b TEXAS Application Report
NSTRUM ENTS SPRA630A - February 2002

TMS320C6000 Memory Test

Dave Bell TMS320C6000 Applications
Sebastien Tomas

ABSTRACT

This set of programs has been compiled to provide a way to verify the integrity of internal DSP
memory and external system memory for all devices currently in the TMS320C6000™
(C6000™) family. Included with the memory test are all source files, the Code Composer
Studio™ project file, and the linker command file. The source files contain the necessary
parameters to test all devices within the C6000 family; the particular device is selected by
passing a preprocessor variable to the assembler during compile time. Internal device
memory is tested in its entirety and external memory can be added to the test by including
a memory table in one of the source files. Switching between C6000 devices and systems
only requires modifying the external memory table and passing the corresponding device
name to the assembler. All other device considerations are handled by the code. Project
collateral discussed in this application report can be downloaded from the following URL:

http://www.ti.com/lit/zip/SPRA630.

Contents
1 Program DeSCrIPtiON ... ..o s r s s er e e e e e e nm s 2
A T Lo B =TT ol ] ] 1o SRRt 2
2  Edit and BUild ProCeSs ... it rrtms s rrrc s s rem s s s sms s s s smn s e s mn s s e e mn s s sesmnssssnsnnssnnnns 3
2 B €= 0 41 ] = = 111 [ PP 4
BB 1 T3 T - o 4
L = = (=Y g T =Y PN 4
Appendix A Memory Test Source Files.........coouviiiiiiiiiiiii i ennnes 5
Y B o100 03 0 1=T 1 910 0= T o [ PPORUPPPN 5
A2 CB000IMEM.ASM ... e e e e e 10
A3 CO000EMEM.ASIM . ..t 12
A4 COXOXINt _MEM.aSM ... 13
A5 COXOXINET _MEemM.asSm ... e 20
ALB  COXOXEXE MBIMLASIM . .. et e e e e ettt e e e e e e et aeta e e e e eeeeeeanea e e eaaeeeesnnnnnaaaaaaeeeees 25
E N A o &> ([ L A 1.41= 0 0 =] o TSR 31
F N S T o1 6> (o> A 1 0= 0 1 =T o TP 37
YN T o110 0103 0= . W0 Lo SR UPRRRPNS 42

TMS320C6000, C6000, and Code Composer Studio are trademarks of Texas Instruments.


http://www.ti.com/lit/zip/SPRA630

{if‘ TexAS

SPRA630A INSTRUMENTS

1

1.1

2

Program Description

In order to facilitate the verification and integrity of internal DSP memory and external system
memory for all devices currently in the TMS320C6000 (C6000) family, a test has been put
together. The C6000 memory verification program exists for the purpose of verifying the
functionality of internal and external memory sections in any of the C6000 DSPs. The test
program, at a minimum, verifies all internal memory locations to ensure that data can be read
from and written to accurately. If desired, external sections can be included in the test coverage
by providing a memory description table, containing the memory section address and size.

Five test patterns are run to verify each section of memory: all 1’s, alternating 1-0, alternating
0-1, all O’s, and a ramp function. If all five tests pass, the CPU spins in a pass loop upon
completion.

If any test fails, the program is immediately aborted and the CPU branches to a fail loop. The
address of the memory fail is held in register A5, the test value is held in A4, and the stored
value is held in A3.

File Descriptions

The memory verification program is made up of several source files, each of which has a
particular function. In order to incorporate the ability to test the internal memory of multiple
internal architectures, there are two basic file sets: those for the Harvard architecture devices
(C6x0x) and those for the two-level cache architecture devices (C6x1x). Both file sets perform
the same function: to transfer different patterns of data to all sections of memory and check for
failures. A single program controls the program flow, and to verify system memory the user can
easily add external sections to the test flow.

The memory verification program contains the following source files:

e ¢c6000memtest.asm: This is the main program, which contains the control code and the
interrupt vector table. This control code consists of the calling function for the internal
memory test, the pass and fail loops entered upon completion; and the interrupt vector table
used to recognize the end of DMA activity during program execution. Several constants used
in the other source files are defined in this file as well.

e ¢c6000imem.asm: This file contains information describing the location and sizes of the
internal memory on each of the C6000 DSPs. As new C6000 devices become available,
descriptions of their internal memory can be added here to expand the test coverage.
Likewise, sections of internal memory could potentially be removed from the screen if
desired. Current devices for which the internal memory is defined include the
TMS320C6201,C6701, C6202, C6203, C6204, C6205, C6211, and C6711.

e c6000emem.asm: This file contains user-defined information describing the external memory
sections to be included in the verification. This is in table form, and should be entered by the
user according to the system memory available to be tested. Each table entry includes the
section size in bytes and section start address. The end of the table is indicated by an entry
of zero (a section of zero size). If no external sections are to be tested, then the first entry in
the table must be zero. The EMIF control registers are not configured by the test program
and must be programmed either through the emulator or by a host prior to running the test
suite.

