
1SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

Application Report
SPNA233B–May 2016–Revised February 2020

Hercules PLL Advisory SSWF021#45 Workaround

Bob Crosby

ABSTRACT
This application report provides software source code and additional information on how to implement a
workaround that helps to minimize the impact of Hercules Phase Locked Loop (PLL) Advisory
SSWF021#45.

Project collateral and source code mentioned in this document can be downloaded from the following
URL: http://www.ti.com/lit/zip/spna233.

Contents
1 Background ... 2
2 Implementation ... 2
3 Detailed Description ... 4

List of Figures

1 Example Call to Workaround Routine... 3

List of Tables

1 Single PLL Maximum Execution Time .. 4
2 Dual PLL Maximum Execution Time .. 4

Trademarks
All trademarks are the property of their respective owners.

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B
http://www.ti.com/lit/zip/spna233

Background www.ti.com

2 SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

1 Background
Texas Instruments has found that on rare occasions some Hercules Safety Microcontrollers have an issue
with PLL startup. While Texas Instruments does test for and screen these devices, at the time of
publication of this report, our screens are not 100% effective. Parts that are affected have advisory
SSWF021#45 listed in the errata document for that device, if the errata document was published in May of
2016 or later. The software workaround described in this report, while not 100% effective, significantly
helps to reduce the occurrence of failures.

2 Implementation
The header file “errata_SSWF021_45.h” contains the function prototypes and should be included in the
user’s source file that calls the workaround function. The header file “errata_SSWF021_45_defs.h” defines
values used in the “errata_SSWF021.c” file. It makes the source file independent of HALCoGen.

NOTE: The workaround functions do not set the PLL to the customer's desired frequency, nor do
they leave the PLL enabled. These steps should be performed after successful completion of
the workaround routine. The PLL settings in the workaround routine were chosen to minimize
the lock time and to be valid over the range of 5 MHz to 20 MHz crystal frequency. Changing
these settings may affect the proper execution of the workaround routine.

2.1 Which Function to Use
There are three functions provided in the source code: one for PLL1, a second for PLL2, and the third for
locking PLL1 and PLL2 at the same time

2.1.1 _errata_SSWF021_45_pll1()
This function only attempts to lock PLL1. This function is to be used on devices that have only one PLL, or
in applications that do not use PLL2.

2.1.2 _errata_SSWF021_45_pll2()
This function only attempts to lock PLL2, and is provided for completeness. Usually if PLL2 is used, both
PLLs are used and the workaround function that locks both PLLs simultaneously is preferred because it
reduces the overall execution time.

2.1.3 _errata_SSWF021_45_both_plls()
This function attempts to lock both PLLs simultaneously. This is the most efficient routine to use if both
PLLs will be used in the application.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

www.ti.com Implementation

3SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

2.2 Where to Place the Function Call
The workaround function should be called only after a power-on reset, as it only needs to be called once
per power-up. For example, in HALCoGen, the call to the workaround routine should be placed in the
USER CODE section inside the check for the POWERON_RESET as shown in the example of Figure 1.
HALCoGen version 4.07.01 generates start-up code that calls the PLL work-around function, so additional
function calls are necessary for implementing this workaround.

Figure 1. Example Call to Workaround Routine

2.3 Parameters and Return Value

2.3.1 Input Parameter
There is only one input parameter, an unsigned integer "count". This parameter determines the maximum
number of PLL lock attempts to try before exiting with an error. If a count of zero is given, the routine
continues to attempt a proper PLL lock until successful. The value chosen for count determines the
maximum execution time of the workaround function.

2.3.2 Return Value
The workaround functions return an unsigned integer that indicates the pass or fail status of the function.
The possible return values are:
• 0 = Success (the PLL or both PLLs have successfully locked and then been disabled)
• 1 = PLL1 failed to successfully lock in "count" tries
• 2 = PLL2 failed to successfully lock in "count" tries
• 3 = Neither PLL1 nor PLL2 successfully locked in "count" tries
• 4 = The workaround function was not able to disable at least one of the PLLs. The most likely reason

is that a PLL is already being used as a clock source. This can be caused by the workaround function
being called from the wrong place in the code.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

Implementation www.ti.com

4 SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

2.4 Execution Time
The execution time is a function of the crystal frequency and the number of iterations required for the PLL
to lock. The maximum execution time is then a function of the maximum iterations allowed, which is the
only parameter passed to the function. The _errata_SSWF021_45_both_plls() function minimizes
execution time by locking both PLLs simultaneously. Example execution times for the single PLL
_errata_SSWF021_45_pll1() and _errata_SSWF021_45_pll2() functions are shown in Table 1. Example
execution times for the dual PLL _errata_SSWF021_45_both_plls() function is shown in Table 2.

