 7

32 bit data word 6

32 bit data word 5

32 bit data word 4

0

Bank n

……

Bank 1

Sector 0

Sector 1

……
Sector m

Bank 0

TMS570LS20x/10x Flash Overview www.ti.com

Figure 1. Flash Module Block Diagram

The Flash bank in TMS570LS20216S is 144 bits wide, including 128 bits for normal data width and two
sets of 8 bit ECC check bits. Each 8 ECC check bits check 64 data bits and 19 address bits. Since ECC in
this device contains address information, the ECC bits will be different if the same data is stored in a
different location. Logically, this 8-bit ECC repeats itself four times as shown in Figure 2. In other words,
physically, Flash ECC occupies only 1/8 of the corresponding Flash data; logically, the size of Flash ECC
is half of the corresponding Flash data.

Data Space ECC Space

Offset1+ 0x1C

Offset1+ 0x18

Offset1+ 0x14

Offset1+ 0x10

ECC word 67: checks data word6+word7
ECC word 45: checks data word4+word5
ECC word 23: checks data word2+word3
ECC word 01: checks data word0+word1

Flash bank wide word origanization

Notes: 1) Offset is 0M for main data space, 6M for customer OTP space.
2) Offset is 4M for main data ECC space, 6M+32k for customer OTP ECC space.

Figure 2. ECC Word Memory Map

2 Programming TMS570LS20x/10x Flash Using Flash API SPNA117A– May 2010
Submit Documentation Feedback

143:136 135:128 127:64 63:0
ECC_U0 ECC_U1 DATA_U1 DATA_U0

Offset1+ 0x0C 32 bit data word 3 45 67 45 67 Offset2+ 0x0C

Offset1+ 0x08 32 bit data word 2 45 67 45 67 Offset2+ 0x08

Offset1+ 0x04 32 bit data word 1 01 23 01 23 Offset2+ 0x04
Offset1+ 0x00 32 bit data word 0 01 23 01 23 Offset2+ 0x00

 31

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

Control Gate
IFlash

Floating Gate
Vd+

Source Drain

P Vg+

Flash Cell

Channel

N N

Poly1
Poly2

www.ti.com TMS570LS20x/10x Flash Overview

Figure 3 shows a typical Flash cell and its symbol. TMS570 Flash has three basic operations:
• Erase – Remove electrons from the floating gate, generating logical 1s in the memory.
• Program – Forcing electrons into the floating gate, generating logical 0s in the memory.
• Read – Accessing the contents of a Flash memory. It can either be a 1 or 0. It is done by applying

voltage on the control gate and sensing the drain current (IFlash). Normal read, erase verify, program
verify, and read margin tests are all variations of read. They are differentiated by the control gate
voltage and the threshold of the drain current to determine logical 0 and 1. The current/voltage ratio
threshold of different reads are sequenced as shown in Figure 4, where depletion means over-erased,
the transistor is always on:

Figure 3. Flash Cell Structure

High Low

Program Verify

 Read Margin 0

 Normal Read

Read Margin 1

Erase Verify

 Compact Verify

 Depletion

Low High

Figure 4. Flash Cell 0/1 Threshold in Different Reads

SPNA117A– May 2010 Programming TMS570LS20x/10x Flash Using Flash API 3
Submit Documentation Feedback

Compact

Se
ns

e
C

ur
re

nt
 to

 G
at

e
Vo

lta
ge

 R
at

io

Pr
og

ra
m

Er
as

e

Fl
oa

tin
g

G
at

e
“+

”
C

ha
rg

e

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

Programming Flash Using Flash API www.ti.com

3 Programming Flash Using Flash API
Flash API defines a set of software peripheral functions intended to program/erase the Flash module.
There are more than 50 functions, including many TMS470R1x legacy and diagnostic functions. Table 3
and Table 4 in the Appendix lists the description for those nine functions used in this document. With
these nine functions, you can perform most of the Flash operations.
There are several steps required to program Flash using Flash API functions:
1. Include the Flash API head files and libraries into the project.
2. Compact the target Flash.
3. Erase the target Flash.
4. Program the target Flash.
5. Verify the target Flash.

3.1 Include the Flash API Files

After the F035a Flash API is installed, the following files will be in the directory:
• Three header files: f035.h, flash470.h and Flash470ErrorDefines.h. Include these files in the project.
• Three .lib files: pf035a_api.lib, pf035a_api_tiabi.lib, pf035a_api_eabi.lib. Except for the names, the first

two libraries are identical. Include either file in the project if it is built using tiabi options (in Code
Composer Studio™ 3.3, Project → Build Options, under tab Compiler and Linker; in Code Composer
Studio 4.x, Project → Properties, under tab Tool Settings, click Runtime Model Options). Otherwise, if
eabi is used, include pf035a_api_eabi.lib in the project. These two ‘abi’s specify different standard
conventions for file formats, data types, register usage, stack frame organization, and function
parameter passing of an embedded software program.

