
Application Report
SPNA165–September 2012

A Tutorial on Optimizing Vision Algorithms on TI DSPs
Senthil Kumar Yogamani ...

ABSTRACT

Computer vision algorithms are computationally intensive; tailoring them for a resource constrained
embedded processor like DSP is challenging. The performance improvements achieved by optimization
can be huge. For example, optimization of OpenCV’s Pedestrian Detection on the C674x DSP improved
the performance by a factor of > 200x. This application report is targeted towards engineers who develop
or optimize vision algorithms on TI DSPs.

Contents
1 Introduction .. 1
2 DSP Architecture .. 1
3 Optimized DSP Libraries ... 4
4 Profiling and Identifying Hot Spots .. 7
5 Memory Optimization ... 10
6 Kernel Level Optimization .. 12
7 Loop Transformations ... 14
8 DSP Specific Optimizations .. 17
9 Summary ... 18
10 References ... 19

List of Figures

1 Packed Arithmetic... 2

2 SIMD Processing.. 2

3 FDE Pipelining... 3

4 Instruction Level Pipelining .. 3

5 Comparison VLIW Versus SIMD Hardware ... 3

6 C6x DSP Architecture .. 4

7 LDW Implementation Using VLIB ... 6

8 Loop and Kernel Illustration ... 8

9 Memory Hierarchy in C64x DSP .. 10

10 Ping-Pong Buffering... 11

11 Illustration of Redundant Operations Across Iterations... 12

12 Illustration of Loop Merging .. 16

13 Generated ASM File .. 18

List of Tables

1 DSP Functional Units... 4

2 Instruction Mapping to Units ... 4

3 Kernel Instructions Mapping Onto Computation Units ... 9

4 Benchmarking Table.. 9

5 L1 and L2 Cache Characteristics.. 10

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

SSID SIMD

Results

Data

Instructions

8 bits

Byte 3

8 bits

Byte 2

8 bits

Byte 1

8 bits

Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3

General purpose
register

Introduction www.ti.com

1 Introduction

The design of optimal algorithms is important to achieve real-time performance and to fully leverage the
DSP architecture parallelism. Some of the most influential algorithms, such as FFT and quick-sort, are
efficient algorithms to improve speed. This document focuses on optimizing image processing and
computer vision algorithms, and discusses commonly used optimization tricks and techniques. It also
focuses on the basic details of the DSP required for optimization. For a more detailed description, see
Introduction to TMS320C6000 DSP Optimization (SPRABF2).

2 DSP Architecture

2.1 SIMD

The C6000 DSPs achieve parallelism by very long instruction word (VLIW) and single instruction, multiple
data (SIMD). SIMD is exhibited in the form of packed arithmetic. The basic size of the register is 32-bit,
which can hold 4 bytes, two shorts or one integer. Different instructions interpret the data differently
add(int), add2(short), add4(char). Byte data exploits a lot of parallelism and the integer does the least. It is
important to choose the smallest data type that is required.

Figure 1. Packed Arithmetic

Figure 2. SIMD Processing

In the case of SIMD, the same operation is repeated on multiple data. Vectorization is the process
compiler used to achieve optimal SIMD mapping. The compiler does not automatically perform this
procedure (see the following examples: Histogram(IMGLIB) and FFT(DSPLIB)). Typically, the SIMD
iteration level is performed.

for I=1:n
C[I] = A[I] + B[I];
for I=1:n/4
_mem4(C[I]) = _add4(A[I],B[I]);

2 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRABF2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

C1 C2 C3 C4 SIMD

L S M D VLIW

Task: z = a x + b (i = 1,2, ... , n)i i i i

M y = a x1 11 y = a x2 22 y = a x3 33 ...y = a x3 33 y = a xn nn

A z = y + b1 11 ...z = y + b2 22 z = y + bn-1 n-1 n-1 z = y + bn nn

Loop Main BodyLoop Prologue Loop Epilogue

CPU Type

Pipelined

1 2 3 4 5 6

F1 D1 E1 F2 D2 E2 F3 D3 E3

F1 D1 E1

F2 D2 E2

F3 D3 E3

7 8 9

Clock Cycles

www.ti.com DSP Architecture

2.2 Pipelining

Pipelining is a form of parallelism where a sequential series of operations are compared. Here is a simple
example of instruction execution pipeline that is present in most processors. VLIW processors exhibit the
same at an instruction level. The term very long instruction is used because of multiple instructions
corresponding to different iterations getting executed at the same cycle.

Figure 3. FDE Pipelining

In the instruction level pipelining shown in Figure 4, the architecture has two units: M for multiply and A for
add and sub. The instructions are staggered and parallelized as shown in Figure 3. To exploit the
parallelism, the operations must be orthogonal to fit across the parallel units.