Table 1. Single PLL Maximum Execution Time

Maximum Tries 5 MHz Crystal 8 MHz Crystal 16 MHz Crystal 20 MHz Crystal
1 505 µs 316 µs 158 µs 126 µs
2 1010 µs 632 µs 316 µs 253 µs
3 1515 µs 948 µs 474 µs 379 µs
4 2020 µs 1264 µs 632 µs 505 µs
5 2525 µs 1580 µs 790 µs 632 µs

Table 2. Dual PLL Maximum Execution Time

Maximum Tries 5 MHz Crystal 8 MHz Crystal 16 MHz Crystal 20 MHz Crystal
1 596 µs 372 µs 186 µs 149 µs
2 1191 µs 744 µs 372 µs 298 µs
3 1786 µs 1116 µs 558 µs 447 µs
4 2381 µs 1488 µs 744 µs 596 µs
5 2976 µs 1860 µs 930 µs 744 µs

3 Detailed Description
The purpose of the workaround routines is to get the PLL to successfully lock one time after power-on
reset. The workaround routine does not initialize the PLL to the desired frequency nor does it leave the
PLL enabled. After the PLL has locked once, it successfully locks each time using the desired settings
until the next loss of power.

The workaround routine polls for either the clock source to be valid (PLL lock) or for a PLL slip, as
indicated in the ESM register. In the case of the function that locks both PLLs simultaneously, it checks for
a lock or slip in each PLL. Then, if the PLL indicates that it has locked, the frequency of the PLL is
checked using the Dual Clock Compare (DCC) module. Since the DCC measures the ratio of the PLL
frequency to the oscillator frequency, the routine can be used with any valid oscillator frequency without
modification.

The following function is the workaround for both PLLs.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

www.ti.com Detailed Description

5SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

uint32 _errata_SSWF021_45_both_plls(uint32 count)
{

uint32 failCode,retries,clkCntlSav;

/* save CLKCNTL, */
clkCntlSav = systemREG1->CLKCNTL;
/* First set VCLK2 = HCLK */
systemREG1->CLKCNTL = clkCntlSav & 0x000F0100U;
/* Now set VCLK = HCLK and enable peripherals */
systemREG1->CLKCNTL = SYS_CLKCNTRL_PENA;

failCode = 0U;
for(retries = 0U;(retries < count); retries++)
{

failCode = 0U;
/* Disable PLL1 and PLL2 */

failCode = disable_plls(SYS_CLKSRC_PLL1 | SYS_CLKSRC_PLL2);
if(failCode != 0U)
{

break;
}

/* Clear Global Status Register */
systemREG1->GBLSTAT = 0x00000301U;
/* Clear the ESM PLL slip flags */
esmREG->SR1[0U] = ESM_SR1_PLL1SLIP;
esmREG->SR4[0U] = ESM_SR4_PLL2SLIP;
/* set both PLLs to OSCIN/1*27/(2*4) */
systemREG1->PLLCTL1 = 0x23001A00U;
systemREG1->PLLCTL2 = 0x3FC0723DU;
systemREG2->PLLCTL3 = 0x23001A00U;
systemREG1->CSDISCLR = SYS_CLKSRC_PLL1 | SYS_CLKSRC_PLL2;
/* Check for (PLL1 valid or PLL1 slip) and (PLL2 valid or PLL2 slip) */
while ((((systemREG1->CSVSTAT & SYS_CLKSRC_PLL1) == 0U) && ((esmREG-