TMS320C6000 Memory Test



{'}‘ TEXAS
INSTRUMENTS SPRA630A

c6x0xint_test.asm: This file contains the internal data memory and internal program memory
(block 0) test for all C6x0x DSPs. After completion, the CPU branches to the program
memory block 1 test program.

c6x0xint1_test.asm: This file contains the internal program memory (block 1) test for all
C6x0x DSPs. After completion, the CPU branches to the external memory test.

c6x0xext_test.asm: This file contains the external memory test for all C6x0Ox DSPs. The
memory table defined in c6000emem.asm is used to dictate which external memory sections
are tested. The external memory test runs until a section size of zero is loaded from the
external memory table in c6000emem.asm. After completion the CPU branches to a pass
loop (or fail).

c6x1xint_test.asm: This file contains the internal L2 memory test for all C6x1x DSPs. Each
block of L2 memory is tested. After completion the CPU branches to the external memory
test.

c6x1xext_test.asm: This file contains the external memory test for all C6x1x DSPs. The
memory table defined in c6000emem.asm is used to dictate which external memory sections
are tested. The external memory test runs until a section size of zero is loaded from the
external memory table in c6000emem.asm. After completion the CPU branches to a pass
loop (or fail).

c6000memtest.cmd: This is the linker command file. This file contains two sets of link
options—one for C6x0x devices in Map 1 or all C6x1x devices, and one for C6x0x devices in
Map 0. The appropriate portion of the file must be uncommented by the user prior to linking.

c6000memtest.mak: This is the CCS project file. This file contains the project information for
the memory verification program. This project should be loaded into Code Composer Studio
to edit and build the memory test.

c6000memtest.out: This is the COFF generated by building the c6000memtest project. This
file is loaded into the DSP memory for testing.

2 Edit and Build Process

The project source files can easily be edited to suite different C6000 DSPs as well as different
systems. There are several things that must be changed within the source, as well as
preprocessor variables that can be passed to the compiler to rebuild the test. The following
steps should be followed to build the project to test the memory in a C6000 system:

Start Code Composer Studio
Load the project c6000memtest.mak

Open c6000emem.asm and modify memory table to reflect C6000 system. Comments are
provided in the source along with an example memory list.

Open project options and select the “assembler” tab. Manually insert “-DDEVICE=6xxx"
(where xxx is 201, 701, 202, 203, 204, 205, 211, 711) into the options field. This flag is
passed to all source files to select the appropriate memory configurations to use for the test.

Build the project

TMS320C6000 Memory Test 3



{if‘ TexAS

SPRA630A INSTRUMENTS

21

4

After following these steps a new c6000memtest.out file is generated and can be loaded into the
DSP and run.

Example Build

An example of how to modify and build the memory test is as follows. Consider a C6211 system
with 16MB of SDRAM in external memory CEO and 8kB of asynchronous memory in CE1. First,
the project must be loaded into CCS (c6000memtest.mak). To include the external memory in
the test, the table in c6000emem.asm must be modified to the following:

EMEM TBL:
; section size (bytes), memory address
.word 0x01000000 , 0x80000000 ; Section 1
.word 0x00004000 , 0x90000000 ; Section 2
.word 0x00000000 ; END

.label table bottom

To compile the test for the C6211, the assembler options in Code Composer Studio must be
modified to include “-DDEVICE=6211".

To generate a new c6000memtest.out file simply build the project.

The .out file is then ready to load and be run on the C6211. Note that the EMIF configuration to
communicate to the SDRAM and asynchronous memory is not included in the test suite. Before
executing the code it is necessary to configure the EMIF appropriately. This can be done either
with the use of a GEL script or by simply editing the appropriate registers in the debugger. For
details on how to write GEL scripts, see [1]. For details on the EMIF control registers, see [2].