The following are necessary conditions for efficient pipelining:

• Repeated operations on a sequence of data

• Complementary operations so that different units can be used

Figure 4. Instruction Level Pipelining

Most signal processing algorithms satisfy this criteria and instruction level parallelism (ILP) is quite
common in DSP architectures. ILP hardware is simpler as there is no redundancy like SIMD, where all
functionality is replicated across the units. This does not imply that SIMD is better than VLIW. SIMD
requires that operations be the same and in that sense VLIW provides more flexibility. Think of an
algorithm that works better on VLIW than SIMD.

Figure 5. Comparison VLIW Versus SIMD Hardware

3SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Register File A

32-bits

A0

A1

A2

A3

A4

.S1

.M1

.L1

.D1
A15

Data Memory

Register File B

32-bits

B0

B1

B2

B3

B4

.S2

.M2

.L2

.D2
B15

DSP Architecture www.ti.com

2.3 DSP Architecture Details

Here is a more detailed architecture abstraction of DSP. It has four parallel VLIW units: L,S,M and D each
performing a specialized functionality. It is replicated twice as called by sides A and B; each side is tightly
coupled to its own set of 16 32- bit registers. The functionality of each unit is described in Table 1. Some
operations are more likely to occur in practice relative to others, for example, addition and subtraction
occur more frequently so this is replicated across L, S and D units. Similar logical operations are
replicated in L and S. Each instruction will be executed in one of these eight units. The compiler will try to
find an optimal instruction mapping on these units. It has more options for adds and less options for LD,
ST, and multiply.

Figure 6. C6x DSP Architecture

Table 1. DSP Functional Units

C64x+ Functional Units

L S D M

Integer Adder Integer Adder Integer Adder Integer Multiplier

Logical Logical Load-Store

Integer Comparison Shifting

Bit Counting Bit Manipulation

Constant

Branch and Control

Dual 16-Bit Math

Table 2. Instruction Mapping to Units

Functional Units

Instruction .L Units .M Units .S Units .D Units

ABS √
ABS2 √
ADD √ √ √

ADDAB √
ADDAD √
ADDAH √
ADDAW √
ADDK √

ADDKPC √
ADDSUB √

4 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com Optimized DSP Libraries

Table 2. Instruction Mapping to Units (continued)

Functional Units

Instruction .L Units .M Units .S Units .D Units

ADDSUB2 √
ADDU √
ADD2 √ √ √

3 Optimized DSP Libraries

There is a lot of software infrastructure and libraries optimized for DSP. These libraries have been
successfully used by several customers, which saves a lot of development effort. They can also be used
for learning tips and tricks of optimization. Computational intensive blocks are identified and optimized via
software pipelining, C6x intrinsics, and SIMD processing. These optimized kernels are memory agnostic
and require efficient memory management using DMA, which is discussed in a later section. All libraries
are free of charge and royalty. Except for VLIB, all others are provided in source form.

3.1 Vision Library (VLIB)

VLIB consists of 65 optimized kernels provided as object code. Customers can build their own applications
adding their own secret sauce using these low-level building blocks. Figure 7 shows a possible application
that can be implemented by VLIB kernels. It comes with detailed application programming interface (API)
documentation that explains the functionality and API of all the kernels, (see the Vision Library (VLIB)
Application Programming Interface Reference Guide (SPRUG00)) and the test and example functions
along with the Code Composer Studio™ projects for several system-on-chips (SoCs). The bit-exact PC
version of the library as well as corresponding Matlab-Simulink blocks are also provided. The following
contains the list of VLIB functions sorted according to category.

• Background modeling and subtraction

– Luminance extraction from YUV:422

– Exponentially-weighted running mean and variance

– Uniformly-weighted running mean and variance

– Statistical background subtraction

– Mixture of Gaussians background modeling and subtraction

– Morphological operations (erosion and dilation)

– Connected components labeling

• Feature extraction

– Harris corner store (7x7)

– Hough transform for lines

– Histogram computation for integer scalars

– Histogram computation for multi-dimensional vectors

– Weighted histogram computation for integer scalars

– Weighted histogram computation for multi-dimensional vectors

– Legendre moments

– Canny edge detection

• Smoothing

• Gradient computation

• Non-maximum suppression

• Hysteresis

5SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Sobel
Filter

Hough
Transform

IMGLIB VLIB

3x3 Global

Non-maximum
Suppression

VLIB

5x5

Lane
Detection

Global

Lane
Tracking

Global

Color
Filtering

1x1

LDW
Output

Input
Image

Optimized DSP Libraries www.ti.com

• Low-level pixel processing

– Color conversion YUV:422 interleaved to

• YUV planar

• RGB

• LAB

• HSI

– Integral image

– Image pyramid (2x2 block averaging)

– Non-maximum suppression (3x3, 5x5, and 7x7)

– Gradient image pyramid (5-tap)

– Gaussian image pyramid (5-tap)