The attached example uses eabi. After including all the head files and library files, the application can call
the API function defined in flash470.h.

3.2 Compact

A device may contain depleted (over erased) columns and/or marginally erased bits. The application code
should validate the target Flash before erasing. Otherwise, the leakage current caused by the depleted
bits might confuse the sense amplifier in the other. The Flash API provides the following function to the
compact depleted Flash sectors.
Flash_Compact_B()
This function validates the Flash data and ECC/parity together. For example, if this function is called to
validate the Flash data of sector 0 in bank1, it validates both this sector and the corresponding ECC/parity
area.
The attached example uses the following code to compact bank2 and bank3:

4 Programming TMS570LS20x/10x Flash Using Flash API SPNA117A– May 2010
Submit Documentation Feedback

//Compact bank 2 and bank3 the Flash
pstatus=0x0;
for(i=14;i<NUMBEROFSECTORS;i++)
{ temp=Flash_Compact_B(sector[i].start, sector[i].bank,

(FLASH_SECT)sector[i].sectorNumber, delay,
(FLASH_ARRAY_ST)sector[i].FlashBaseAddress,&status);
if(!temp) { pstatus=1;

break; }
}

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Programming Flash Using Flash API

3.3 Erase
The target Flash is ready for erasing after it is validated by the compact function. After erasing, the target
Flash reads as all '0xFFFFFFFF's. This state is called as blank. Flash API provides one bank erase and
two sector functions to erase the target Flash. Similar to the compact function, all the erase function
erases the data and the ECC/parity together.
Flash_Erase_Bank_B() ; //erase the target bank
Flash_Erase_B() ; // erase the target sector
Flash_Erase_Sector_B() ; // erase the target sector
Flash_Erase_Bank_B() and Flash_Erase_B() support disabling preconditioning, i.e., program to 0’s prior
to applying erase pulses. Obviously, disabling preconditioning can save erase time on the blank banks.
However, the application makes sure that the target Flash is blank before disabling preconditioning. Flash
API provides the following function to determine if the Flash bank is blank before disabling preconditioning
erasing:
Flash_Bank_B()
This function can also be used to verify the Flash has been properly erased.
The attached example calls Flash_Erase_Bank_B() to erase bank2 and Flash_Erase_B() to erase bank3.

3.4 Program
Flash API provides the following function to program the Flash:
Flash_Prog_B()
This function programs the target Flash from the starting address start. The data buffers being
programmed to Flash should not cross boundaries between banks that are 32-bit aligned. In the attached
example, programming 1k byte data into Flash calls the Flash_Prog_B() twice because it crosses the
boundary of bank2 and bank3.
Different from the compact and erase function, the program function programs the Flash data and
ECC/parity separately. Generate the Flash ECC/parity part, i. e., through nowECC™ tool, to generate the
ECC part from an input file and program the ECC/parity into the target Flash ECC/parity area.

SPNA117A– May 2010 Programming TMS570LS20x/10x Flash Using Flash API 5
Submit Documentation Feedback

// Erase Antares Flash Bank 2 using Bank Erase
pstatus=0x0;
status.stat1 = 0;//enable preconditioning
temp=Flash_Erase_Bank_B(bank[2].start,bank[2].length,bank[2].bankNumber, delay,

(FLASH_ARRAY_ST)bank[2].FlashBaseAddress,&status);
if(!temp) { pstatus=1;}

// Erase Antares Flash bank 3 using Sector Erase
pstatus=0x0;
status.stat1 = 0; //enable preconditioning
for(i=18;i<NUMBEROFSECTORS;i++)
{ temp=Flash_Erase_B(sector[i].start,sector[i].length,sector[i].bank,

(FLASH_SECT)sector[i].sectorNumber, delay,
(FLASH_ARRAY_ST)sector[i].FlashBaseAddress,&status);
if(!temp) { pstatus=1;

break;}
}

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

Programming Flash Using Flash API www.ti.com

The attached example uses following code to program 1k byte data into bank2 and bank3.

3.5 Verify

After program, the application code should perform verify on all buffers using either Flash_Verify_B() or
Flash_PSA_Verify_B(). These two functions verify proper programming by using normal read, read-margin
0, and read-margin 1.
The attached example use the following code to verify 1k byte data into bank2 and bank3.