Summary

In summary, the TMS320C6000 memory test is a configurable test suite capable of being run on
all C6000 devices in different systems. The test includes a verification of internal memory as well
as any user-defined external memory sections. To select the device and system memory
involves creating/modifying the external memory table and passing the correct device number to
the assembler as a preprocessor variable in the assembler options.

References

1. Code Composer Studio Reference Guide (literature number SPRU328)
2. TMS320C6000 Peripherals Reference Guide (literature number SPRU190)

TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

Appendix A Memory Test Source Files

A.1 c6000memtest.asm

; ¢c6000mem.asm
; written 23 July, 1999 by David Bell
; modified 11 August, 2000 by David Bell

; The purpose of this program is to verify the functionality of all internal
; memory on any ’‘C6000 DSP, as well as any external memory sections specified
; in c6000emem.asm.

; Four test values are used to verify the memory: all 1’s, alternating 1-0,
; alternating 0-1, all 0’s, and a ramp function. If all five tests pass, the CPU
; spins in a pass loop upon completion.

; If any test fails, the program is immediately aborted. The CPU branches to
; a fail loop. The address of the memory fail is held in register A5, the
; test value is held in A4, and the stored value is held in A3.

; Any new C6000 DSP can be tested by this program by doing the following:
; - Add internal memory description in c6000imem.asm

; - If a Co6xlx device, add two lines to this source file:

; .elseif DEVICE = 6xlx (replace x’s with actual)
; Cc6000 .set 1

; Assumptions made in the test case include:

; - C6x0x devices have: 1 internal data memory block

; 2 internal program memory blocks

; - C6x1lx devices have: n internal memory blocks, where n is specified

; in C6000imem.asm

; — All code is located at the base address of block 0.

; — Contents of all memory (aside from the memory test code) will be
overwritten during the course of the test.

.global main
.global RESET
.global DTEST
.global PTESTO
.global PTESTI1
.global L2TEST
.global ETEST
.global DMA
.global QDMA
.global EDMA
.global EDMA CTRL
.global pass
.global fail

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

TMS320C6000 Memory Test 5



{ir‘ TexAS

SPRA630A INSTRUMENTS
C6000 .set 1
.elseif DEVICE = 6711
C6000 .set 1
.else ; DEVICE = 6x0x
C6000 .set 0
.endif
.else ; DEVICE not specified...6201
C6000 .set 0
.endif
DTEST .set 0
PTESTO .set 1
PTEST1 .set 2
ETEST .set 3
L2TEST .set 0
DMA .set 0x01840000
QDMA .set 0x02000000
EDMA .set 0x01A00000
EDMA CTRL .set 0x01AO0FFEO
text
main
; Initialize interrupt 8 for DMA ChO and interrupt 12 for DMA Ch3 ;
MVC CSR, BO ; Get Control Status Register
OR BO, 1, BO ; Set GIE bit
MVC BO, CSR ; Restore CSR
MvVC IER, BO ; Get Interrupt Enable Register
SET BO, 1, 1, BO ; Set NMIE bit
SET BO, 8, 8, BO ; Set IE8 bit
SET BO, 12, 12, BO ; Set IE12 bit
MVC B0, IER ; Restore IER
MVKL RESET, BO ; Base address for vector table
MVKH RESET, BO
MVC BO, ISTP ; Set IST address

.1f C6000 = 0

.ref
MVKL
MVKH

_c6x0xint test
_c6x0Oxint test,
_c6x0xint test,

.else; if C6000 = 1

.ref
MVKL
MVKH

.endif

B

_cbxlxint test
_cbxlxint test,
_cbxlxint test,

6 TMS320C6000 Memory Test

B3
B3

B3
B3



Ji‘ TEXAS

INSTRUMENTS SPRAG630A
; PASS —-- Loop forever ;
pass

B pass

NOP 5
; FAIL —-- Loop forever ;
fail

B fail

NOP 5
; Interrupt Service Table ;

.sect ”.vectors”
.align 0x400

RESET B ~main
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NMI B NMI
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RESV1 B RESV1
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RESV2 B RESV2
NOP
NOP
NOP
NOP
NOP
NOP
NOP

TMS320C6000 Memory Test 7



{ir‘ TexAS

SPRA630A INSTRUMENTS

INT4 B INT4
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INTS B INTS
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT6 B INT6
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT7 B INT7
NOP
NOP
NOP
NOP
NOP
NOP
NOP
.if C6000 = O
INT8 B IRP
STW B7, *+B4([2] ; Clear BLOCK COND
NOP
NOP
NOP
NOP
NOP
NOP
.else ; if C6000 = 1
INT8 B IRP
| LDW *+B14[1], All ; Get CIPR value
NOP
NOP
NOP
NOP
STW All,*+B14[1] ; Clear the pending CIP
NOP
.endif