– First-order recursive IIR filters (horizontal and vertical)

– SAD-based disparity for stereo

• Tracking, recognition, and so forth

– Lucas-Kanade feature tracking (7x7)

– Kalman filtering

– Nelder-Mead simplex optimization

– Bhattacharya distance

Figure 7. LDW Implementation Using VLIB

3.2 Image and Video Processing Library (IMGLIB)

The image library (IMGLIB) contains commonly used image and video processing routines filtering,
histograms, and so forth. The rich set of software routines included in the IMGLIB is organized into three
different functional categories as follows: compression and decompression, image analysis, and picture
filtering and format conversions. In addition, a set of 22 low-level kernels are provided which perform
simple image operations such as addition, subtraction, multiplication, and so forth and are intended to be
used as a starting point for developing more complex kernels. All kernels are provided in source form.

• IMGLIB Image Analysis Functions Overview

– Boundary and Perimeter Functions

– Dilation and Erosion Operation Functions

– Edge Detection Function

– Histogram Function

– Image Threshold Function

• IMGLIB Picture Filtering Functions Overview

– Color Space Conversion Functions

– Convolution Function

– Correlation Functions

6 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com Profiling and Identifying Hot Spots

– Error Diffusion Functions

– Median Filtering Function

– Pixel Expand Functions

• Compression and Decompression Functions Overview

– Forward and Inverse DCT Functions

– High Performance Motion Estimation Functions

– MPEG-2 Variable Length Decoding Functions

– Quantization Functions

– Wavelet Processing Functions

3.3 DSPLIB, MathLIB and IQMath

The DSPLIB consists of 1D signal processing functions such as filtering, FFT, matrix operations and math
operations.

The MathLIB is optimized floating-point math functions such as sqrt, log, exp and trigonometric.

IQmath contains optimized math functions in Q-point fixed point representation using LUTs. As this is fixed
point, it is faster than MathLIB. The MathLIB is optimized floating-point math functions such as sqrt, log,
exp and trigonometric for fixed-point and floating-point processors.

4 Profiling and Identifying Hot Spots

4.1 Concept of Loop and Kernel

Image processing applications typically consists of several loops. Loops are the intensive portions of the
code that are focused on here. The set of operations inside a loop are called kernels. The optimization
steps can be split as loop optimization and kernel optimization. Nested loops are common as well; it is
important to remember only the innermost loop pipelines. There is also pipe up and pipe down overheads.
Figure 8 has a visualization of this concept where the operations (kernels) are repeated over several
windows.

//FUNCTION 1
FOR J = 1: M

FOR I = 1: N ------------------------> Only innermost loop pipelines on the DSP
{

OPERATIONS;
}

//FUNCTION 2
FOR K = 1: P

FOR L = 1: Q
{

OPERATIONS;
}

7SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Profiling and Identifying Hot Spots www.ti.com

Figure 8. Loop and Kernel Illustration

4.2 Preparing Estimates

Preparation of estimates is often useful for finding the bottlenecks and also to get a rough idea of the level
of achievable optimization. It is basically mapping of operations in a kernel to the eight units. The number
of cycles can be looked up in the Instruction set guide. Most instructions take 1 cycle, whereas, more
complex operations, like mpy, may take more cycles. There are several other things to consider like delay
slot, cross paths, and so forth. Delay slot refers to the number of cycles a hardware unit is blocked until it
can execute another operation. Cross path delays happen when an A side register is accessed by a B
side unit. Without considering these, the estimate can act as a lower bound for actual performance.

A simple example is provided here for illustration. This function requires two loads to load m and n, 1 mpy
and 1 loop branching. Table 3 shows how these instructions are mapped to units. Note that ADD and SUB
can map to any of the units L, S and D, and appropriate units that are free can be chosen. Finally, you can
see which unit is occupied the most and that becomes the bottleneck.

for (I=0; I < count; I++)
{
product = m[i] * n[i];
sum += product;

}

8 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com Profiling and Identifying Hot Spots

Table 3. Kernel Instructions Mapping Onto Computation Units

Number Available
Instructions Unit (per cycle) Number Required

LDH, LDH .D 2 2

MPY .M 2 1

B .S 2 1

ADD, SUB .L (.L, .D, .S) 2(2-6) 2

4.3 Benchmarking

Benchmarking is often the first step in optimization. The ‘-O3’ flag would suggest the compiler to optimize
aggressively and it should be added in the build flags to leverage the optimization by the compiler. It is
good to have an idea how much improvement can be achieved. Sometimes the current performance might
be good enough. A recommended benchmarking scheme is provided here. The simulator ignores memory
overheads and only models the computation units. It is useful to measure this number and then look at the
memory and system overheads. Comparison with a rough number of operations provides the amount of
parallelization. The parallelization factor can be up to 32 (4 because of SIMD and 8 because of VLIW).
The performance estimates discussed above can optionally be used to validate the optimization.