3.6 Notes
To avoid ECC/parity malfunctions, TI strongly recommends that you disable Flash ECC/parity during Flash
compacting, erasing, programming and verifying. TI also recommends that you disable all the interrupts
and exceptions during these operations because the Flash API might miss counting compact/erase pulses
if the CPU is serving interrupt.

6 Programming TMS570LS20x/10x Flash Using Flash API SPNA117A– May 2010
Submit Documentation Feedback

// Program the 1k byte data from RAM 0x9000 to Flash 0x0017FF00.
pstatus=0x0;
temp=Flash_Prog_B((void *)0x0017FF00 ,(UINT32 *)&Flash_Data, 0x100>>2, FLASH_CORE2,

delay,(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=1;}
temp=Flash_Prog_B((void *)0x00180000 ,(UINT32 *)(&Flash_Data+0x40), 0x300>>2,

FLASH_CORE3, delay,(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=1;}

// Program Flash ECC
pstatus=0x0;
temp=Flash_Prog_B((void *)0x004bff80 ,(UINT32 *)&Flash_ECCData, 0x80>>2, FLASH_CORE2,

delay,(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x20;}
temp=Flash_Prog_B((void *)0x004C0000 ,(UINT32 *)(&Flash_ECCData+0x20), 0x180>>2,

FLASH_CORE3, delay, (FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x20;}

// Verify that the 1k byte data from RAM 0x9000 to Flash 0x0017FF00.
pstatus=0x0;
temp=Flash_Verify_B((void *)0x0017FF00 ,(UINT32 *)&Flash_Data, 0x100>>2, FLASH_CORE2,

(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x1;}
temp=Flash_Verify_B((void *)0x00180000 ,(UINT32 *)((&Flash_Data)+0x40), 0x300>>2,

FLASH_CORE3,(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x1;}

// Verify Flash ECC
pstatus=0x0;
temp=Flash_Verify_B((void *)0x004bff80 ,(UINT32 *)&Flash_ECCData, 0x80>>2, FLASH_CORE2,

(FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x40;}
temp=Flash_Verify_B((void *)0x004C0000 ,(UINT32 *)(&Flash_ECCData+0x20),

0x180>>2, FLASH_CORE3, (FLASH_ARRAY_ST)0xfff87000,&status);
if(!temp) {pstatus=0x40; }

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

www.ti.com Example

F035 Flash offers the possibility of erasing/programming one bank while executing code in another bank.
No attempts should be made to read from Flash locations in the same bank as the area being operated on
by the Flash State Machine until the command completes. For example, appropriate code in bank0 sector
0 can erase bank2 but can NOT erase bank0 sector 3.

3.7 One Time Programmable (OTP) Flash Sector

There are four customer OTP sectors mapping to the 6Mbyte offset from the Flash-based address; they
increment by 2k for each. These sectors can only be programmed once. Do not attempt to erase the OTP
sectors. Flash API provides the following function to program the customer OTP area.
OTP_Prog_B(); // Program customer OTP
You can perform the blank check verify using the same function as normal Flash, i.e., Flash_Blank_B() for
blank check, Flash_PSA_Verify_B() and Flash_Verify_B() for verify.

4 Example

The attached example is built with eabi; communicate with PC through SCI using RS232 protocols. You
can type the command in Hyper Terminal to execute compact, erase, blank check, program and verify
Flash API function.
It includes following source files:

Table 1. Source Files in Project
File Name Description

Intvecs.asm

Boot.asm

Startup.c

Data_To_Flash.asm

Data_To_FlashECC.asm

SCI.C

Main.c

Interrupt vectors setup file

Initialize stack, call _init and _main

Initialize global variables

1k byte Data to be programmed into 0x17FF00

0.5k byte ECCData to be programmed into 0x004BFF80

RS232 functions

Demonstrates the Flash compact, erase, blank check, program and verify Flash API function

It includes two project files:

File Name Description

Table 2. Project Files

FlashEABI_Flash.pjt

FlashEABI_RAM.pjt

Build FlashEABI_Flash.out using linker_flash.cmd as the link file. User shall program this
.out file into TMS570LS20216S Flash to run the demo.
Build FlashEABI_RAM.out using linker_RAM.cmd as the link file. User shall load this .out file
into TMS570LS20216S SRAM to run the demo.

4.1 Running the Demo

4.1.1 Hardware

1. Connect the TI EVM board USB port to a PC.
2. Configure the right COM port and the baud rate to be 19.2 kHz, no parity, one stop bit.