8 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

INT9 B INTO
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT10 B INT10
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT11 B INT11
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT12 B IRP
ZERO BO ; Set loop condition to false
STW B7, *+B4[19] ; Clear BLOCK COND
NOP
NOP
NOP
NOP
NOP
INT13 B INT13
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT14 B INT14
NOP
NOP
NOP
NOP
NOP
NOP
NOP
INT15 B INT15
NOP
NOP
NOP
NOP
NOP
NOP
NOP

TMS320C6000 Memory Test 9



{if‘ TexAS

SPRA630A INSTRUMENTS

A.

2 c6000imem.asm

c6000imem.asm
written 23 July, 1999 by David Bell
modified 11 August, 2000 by David Bell

The purpose of this file is to define various contstants used in the
c6000memtest program. The constants define the starting addresses and
sizes of the internal memories for the various C6000 processors. As
new C6000 DSPs become available, they can be incorporated into this
test flow by adding entries to this file.

Each C6x0x device needs to have two program memory blocks and a single
data memory block defined. C6xlx devices need to provide L2 memory
block information.

Current devices listed include:
C6201, C6701, C6202, C6203, C6204, C6205, C6211, Co6711

The LEN BLOCK defined at the end of the file is the size of the
working block. This size can be modified if desired.

.global DMEM
.global PMEMO
.global PMEMI1
.global LEN D
.global LEN PO
.global LEN P1
.global NUM L2
.global LEN L2
.global NUM CE
.global LEN BLOCK

.if $isdefed (”DEVICE”)
.1f DEVICE = 6201

PMEMO .set 0x00000000
LEN_ PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000
.elseif DEVICE = 6701
PMEMO .set 0x00000000
LEN_ PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000
.elseif DEVICE = 6202
PMEMO .set 0x00000000
LEN_ PO .set 0x00020000
PMEM1 .set 0x00020000
LEN P1 .set 0x00020000
DMEM .set 0x80000000
10 TMS320C6000 Memory Test



Ji‘ TEXAS

INSTRUMENTS SPRAG630A
LEN D .set 0x00020000
.elseif DEVICE = 6203
PMEMO .set 0x00000000
LEN_ PO .set 0x00040000
PMEM1 .set 0x00040000
LEN P1 .set 0x00020000
DMEM .set 0x80000000
LEN D .set 0x00040000
.elseif DEVICE = 6204
PMEMO .set 0x00000000
LEN_PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000
B .elseif DEVICE = 6205
PMEMO .set 0x00000000
LEN_PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000
B .elseif DEVICE = 6211
NUM L2 .set 4
LEN L2 .set 0x00004000
NUM CE .set 4
.elseif DEVICE = 6711
NUM L2 .set 4
LEN L2 .set 0x00004000
NUM CE .set 4
B .else ; if no or invalid device, use 6201
PMEMO .set 0x00000000
LEN_PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000

.endif ; DEVICE
.else ; if no device specified

PMEMO .set 0x00000000
LEN_ PO .set 0x00008000
PMEM1 .set 0x00008000
LEN P1 .set 0x00008000
DMEM .set 0x80000000
LEN D .set 0x00010000

.endif ; $isdefed (”DEVICE”)

LEN BLOCK .set 0x00040000

TMS320C6000 Memory Test 11



SPRAG630A

{if‘ TexAS

INSTRUMENTS

A.3 ¢c6000emem.asm

c6000emem.asm
written 23 July, 1999 by David Bell
modified 11 August, 2000 by David Bell

The purpose of this file is to location and size information for any ex-
ternal memory location to be tested by the c6000memtest program. The file
is simply a table with the section size in bytes and section start ad-
dress for each entry pair. The end of the table is indicated by an entry
of zero. If no external sections are to be tested, then the first entry
in the table must be zero.