Table 4. Benchmarking Table

Number of Ops,
Iterations Scalar DSP SIM Parallelization System Overhead

Algorithm Core Performance Benchmark Factor (1-64) EVM Benchmark Factor

Sobel Filter X Y X and Y Z Z and Y

Edge Histogram

...

...

The time stamp counter can be used to measure the execution time of a section of code. The time stamp
counter is a free-running 64-bit counter that is normally incremented during each CPU cycle and,
therefore, it is more accurate than the operating system services. The time stamp counter is accessed
through the Time Stamp Counter (Low) (TSCL) and Time Stamp Counter (High) (TSCH) read-only
registers. The TSCL register returns the 32 LSBs of the time stamp counter, the TSCH register returns the
32 MSBs of it. The order is important: to get a consistent 64-bit value, you have to read TSCL register
before the TSCH register. As the counter is initially disabled after reset, you have to first enable it by
writing to the TSCL register. The actual value does not matter, it is ignored anyway. After that, counting
begins and can only be stopped by resetting or powering down the CPU. The following C code illustrates
how to use the timing registers. This works on the simulator and the actual hardware.

#include <c6x.h> // _itoll, TSCH, TSCL
uint64_t start_time, end_time;
start_time = _itoll(TSCH, TSCL);
/* your code section to profile */
end_time = _itoll(TSCH, TSCL);
printf("Your code section took: %lld cycles\n", end_time - start_time);

9SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

CPU
600 MHz

Speed/
cost

L1 cache
600 MHz

L2 cache
300 MHz

External memory
~100 MHZ memory

Memory
size

Memory Optimization www.ti.com

5 Memory Optimization

5.1 Memory Hierarchy

DSP architecture uses a hierarchical memory with two on-chip memories L1 and L2 and an external
memory like DDR. There is a trade-off between cost and speed, so the faster expensive memories are
smaller in size. Figure 9 illustrates a typical hierarchical memory in a C64x DSP. Data typically resides in
the external memory that is 6 times slower than the CPU, but ideally the data can be read at the same
speed as the CPU because of L1. There are two modes of achieving the same in the hardware and they
are discussed below.

Figure 9. Memory Hierarchy in C64x DSP

The internal memories L1 and L2 can be either configured as cache or addressable internal memory.
Table 5 lists the sizes of each memory and possible cache configurations. For more details, see the
TMS320C6000 DSP Cache User's Guide (SPRU656).

Table 5. L1 and L2 Cache Characteristics

L1D Cache Characteristics

Characteristics C674x DSP

Organization 2-way set associative

Protocol Read allocate, write back

CPU Access Time 1 cycle

Capacity 4K, 8K, 16K, or 32K bytes

Line Size 64 bytes

Replacement Strategy Least recently used (LRU)

Write Buffer 4 x 128-bit entries

External Memory Caches Configurable

L1P Cache Characteristics

Organization Direct mapped

Protocol Read allocate

CPU Access Time 1 cycle

Capacity 4K, 8K, 16K, or 32K bytes

Line Size 32 bytes

External Memory Caches Always cached

L2 Cache Characteristics

Organization 4-way set associative

Protocol Read and write allocate, Writeback

Capacity 4K, 8K, 16K, or 32K bytes

Line Size 128 bytes

10 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU656
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

(a)

Processing right half

DMA

in 0Input buffer

Output buffer

in 1

block processing

out 0 out 1

DMA

N N

(b)

Processing left half

DMA

in 0 in 1

block processing

out 0 out 1

DMA

N N

www.ti.com Memory Optimization

Table 5. L1 and L2 Cache Characteristics (continued)

L1D Cache Characteristics

Characteristics C674x DSP

Replacement Strategy Least recently used (LRU)

External Memory Caches Always cached

5.2 Cache Optimization

The cache controller hardware handles most of the aspects; the only thing you need to take care of is
configuring the size of the cache. It is hard to recommend an optical cache size without considering all the
aspects of an application. Ideally, you would need all the internal memory as cache but sometimes you
would need some internal memory for commonly accessed data like LUTs, and so forth. The sizes of
cache can be set by MMRs, as shown below. This can be added in the main C source file. For more
details, see the TMS320C674x DSP Megamodule Reference Guide (SPRUFK5). There are various trace
and event trigger capabilities available on various targets that provides cache hits, misses, and stall
information. For more details, see the TMS320C6000 DSP Cache User's Guide (SPRU656).