>SR1[0U] & ESM_SR1_PLL1SLIP) == 0U)) ||
(((systemREG1->CSVSTAT & SYS_CLKSRC_PLL2) == 0U) && ((esmREG-

>SR4[0U] & ESM_SR4_PLL2SLIP) == 0U)))
{

/* Wait */
}
/* If PLL1 valid, check the frequency */
if(((esmREG->SR1[0U] & ESM_SR1_PLL1SLIP) != 0U) || ((systemREG1-

>GBLSTAT & 0x00000300U) != 0U))
{

failCode |= 1U;
}
else
{

failCode |= check_frequency(dcc1CNT1_CLKSRC_PLL1);
}
/* If PLL2 valid, check the frequency */
if(((esmREG->SR4[0U] & ESM_SR4_PLL2SLIP) != 0U) || ((systemREG1-

>GBLSTAT & 0x00000300U) != 0U))
{

failCode |= 2U;
}
else
{

failCode |= (check_frequency(dcc1CNT1_CLKSRC_PLL2) << 1U);
}
if (failCode == 0U)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

Detailed Description www.ti.com

6 SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Hercules PLL Advisory SSWF021#45 Workaround

{
break;

}
}

/* To avoid MISRA violation 382S
(void)missing for discarded return value */

failCode = disable_plls(SYS_CLKSRC_PLL1 | SYS_CLKSRC_PLL2);
/* restore CLKCNTL, VCLKR and PENA first */
systemREG1->CLKCNTL = (clkCntlSav & 0x000F0100U);
/* restore CLKCNTL, VCLK2R */
systemREG1->CLKCNTL = clkCntlSav;
return failCode;

}

The check_frequency function is used to measure the PLL frequency using an on-chip Dual-Clock-
Comparator before the PLL is used as a clock source.
static uint32 check_frequency(uint32 cnt1_clksrc)
{

/* Setup DCC1 */
/* DCC1 Global Control register configuration */

dccREG1->GCTRL = (uint32)0x5U | /** Disable DCC1 */
(uint32)((uint32)0x5U << 4U) | /** No Error Interrupt */
(uint32)((uint32)0xAU << 8U) | /** Single Shot mode */
(uint32)((uint32)0x5U << 12U); /** No Done Interrupt */

/* Clear ERR and DONE bits */
dccREG1->STAT = 3U;
/** DCC1 Clock0 Counter Seed value configuration */
dccREG1->CNT0SEED = 138U;
/** DCC1 Clock0 Valid Counter Seed value configuration */
dccREG1->VALID0SEED = 10U;
/** DCC1 Clock1 Counter Seed value configuration */
dccREG1->CNT1SEED = 489U;
/** DCC1 Clock1 Source 1 Select */
dccREG1->CNT1CLKSRC = (uint32)((uint32)10U << 12U) | /** DCC Enable/Disable Key */

(uint32) cnt1_clksrc; /** DCC1 Clock Source 1 */

dccREG1->CNT0CLKSRC = (uint32)DCC1_CNT0_OSCIN; /** DCC1 Clock Source 0 */

/** DCC1 Global Control register configuration */
dccREG1->GCTRL = (uint32)0xAU | /** Enable DCC1 */

(uint32)((uint32)0x5U << 4U) | /** No Error Interrupt */
(uint32)((uint32)0xAU << 8U) | /** Single Shot mode */
(uint32)((uint32)0x5U << 12U); /** No Done Interrupt */

while(dccREG1->STAT == 0U)
{

/* Wait */
}
return (dccREG1->STAT & 0x01U);

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

www.ti.com Revision History

7SPNA233B–May 2016–Revised February 2020
Submit Documentation Feedback

Copyright © 2016–2020, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (June 2016) to B Revision .. Page

• Updated PLL control register configurations applied for the workaround shown in Section 3. 4
• Updated DCC configuration for measuring PLL output frequency in Section 3. .. 4

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNA233B

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Hercules PLL Advisory SSWF021#45 Workaround
	1 Background
	2 Implementation
	2.1 Which Function to Use
	2.1.1 _errata_SSWF021_45_pll1()
	2.1.2 _errata_SSWF021_45_pll2()
	2.1.3 _errata_SSWF021_45_both_plls()

	2.2 Where to Place the Function Call
	2.3 Parameters and Return Value
	2.3.1 Input Parameter
	2.3.2 Return Value

	2.4 Execution Time

	3 Detailed Description

	Revision History
	Important Notice