.global EMEM TBL

.global table top

.global table bottom

.sect ’“memorytable”
.align 0x8
.label table top

EMEM TBL:
B ; Enter external memory section information here:

; section size (bytes), memory address

; example:
; .word 0x00100000 0x00400000 ; Section 1
; .word 0x00200000 0x02000000 ; Section 2
; .word 0x001004c0 0x02200000 ; Section 3
; .word 0x01000000 0x03000000 ; Section 4
; .word 0x00100000 0x80000000 ; Section 5
; .word 0x00200000 0x81000000 ; Section 6
; .word 0x001004c0 0x83000000 ; Section 7

; leave this declaration to indicate the end of

; listing.
.word

0x00000000

.label table bottom

12 TMS320C6000 Memory Test

the section

; END



J@ TEXAS
INSTRUMENTS SPRA630A

A.4 c6x0xint_mem.asm

; c6x0Oxint mem.asm
; written 23 July, 1999 by David Bell
; modified 11 August, 2000 by David Bell

; The purpose of this code is to verify the internal data memory and block
; 0 of the internal program memory of a C6xOx DSP. When complete, the CPU
; branches to the test of block 1 of the C6x0Ox internal program memory.

; The attributes of program memory block 0 are located in c6000.imem.asm,
; and can be modified to suit any new c6xOx-style devices that become
; available.

; Assumptions made in this code are:

; — The size of block 0 is larger than the working data block

; size (LEN BLOCK) .

; — The program code is located within program memory block 0, and is
; smaller than the working data block size.

.text

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

C6000 .set 1

.elseif DEVICE = 6711
C6000 .set 1

.else ; DEVICE = 6x0x
C6000 .set 0

.endif

.else ; DEVICE not specified...6x0x
Co6000 .set 0

.endif

.if C6000 = O

.ref DMA

.ref PMEMO

.ref LEN PO

.ref PMEM1

.ref DMEM

.ref LEN D

.ref DTEST

.ref PTESTO

.ref LEN BLOCK

.ref _c6x0xintl test

.ref table bottom

.ref RESET

.ref fail

.global co6x0Oxint test
.global c6x0Oxint loop
.global data fill
.global data_check
.global pmemO check0

TMS320C6000 Memory Test 13



{if‘ TexAS

SPRA630A INSTRUMENTS

.global pmem0O checkl
.global pmem0O loop
.global pmem0O end
.global pass c6x0Oxint
.global fail c6xOxint

rrorrrrrrrrr T L LI L rIr I LI LI LI LI LI LI LI LT r LT L L LI LT rrrrrrrrrrrrs

_c6x0xint test:

MVK 4, B2 ; Set program test count
c6x0xint loop:
ZERO BO
ZERO Bl
ZERO Al
ZERO A2
CMPEQ B2, 1, BO
CMPEQ B2, 2, Bl
CMPEQ B2, 3, Al
CMPEQ B2, 4, A2
[ A2] MVKL OxFFFFFFFF, A4 ; Test 4: Fill with F’s
[ A2] MVKH OxFFFFFFFF, A4
[ Al] MVKL OxAAAAAAAA, A4 ; Test 3: Fill with A’s
[ Al] MVKH OxAAAAAAAA, A4
[ B1] MVKL 0x55555555, A4 ; Test 2: Fill with 5’s
[ B1] MVKH 0x55555555, A4
[BO] ZERO A4 ; Test 1: Step beginning with 1
[!B2] MVKL 0x00020001, A4 ; Test 0: Step beginning with 1
[!B2] MVKH 0x00020001, A4
MVKL DMEM, A5 ; Get base address for dmem
MVKH DMEM, A5
MVKL LEN D A6 ; Get length of working block
MVKH LEN D, A6
; Fill data memory ;
SHR A6, 2, Al ; Set loop count to word count
MV A5, A9
MVK 1, A2 ; Set loop condition to TRUE
ADD A4, 1, Bl4 ; increment by 0x00020002
data fill:
[ Al] B data fill
[ Al] STW Ad, *A9++
[ Al] SUB Al, 1, Al ; Decrement count
[!B2] ADD2 ADD2 A4, Bl4, A4 ; Increment step if test O
NOP
NOP

14 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS

SPRAG630A

SHR
MV
MVK
[!B2] SUB
data check:
[ A1l] LDW
NOP
[ A1l] CMPEQ
[!A2] B
[!A2] SUB
[!A2] MVK
[!A2] SHL
[!A2] ADD
[ A1l] SUB
[ Al] B
[!B2] ADD2
NOP

A6, 2, Al
A5, A9

1, A2

B14, 1, A4
*A9++, A3

4

A3, A4, A2
fail c6xOxint
A9, 4, A5
DTEST, B3
B3,4,B3

B3, B2, B3
Al, 1, Al
data check
A4, Bl4, A4
4

Set loop count to word count

Set A9 to DMEM

Set loop condition to TRUE
Return original A4 value

Load data value

Compare data to test value
Branch to fail loop
Correct address of fail

Set error code
M = memory block, T =

Decrement count

Loop until done

0x000000MT.
test

Increment step if test O

count

; Verify program memory where the code is located

; To do this,
H 1.