#define L1PCFG *(unsigned int*)0x01840020
#define L1DCFG *(unsigned int*)0x01840040
#define L2CFG *(unsigned int*)0x01840000
#define MAR128 *(unsigned int*)0x01848200
L1PCFG |= 0x00000004;
L1DCFG |= 0x00000004;
L2CFG |= 0x00000003;
MAR128 |= 0x00000001;

5.3 EDMA

The advantage of cache is that it is very easy to setup. But EDMA typically offers much better
performance typically around 4X - 6X. But integrating EDMA requires design of block-based algorithm and
the understanding of EDMA drivers. EDMA is an independent hardware that can copy data from DDR to
local memory of DSP while DSP is performing computations, thus, hiding DDR overheads. Figure 10
illustrates how this is done efficiently in a ping-pong buffering scheme. The input and output buffers are
split into ping and pong namely. While data is copied to ping buffer in0 by DMA, DSP executes functions
on in1 data. Once this is done, the processing is done on pong buffer in1, and data is brought in by DMA
to in0.

Figure 10. Ping-Pong Buffering

11SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU656
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

A B
Neighborhoods

Processing cell
A B

Kernel Level Optimization www.ti.com

6 Kernel Level Optimization

This section contains techniques for optimization of the operations in the kernel.

6.1 Operation Simplification

The general idea of this rule is to minimize the number of operations in an expression. Multiplications are
more expensive than additions. The compiler does not attempt such simplifications.

For example: ac + ad + bc + bd → (a + b)(c + d)

Horner’s rule is a specific popular method for minimizing the number of operations in polynomials. It
recursively pulls out common factors to reduce the number of multiplications from O (n^2) to O(n) (where
n is the order of the polynomial). It also provides better numerical stability.

For example: d + c*x^2 + b*x^4 + a*x^6 → d + x^2*(c+x^2*(b +a*x^2))

In case of expressions especially the ones involving comparisons, it is often possible to move complex
operations to known constants instead of variables. In the example shown below, the operation sqrt is
moved from a variable ‘var’ to a constant ‘const’ so that the operation on ‘const’ can be pre-computed.

For example: val = sqrt(var); val > const → var>const^2

In some expressions, it might be possible to remove some intermediate computations or simplify the
expression. In the example below, M + N >0 can be simplified to a+b>0 without needing to compute the
sqrt operation.

For example: M = a/sqrt(x+y); N = b/sqrt(x+y); M + N >0

a/sqrt(x+y) + b/sqrt(x+y) > 0 → a+b >0

6.2 Calculations Reuse Across Iterations

Typically for windowed pixel operations, there is a lot of overlap between successive computations. In
Figure 11, a sum is computed over a moving WxW window. This kind of operation is present in Harris
Score and Stereo Computation. Block A corresponds to the data for the first iteration and block B
corresponds to the next iteration. It is clear that there is a lot of overlap in the computation. Similarly, there
is an overlap in the vertical direction. Instead of WxW operations per output pixel, a more efficient
approach by re-using the previous iterations would reduce to four operations. Similar re-use is possible
even in a weighted sum operation or a non-linear operation like median filter.

Figure 11. Illustration of Redundant Operations Across Iterations

12 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com Kernel Level Optimization

6.3 Avoiding Control Code

Conditional code flow prevents the code to be pipelined. Therefore, it is better to avoid conditional code
inside a loop wherever possible. Fortunately all instructions of the DSP can be conditional and simple if-
cases are fine. But more complex conditional structures like nested if-else, switch-case, break, and
function calls break the pipeline. In this case, the compiler provides feedback in the assembly file “loop
contains control code”. It is advised to re-write nested if-else and switch case in a more linear way. A
common problem is to use function calls for standard C functions like sqrt, sin, and so forth. It is easy to
miss that they are function calls and they break pipelining. In this case, these functions have to be made
inline.

6.4 Fixed-Point Design – IQmath

Fixed point algorithms are typically faster than an equivalent floating point version even on a floating-point
processor. On a floating-point processor like C674x, here is the non-pipelined number of cycles for each
data type. Therefore, the performance improvement can be around 4-8X. In case of a fixed-point
processor the improvements can be around 30X.

• 8-bit fixed-point data – 4 operations in 1 cycle

• 16-bit fixed-point data – 2 operations in 1 cycle

• 32-bit fixed-point data – 1 operation in 1 cycle

• 32-bit floating point (SP) – 1 operation in 4 cycles

• 64-bit floating point (DP) – 1 operation in 7 cycles

Floating-point numbers can be represented in fixed point by using Q-point arithmetic [ref????]. Q-point
has a lower resolution and dynamic range compared to floating point, but it might be sufficient in some
use cases. If not, floating point has to be used. For example, Q8.7 refers to a fractional fixed-point number
with 8 integer bits and 7 fractional bits. TI provides an IQmath library that contains Q-point arithmetic
functions for floating-point math algorithms like sin, cos, mpy, div, and so forth.