4.1.2 Software

1. Program FlashEABI_Flash.out to the Flash device using the nowFlash tool; reset the device. Or,
2. Load FlashEABI_RAM.out into the RAM device using Code Composer Studio; click run.

The following menu prompts are shown from HyperTerminal:
0- Call Flash_Compact_B() to compact bank2 and bank3

SPNA117A– May 2010 Programming TMS570LS20x/10x Flash Using Flash API 7
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

References www.ti.com

1- Call Flash_Erase_Bank_B() to erase bank2
2- Call Flash_Erase_B() to erase bank3
3- Call Flash_Blank_B() to blank check bank2 and bank3
4- Call Flash_Prog_B() to program 1k byte data to Flash 0x0017FF00
5- Call Flash_Verify_B() to program 1k byte data to Flash
6- Call Flash_Prog_B() to program 0.5k byte data to FlashECC 0x004bff80
7- Call Flash_Verify_B() to program 0.5k byte data to FlashECC
8- Call Flash_Compact_B() to compact bank1 unused sectors
9- Call Flash_Erase_B() to erase bank1 unused sectors
D- Dump 64 byte data from a certain location

3. Input the function index in HyperTerminal to run the function.
For example, you can input the command 1, 2, 3, 4, 5, 6, 7 sequentially to program the 1kbyte data
and the according ECC bits to Flash. Function 8 and 9 can only be correctly executed if the code is in
RAM. If it runs from Flash, it will cause an exception and require a reset because the code tries to
erase the Flash sector in the same bank.

5 References

• TMS470/570 Platform F035a Flash Application Programming Interface User’s Specification, v1.03
(SPNU493)

• TMS570LS20216 Technical Reference Manual (SPNU489)
• CoreSight and Trace for Cortex-R Series Processors

http://www.arm.com/products/system-ip/debug-trace/coresight-for-cortex-r.php
• Cortex-R4 Processor http://www.arm.com/products/processors/cortex-r/cortex-r4.php

8 Programming TMS570LS20x/10x Flash Using Flash API SPNA117A– May 2010
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/SPNU493
http://www.ti.com/lit/pdf/SPNU489
http://www.arm.com/products/system-ip/debug-trace/coresight-for-cortex-r.php
http://www.arm.com/products/processors/cortex-r/cortex-r4.php
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

www.ti.com

Appendix A Flash API Function Description

Table 3. Flash API Function Description
Function Description

Flash_Compact_B() This function adjusts depleted (over-erased) Flash memory bits in the target
BOOL Flash_Compact_B (UINT32
*pu32Start, FLASH_CORE oFlashCore,
FLASH_SECT oFlashSector, UINT32
u32Delay, FLASH_ARRAY_ST
oFlashControl, FLASH_STATUS_ST
*oFlashStatus);

sector so they are not in depletion. This function only performs compaction on
the target sector, so compaction of N sectors requires N calls.

Flash_Erase_B() This function is used to erase the targeted sector and to collect pulse count
BOOL Flash_Erase_B(UINT32
*pu32Start, UINT32 u32Length,
FLASH_CORE oFlashCore, FLASH_SECT
oFlashSector, UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus);

information. It allows for the disabling of reconditioning during erase.

Flash_Erase_Sector_B() This function erases a sector, and preconditioning is enabled by default and
BOOL Flash_Erase_Sector_B(UINT32
*pu32Start, UINT32 u32Length,
FLASH_CORE oFlashCore, FLASH_SECT
oFlashSector, UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl);

cannot be disabled as is possible using Flash_Erase_B or
Flash_Erase_Bank_B.

Flash_Erase_Bank_B() This function is used to erase the targeted bank and to collect pulse count
BOOL Flash_Erase_Bank_B(UINT32
*pu32Start, UINT32 u32Length,
FLASH_CORE oFlashCore, UINT32
u32Delay, FLASH_ARRAY_ST
oFlashControl, FLASH_STATUS_ST
*oFlashStatus);

information. It allows for the disabling of reconditioning during erase.

Flash_Blank_B() This function verifies that the Flash has been properly erased starting from the
BOOL Flash_Blank_B(UINT32
*pu32Start, UINT32 u32Length,
FLASH_CORE oFlashCore,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *oFlashStatus);

address passed in the parameter start. length words are read, starting at the
starting address.

Flash_Prog_B() This function programs the Flash from the starting address start for length 32
BOOL Flash_Prog_B (UINT32
*pu32Start, UINT32 *pu32Buffer,
UINT32 u32Length, FLASH_CORE
oFlashCore, UINT32 u32Delay,
FLASH_ARRAY_ST oFlashControl,
FLASH_STATUS_ST *poFlashStatus);

bit words. The user code must make sure that the areas to be programmed are
already erased before calling this routine.