2.
; 3.
4.

; Setup DMA from PMEMO to DMEM

(step 1)

it is necessary to do the following steps:
DMA program out of pmemO to known good dmem
DMA test pattern from dmem to pmemO

DMA test pattern back from pmemO to dmem
DMA code back from dmem to pmemO

MVKL
MVKH
MVKL
MVKH
MVKL

MVKH
MVKL
MVKH
ADD

SHR
MVKL
MVKH
MVK
STW
STW
STW
STW
STW

DMA, B4
DMA, B4
RESET, A8
RESET, A8
DMEM, B5
DMEM, B5

LEN BLOCK, B6
LEN BLOCK, B6
B5, B6, B9

B6, 2, Al3
0x00000050, A6
0x00000050, A6

0x0000, B7

A6, *+B4[0]
B7, *+B4[2]
A8, *+B4[4]
B9, *+B4[6]
Al3, *+B4[8]

I

Get location just after data block

DMEM + LEN BLOCK
bytes to words

Convert from
Src inc, Dst
TCINT = O

BLOCK IE = O
Set pri ctrl
Set sec ctrl
Set source =
Set dest =
Set count =

PMEMO
DMEM + LEN_BLOCK
block size

TMS320C6000 Memory Test 15



{if‘ TexAS

SPRAB30A INSTRUMENTS
; Setup DMA from DMEM to PMEMO + (step 2) ;
MVKL PMEMO, BS8
MVKH PMEMO, BS8
MVKL LEN_PO, A7
MVKH LEN_PO, A7
STW A6, *+B4[16] ; Set pri ctrl
STW B7, *+B4[18] ; Set sec ctrl
STW A5, *+B4[20] ; Set source = DMEM
STW B8, *+B4[22] ; Set dest = PMEMO
STW Al3, *+B4[24] ; Set count = Block size
; Setup DMA from PMEMO to DMEM + (step 3) ;
STW A6, *+B4[1] ; Set pri ctrl
STW B7, *+B4[3] ; Set sec ctrl
STW B8, *+B4[5] ; Set source = PMEM
STW A5, *+B4[7] ; Set dest = DMEM
STW Al3, *+B4[9] ; Set count = Block size
; Setup DMA from DMEM back to PMEMO (step 4) ;
MVKL 0x02000050, A9 ; Src inc, Dst inc
MVKH 0x02000050, A9 ; TCINT =1
MVK 0x80, B7 ; BLOCK_IE =1
STW A9, *+B4[17] ; Set pri ctrl
STW B7, *+B4[19] ; Set sec ctrl
STW B9, *+B4[21] ; Set source = DMEM1 + LEN BLOCK
STW A8, *+B4[23] ; Set dest = PMEMO
STW Al3, *+B4[25] ; Set count = block size
ADD A6, 1, A6 ; Set start = 01b
ADD A9, 1, A9 ; Set start = 01b
STW A6, *+B4[0] ; Start DMA O
STW A6, *+B4[1l06] ; Start DMA 1
STW A6, *+B4[1] ; Start DMA 2
STW A9, *+B4[17] ; Start DMA 3

16 TMS320C6000 Memory Test



‘E?'TEXAS

INSTRUMENTS SPRA630A

MV Al3, Al Set loop count section word count
MV A5, B9 Set B9 to DMEM
MVK 1, A2 Set loop condition to true
[!B2] SUB B14, 1, A4 Return original A4 wvalue
pmem0 checkO:
[ A1l] LDW *B9++, A3 ; Load data value
NOP 4
[ Al] CMPEQ A3, A4, A2 ; Compare data to test value
['A2] B fail c6xOxint ; Branch to fail loop
['A2] SUB B9, 4, A5 ; Correct address of fail
['A2] MVK PTESTO, B3
['A2] SHL B3,4,B3 ; Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 ; M = memory block, T = test count
[ Al] SUB Al, 1, Al ; Decrement count
[ A1l] B pmem0_check0 ; Loop until done
[!B2] ADD2 A4, Bl4, A4 ; Increment step if test O
NOP 4