• Division: x/3 → (x/3*2^32/2^32) → x* [2^32/3]>>32

• Multiply: x*0.05 → Qc = round(2^8*0.05); (x*Qc)>>8

6.5 Look-up Table (LUT)

Complex arithmetic functions like sine, sqrt and division can be replaced by a LUT to reduce
computations. The disadvantages are that it requires additional memory. If the argument is float, then it is
not possible to create a large LUT, but the float can be quantized and a relatively smaller LUT can be
created. Sometimes it is a trade-off between accuracy and performance. LUT can also be used for pre-
computing a set of operations that are known before run-time. The example below that is part of HOG
features illustrates this:

Imgs_orien(Imgs_orien >= 160) = 9;

Imgs_orien(Imgs_orien >= 40) = 3;
Imgs_orien(Imgs_orien >= 20) = 2;

Orientation[360]=[1,1,1,…2,2,2,…3,3,3…]

6.6 Array of Structures (AOS) vs Structure of Arrays (SOA)

Array of structures (AOS) is a commonly used data structure in image processing. For example, most of
the data structures in OpenCV are AOS. But SOA are typically more efficient on a DSP for the following
reasons:

• It allows better SIMD because the data elements are sequential in memory

• It is easy to align the array pointers

• It is easier to manage memory when only some elements of the array are needed

13SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Loop Transformations www.ti.com

AOS: SOA:
struct struct
{ {
int x; int *x;
int y; int *y;
char edge; char *edge;
}POS[100]; }POS;
AOS → x1y1e1x2y2e2….
SOA → x1x2……y1y2…..e1e2….

6.7 Pointer Aliasing

Pointer aliasing refers to the usage of different pointers for the same memory location. In image
processing, it is common to use pointer aliases for different rows. For instance, consider a 3x3 kernel,
pRow1, pRow2 and pRow3 can be used to access 3 rows. Instead of pRow2, pRow1+ width can be used
to avoid aliasing. The reason for doing this is that the following DSP parallelizes the algorithm by running
different iterations of the loop at the same time (pipelining). So, pRow3 of one iteration and pRow2 of
another iteration can access the same memory location and create a conflict. There is a flag (-mt) that
tells the compiler to assume there is no pointer aliasing so that it will optimize more aggressively.

6.8 Other General Programming Guidelines
• Some of the C++ constructs like templates overloading are often inefficient for optimal code generation

for the DSP. Performance degradation of around 5X can arise due to such C++ constructs; it is
recommended to avoid them in the case of intensive loops.

• Loads and stores are faster typically when the addresses are aligned to a 32-bit address boundary
because of the architecture aspects. It is good to align the array addresses using #pragma
DATA_ALIGN.

• It is recommended to use the minimum required data-type as the performance because it is better as
the data-size goes down. Standard software, like OpenCV and Matlab, use float or double values
liberally even where integer data type would suffice without loss of accuracy.

• Although it is a good programming practice to write generic code, specific code can lead to better
optimization. For example, instead of writing a generic 3x3 filter and passing coefficients as parameters
for a Sobel filter, it is better to incorporate the co-efficients and exploit sparsity and symmetry.

7 Loop Transformations

Techniques to modify loops to enable better pipelining are discussed in this section.

7.1 Loop Merging

It is a common technique in image processing to combine two loops for the row and column into one. This
technique is employed in several IMGLIB kernels. Most of the time the kernel is uniform across all the
iterations. So, it becomes easy to merge the loops. Sometimes, there is some redundancy at the corners
where invalid computations are done. However, it is more efficient to do these computations instead of
having two loops. There are several advantages of this technique. There is a loop overhead in the inner
most loop and this is multiplied by the number of times the outer loop is executed. So, it becomes
significant and it is eliminated when the loops are merged. Also the pointer calculations become simpler
and usually are handled by hardware in the latter case using auto-increment.

for I=1:row for I=1:row*col
for J=1:col {
{
… }
}

14 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com Loop Transformations

7.2 Collapsing Small Inner Loops

Shown below on the left is a common implementation of kernels in image processing. The block_width
and block_height are typically small, of the order of 3(sobel 3x3 filter) to 7(harris corner). As the innermost
loops are very small, it does not pipeline efficiently. In this case, it is efficient to remove the loop and write
the operations explicitly. This brings the col loop as the innermost loop and it is more efficient.

for I=1:row for I=1:row
for J=1:col for J=1:col
for r=1:block_width {
for c=1:block_heigh

{ ….} }

7.3 Loop Unrolling

It is also useful sometimes for achieving better load balancing. For example, the kernel might have 1 add
and 1 multiply. As there are two units, one of the units is left unused. A more efficient approach is to
combine the two successive iterations so that both A and B units are loaded. The compiler does this
automatically most of the time and it can also be done manually using #unroll pragmas.

for I=1:row for I=1:row
for J=1:col for J=1:col/2

A(i,j) = B(i,j)*C(i,j); A(i,j) = B(i,j)*C(i,j);
A(i,j) = A(i,j)+ 23; A(i,j) = A(i,j)+ 23;