Flash_Verify_B() This function verifies proper programming by using normal read, read-margin 0,
BOOL Flash_Verify_B(UINT32 *start,
UINT32 *buff, UINT32 length,
FLASH_CORE core, FLASH_ARRAY_ST
cntl, FLASH_STATUS_ST *status,);

and read-margin 1 modes. Verification starts from the start address start and
check length words from the start address.

Flash_PSA_Verify_B() This function verifies proper programming by using normal read, read-margin 0,
BOOL Flash_PSA_Verify_B(UINT32
*start, UINT32 length, UINT32 psa,
FLASH_CORE core, FLASH_ARRAY_ST

cntl, FLASH_STATUS_ST *status);

and read-margin 1 modes, and generating a 32 bit PSA checksum for the data
in the region in each mode. Verification starts from the start address start and
check length words from the start address.

SPNA117A– May 2010 Programming TMS570LS20x/10x Flash Using Flash API 9
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

Copyright © 2010, Texas Instruments Incorporated

Appendix A www.ti.com

Table 3. Flash API Function Description (continued)

Function Description

OTP_Prog_B() Similar to Flash_Prog_B, except that it is used to program OTP.
BOOL OTP_Prog_B (UINT32 *pu32Start,
UINT32 *pu32Buffer, UINT32
u32Length, FLASH_CORE oFlashCore,
UINT32 u32Delay, FLASH_ARRAY_ST
oFlashControl, FLASH_STATUS_ST
*poFlashStatus,);

Table 4. Flash API Function Parameter Description
Parameter Type Description

pu32Start / start

pu32Buffer / buff

u32Length /length

UINT32

UINT32

UINT32

Points to the first word in the Flash that are
compact/erased/programmed or verified
Pointer to the starting address of a buffer with data to program or
verified
Number of 32-bit words to program/verify. This parameter in erase
function can be ignored.

oFlashCore / core FLASH_CORE Bank select (0-7) of region being programmed/verified.

Flash delay parameter determines the compact/erase/program pulse

u32Delay

oFlashControl /
ctnl

UINT32

FLASH_ARRAY_ST

width. Should be half of the HCLK frequency (in MHz). For example,
if HCLK is 80 MHz, this parameter should be set to (ceiling)(80/2) =
40.

Flash control base address of module. 0xfff87000 for
TMS570LS20216S.

poFlashStatus /
FLASH_STATUS_ST Pointer to status structure for storing statistical information.

status

UINT32

psa The expected PSA value against which the actual PSA values is
compared.

10 Programming TMS570LS20x/10x Flash Using Flash API SPNA117A– May 2010
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA117A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Contents
	1 Introduction
	2 TMS570LS20x/10x Flash Overview
	Figure 1. Flash Module Block Diagram
	The Flash bank in TMS570LS20216S is 144 bits wide, including 128 bits for normal data width and two sets of 8 bit ECC check bits. Each 8 ECC check bits check 64 data bits and 19 address bits. Since ECC in this device contains address information, the ...

	Figure 2. ECC Word Memory Map
	Figure 3 shows a typical Flash cell and its symbol. TMS570 Flash has three basic operations:
	High
	Program Verify

	3 Programming Flash Using Flash API
	Flash API defines a set of software peripheral functions intended to program/erase the Flash module. There are more than 50 functions, including many TMS470R1x legacy and diagnostic functions. Table 3 and Table 4 in the Appendix lists the description ...
	The target Flash is ready for erasing after it is validated by the compact function. After erasing, the target Flash reads as all '0xFFFFFFFF's. This state is called as blank. Flash API provides one bank erase and two sector functions to erase the tar...
	The attached example uses following code to program 1k byte data into bank2 and bank3.
	F035 Flash offers the possibility of erasing/programming one bank while executing code in another bank. No attempts should be made to read from Flash locations in the same bank as the area being operated on by the Flash State Machine until the command...

	4 Example
	It includes two project files:
	4.1 Running the Demo
	4.1.1 Hardware
	1. Connect the TI EVM board USB port to a PC.
	2. Load FlashEABI_RAM.out into the RAM device using Code Composer Studio; click run. The following menu prompts are shown from HyperTerminal:
	3. Input the function index in HyperTerminal to run the function.

	5 References
	Appendix A Flash API Function Description
	Table 3. Flash API Function Description
	Table 3. Flash API Function Description (continued)
	Table 4. Flash API Function Parameter Description
	u32Delay
	status

	IMPORTANT NOTICE