A(i,j+1) = B(i,j+1)*C(i,j+1);
A(i,j+1) = A(i,j+1)+ 23;

7.4 Loop Fusion

Sometimes, it is more efficient to combine two loops together because the epilog and prolog occur only
once for both the loops together instead of occurring once for each loop, as shown in Figure 12. This
combination can also bring in new possibilities of simplifying operations across the two loops. This method
is particularly useful when the kernels are small. In this case, the pipeline overhead becomes significant
and the set of operations might not have an efficient mapping to all the DSP units.

for (I = 0; I < 100; I++)
a[i] = b[i]+c;
for (I = 0; I < 100; I++)
d[i] = a[i+1]+e;

for (I = 0; I < 100; I++)
{
a[i] = b[i]+c;
d[i] = a[i+1]+e;
}

15SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Kernels

Multiple
Epilog/Prologs

New Inner Loop Flow

Inner Loop Flow

Loop Transformations www.ti.com

Figure 12. Illustration of Loop Merging

7.5 Loop Fission

Loop fission is the opposite of the loop fusion. From previous optimization, it might seem that loop fission
reduces performance, however, it is useful sometimes. Sometimes, the kernel might be very large and run
out of the registers required for the operation, which is called register pressure in compiler terminology. If
this happens, the loop pipeline breaks and is notified in the loop pipeline information. Then, the loop has
to be split into two. In some cases, the loop might have dependencies that could lead to inefficient
pipelining. In the example given below, the value of A depends on its value in the previous iteration; this is
called dependency. It might be more efficient to move the portions of code with dependency to another
loop where the other portions can be pipelined more efficiently.

FOR I = 1: N FOR I = 1: N
FOR J = 1: M FOR J = 1: M

A(I,J+1) = A(I,J) + C B(I+1,J) = B(I,J) + D
B(I+1,J) = B(I,J) + D

FOR I = 1: N
For J = 1: M

A(I,J+1) = A(I,J) + C

7.6 Loop Fission Nested Loop Interchange

Sometimes it might be useful to change the order of nesting. In the first example below, interchange helps
in removing the dependency. In the second example, the interchange results in better cache performance
because two arrays are accessed sequentially compared to the one in the former version.

for I=1:m for j=1:n
for j=1:n for I=1:m

A(i,j+1) = A(i,j) + B A(i,j+1) = A(i,j) + B

for I=1:n for k=1:n
for j=1:n for I=1:n

for k=1:n for j=1:n
A(i,j) = A(i,j) + B(i,k)*C(k,j) A(i,j) = A(i,j) + B(i,k)*C(k,j)

16 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com DSP Specific Optimizations

7.7 Combination of Loop Techniques

The loop techniques are discussed individually with simple examples. It is important to note that the real
scenario is very complex and requires a combination of several techniques, and usually experience trial
and error. It is also important to keep the SIMD optimization in mind while performing the transformations
because it might inhibit SIMD. Although it is difficult to consider all combinations, usually with experience
one becomes more intuitive on how to apply these techniques.

FOR I = 1: N
FOR J = 1: M

A(I,J) = A(I,J) + X
B(I+1,J) = A(I,J) + B(I,J)
C(I,J+1) = A(I,J) + C(I,J)
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

8 DSP Specific Optimizations

After performing algorithmic optimization, the last step is to perform DSP architecture specific optimization.
This can be done by examining the generated ASM file. Each loop has its own software pipeline
information (SPLOOP).

8.1 SIMD

Check the SPLOOP to see if the appropriate SIMD instructions, like _add4 and _mem8, are automatically
inserted by the compiler. If not, the appropriate SIMD intrinsics have to be manually inserted in C code.

8.2 Special Instructions

DSP has some special instructions that can do multiple operations in a single instruction. The commonly
used ones are Subabs, Addsub, Avg, Dotp4, and Min and max. For instance, dotp4 computes dot-product
between 4 bytes. Otherwise, to accomplish the same, it requires more than six instructions. The compiler
does not usually recognize this and it has to manually be inserted as an intrinsic.

8.3 Load Balancing

The software pipeline information shows the distribution of the instruction in the A and B side of the L, S,
D, and M. In this case, the D unit has the maximum instructions mapped to it, so it is the bottleneck. To
improve the performance, try to see if there is a possibility to move the instructions to another unit. For
example, the common way of swapping two variables is using a temp variable and load and stores using
D unit. But, if D unit is the bottleneck, it can be implemented in an alternate way using XOR, in which case
the instructions are mapped to the L unit.

define swap (x, y) | define swap (x, y)
temp := x | X := X XOR Y
x := y | Y := Y XOR X
y := temp | X := X XOR Y

Another example would be the computation of y = 2*x, as shown below.

y = 2*x → M unit
y = x+x → L or S unit
y = x <<1 →L unit

17SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

Summary www.ti.com

Figure 13. Generated ASM File

9 Summary

The summary of the optimization techniques are shown below:

1. Set all of the compiler optimization flags and the profile using the latest version of cgtools. Sometimes
the optimization performed by the compiler might be good enough.

2. Enable cache to improve memory overheads. Use EDMA to improve performance further.

3. Look for an existing function in TI’s optimized libraries like fastRTS, DSPLIB, IMGLIB and VLIB and
use it.

4. Understand the whole algorithm. A high-level visualization of the computations and data flow will help
in identify bottlenecks.

5. Perform C level optimization using kernel and loop level optimization techniques.

6. Look at the compiler feedback in the ASM file and use intrinsic level optimization for SIMD and load re-
balancing.

7. Steps 5 and 6 might impact or conflict with each other; typically through several iterations an optimal
combination is found.

18 A Tutorial on Optimizing Vision Algorithms on TI DSPs SPNA165–September 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

www.ti.com References

10 References
• Introduction to TMS320C6000 DSP Optimization (SPRABF2)

• Vision Library (VLIB) Application Programming Interface Reference Guide (SPRUG00)

• Canny Edge Detection Implementation on TMS320C64x/64x+ Using VLIB (SPRAB78)

• Hand-Tuning Loops and Control Code on the TMS320C6000 (SPRA666)

• Real-Time DSP Implementation of Pedestrian Detection Algorithm Using HOG Features - International
Conference on Intelligent Transportation Systems Telecommunications, 2012.

• TMS320C6000 Optimizing C Compiler Tutorial (SPRU425)

• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732)

• Textbook - Performance Optimization of Numerically intensive Codes

• TMS320C674x DSP Megamodule Reference Guide (SPRUFK5)

• Video Lecture: Optimizing Your C Code for Performance on TMS320C6000 DSPs:
http://learningmedia.ti.com/public/media/DSP8-58/01/21972/index.html

• TMS320C6000 DSP Optimization Workshop:
http://processors.wiki.ti.com/index.php/TMS320C6000_DSP_Optimization_Workshop

• How to Write Fast Numerical Code: http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-
spring12/course.html

• Programming the EDMA3 Using the Low-Level Driver (LLD):
http://processors.wiki.ti.com/index.php/Programming_the_EDMA3_using_the_Low-
Level_Driver_%28LLD%29

• TMS320C6000 DSP Cache User's Guide (SPRU656)

19SPNA165–September 2012 A Tutorial on Optimizing Vision Algorithms on TI DSPs
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRABF2
http://www.ti.com/lit/pdf/SPRAB78
http://www.ti.com/lit/pdf/SPRA666
http://www.ti.com/lit/pdf/SPRU425
http://www.ti.com/lit/pdf/SPRU732
http://learningmedia.ti.com/public/media/DSP8-58/01/21972/index.html
http://processors.wiki.ti.com/index.php/TMS320C6000_DSP_Optimization_Workshop
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/course.html
http://processors.wiki.ti.com/index.php/Programming_the_EDMA3_using_the_Low-Level_Driver_%28LLD%29
http://processors.wiki.ti.com/index.php/Programming_the_EDMA3_using_the_Low-Level_Driver_%28LLD%29
http://www.ti.com/lit/pdf/SPRU656
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA165

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	A Tutorial on Optimizing Vision Algorithms on TI DSPs
	1 Introduction
	2 DSP Architecture
	2.1 SIMD
	2.2 Pipelining
	2.3 DSP Architecture Details

	3 Optimized DSP Libraries
	3.1 Vision Library (VLIB)
	3.2 Image and Video Processing Library (IMGLIB)
	3.3 DSPLIB, MathLIB and IQMath

	4 Profiling and Identifying Hot Spots
	4.1 Concept of Loop and Kernel
	4.2 Preparing Estimates
	4.3 Benchmarking

	5 Memory Optimization
	5.1 Memory Hierarchy
	5.2 Cache Optimization
	5.3 EDMA

	6 Kernel Level Optimization
	6.1 Operation Simplification
	6.2 Calculations Reuse Across Iterations
	6.3 Avoiding Control Code
	6.4 Fixed-Point Design – IQmath
	6.5 Look-up Table (LUT)
	6.6 Array of Structures (AOS) vs Structure of Arrays (SOA)
	6.7 Pointer Aliasing
	6.8 Other General Programming Guidelines

	7 Loop Transformations
	7.1 Loop Merging
	7.2 Collapsing Small Inner Loops
	7.3 Loop Unrolling
	7.4 Loop Fusion
	7.5 Loop Fission
	7.6 Loop Fission Nested Loop Interchange
	7.7 Combination of Loop Techniques

	8 DSP Specific Optimizations
	8.1 SIMD
	8.2 Special Instructions
	8.3 Load Balancing

	9 Summary
	10 References