; Verify remainder of program memory block 0. ;
; To do this, it is necessary to do the following steps: ;
; 1. DMA test pattern from dmem to pmemO ;
; 2. DMA test pattern back from pmem0O to dmem ;
; The code must loop, testing the appropriate number of test blocks, as ;
; determined in All, plus any remainder in Al2. ;

MVKL LEN_PO, B7

MVKH LEN_PO, B7

LMBD 1, Bo6, B1O ; Get left-most bit of block size
MVK 31, A8 ; Set MS bit position

SUB A8, B10, AS8 ; Find bit position of 1mb

SHL B10, 5, Bl1 ; Place lmbd val in bits 9:5 (csta)
ADD B11, B10, BI11 ; Set up for extu (cstb = csta)
EXTU B7, B11l, Bll ; Al2 = LEN_PO % LEN_BLOCK

SHR B7, A8, All ; All = LEN_PO / LEN_BLOCK

SHR B11l, 2, Al2 ; Shift bytes to words

MVKL DMA, B4

MVKH DMA, B4

MVKL RESET, AS8

MVKH REST, AS8

MVKL DMEM, BS5

MVKH DMEM, BS5

MVKL LEN BLOCK, B6

MVKH LEN BLOCK, B6

ADD B5, B6, B9 ; Get location just after data block

; DMEM + LEN BLOCK

TMS320C6000 Memory Test 17



4E?TEXAS

SPRAG630A INSTRUMENTS
MVKL PMEMO, B8
MVKH PMEMO, B8
MVKL LEN_PO, A7
MVKH LEN_PO, A7
MV A13, BO Set conditional reqg to block size
MV All, Bl Set conditional reg to block count
pmem0_ loop:

; Setup DMA from DMEM to PMEMO (step

[!B1] SUB B1, 1, Bl

[ B1] MV A13, BO

[IB1] MV Al2, BO

[!'BO] B pmem0_end
NOP 5
ADD B8, B6, BS
MVKL 0x00000050, A6

MVKH 0x00000050, A6
MVK 0x0000, B7

STW A6, *+B4[16]
STW B7, *+B4[18]
STW A5, *+B4[20]
STW B8, *+B4[22]
STW Al3, *+B4[24]

MVKL 0x00000050, A9
MVKH 0x00000050, A9
MVK 0x0080, B7

STW A9, *+B4[17]
STW B7, *+B4[19]
STW B8, *+B4[21]
STW A5, *+B4[23]
STW Al3, *+B4[25]
ADD A6, 1, A6

ADD A9, 1, A9

STW A6, *+B4[16]
STW A9, *+B4[17]

18 TMS320C6000 Memory Test

Set conditional reg to block size
If no more blocks, set count to remainder
Skip pmem test if no remaining count

Increment pmemO start
Src inc, Dst inc

TCINT = O

BLOCK IE = O

Set pEi ctrl

Set sec ctrk

Set source = DMEM

Set dest = PMEMO

Set count = Block size

Src inc, Dst inc

TCINT = O

BLOCK IE = 1

Set pri ctrl

Set sec ctrk

Set source = PMEMO

Set dest = PMEMO

Set count = block size

Set start = 01b
Set start 01b
Set DMA 1
Set DMA 3



Ji‘ TEXAS

INSTRUMENTS SPRA630A
; Check internal data memory for program memory failures ;
MV Al3, Al ; Set loop count section to word count
MV A5, B9 ; Set B9 to DMEM
MVK 1, A2 ; Set loop condition to true
[!'B2] SUB B14, 1, A4 ; Return original A4 value

pmem0_ checkl:

[ A1] LDW *BO9++, A3 ; Load data value
NOP 4
[ Al] CMPEQ A3, A4, A2 ; Compare data to test value
['A2] B fail c6xOxint ; Branch to fail loop
['A2] SUB B9, 4, A5 ; Correct address of fail
['A2] MVK PTESTO, B3
['A2] SHL B3, 4, B3 ; Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 ; M = memory block, T = test count
[ Al] SUB Al, 1, Al ; Decrement count
[ A1l] B pmem0_checkl ; Loop until done
[!B2] ADD2 A4, Bl4, A4 ; Increment step if test O
NOP 4
B pmem0_ loop ; Go back to start of loop
NOP 5
; Loop back for another test ;

pmem0_end:

[ B2] B c6x0xint loop
[ B2] SUB B2, 1, B2
NOP 4
; Pass —— Branch to test of second program memory block ;

pass_c6x0Oxint:

MVKL _c6x0xintl test, B1l2 ; Address of 2nd memory test
MVKH _c6x0Oxintl test, Bl2 ;
B B12
NOP 5
; Fail —-- Branch to fail routine ;

fail c6x0Oxint:

MVKL fail, BI12
MVKH fail, BI12
B B12
NOP 5

.endif

TMS320C6000 Memory Test 19



{ir‘ TexAS

SPRA630A INSTRUMENTS

A.5 ¢c6x0xint1_mem.asm

c6x0xintl mem.asm
written 23 July, 1999 by David Bell
modified 11 August, 2000 by David Bell

The purpose of this code is to verify the second half of a C6x0x DSP’s
internal program memory. When complete, the CPU branches to the C6x0x
external memory test.

The attributes of program memory block 1 are located in c6000imem.asm,
and can be modified to suite any new c6xOx-style devices that become
available

Assumptions made in this code are:
— The size of block 1 is larger than the working data block
size (LEN BLOCK) .
.text

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

C6000 .set 1
.elseif DEVICE = 6711
C6000 .set 1
.else ; DEVICE = 6x0x
C6000 .set 0
.endif
.else ; DEVICE not specified...6202
C6000 .set 0
.endif

.1f C6000 = 0

.ref DMA

.ref PMEM1

.ref LEN P1

.ref LEN BLOCK

.ref DMEM

.ref PTEST1

.ref _co6x0xext test
.ref fail

.global c6x0xintl test
.global c6x0Oxintl loop
.global data fill
.global data checkl
.global pmeml loop
.global pmeml end
.global pmeml check
.global pass c6x0Oxintl
.global fail cé6xOxintl

TMS320C6000 Memory Test



Ji‘ TEXAS

INSTRUMENTS

SPRAG630A

rrrrrrrrrrrr LN r LI LI L r I LI LI LI LI LI LI LT L L r LT rrrrr L rrrrrrrrs

_c6x0xintl test:

MVK

c6x0xintl loop:

A2]
A2]
Al]
Al]
B1l]
B1]

[ BO]
[!B2]
[!B2]

data filll:
[ Al]
[ Al]
*A9++
[ Al]
[IB2]

ZERO
ZERO
ZERO
ZERO
CMPEQ
CMPEQ
CMPEQ
CMPEQ
MVKL
MVKH
MVKL
MVKH
MVKL
MVKH

ZERO
MVKL
MVKH

MVKL
MVKH
MVKL
MVKH

SHR
MV

MVK
ADD

STW

SUB
ADD2
NOP
NOP

B2, 4, A2

OxFFFFFFFF,
OxFFFFFFFF,
OxAAAAAARLRA,
OxAAAAAARLRA,
0x55555555,
0x55555555,

0x00020001,
0x00020001,

DMEM,
DMEM,

LEN BLOCK,
LEN BLOCK,

A4, 1, Bl4

data filll
A4, *AO++

Al, 1, Al
A4, Bl4, A4

A4
A4
A4
A4
A4
A4

A4
A4
A4

A5
A5
A6
A6

; Set program test count

; Test

; Test

; Test

; Test
; Test

Fill

Fill

Fill

Step
Step

with F’s

with A’s

with 5’s

beginning with 1
beginning with 1

; Get base address for dnmem

; Get length of working block

; Set loop count to word count

Set loop condition to TRUE
increment by 0x00020002

; Decrement count
; Increment step if test O

TMS320C6000 Memory Test

21



SPRAG630A

4E?TEXAS

INSTRUMENTS

; Verify program memory block 1.

; To do this, it is necessary to do the following steps:

; 1.
; 2.

DMA test pattern from dmem to pmeml
DMA test pattern back from pmeml to dmem

; The code must loop,
; determined in All,

testing the appropriate number of test blocks,

plus any remainder in Al2.

as

MVKL DMA, B4

MVKH DMA, B4

MVKL DMEM, B5

MVKH DMEM, B5

MVKL LEN BLOCK, B6
MVKH LEN BLOCK, B6
ADD B5, B6, B9
MVKL PMEM1, BS
MVKH PMEM1, BS
MVKL LEN P1, B7
MVKH LEN P1, B7
LMBD 1, B6, blO
MVK 31, 28

SUB A8, B10, A8
SHL B10, 5, Bl11l
ADD B11, B10, Bl1
EXTU B7, Bll, Bl1
SHR B7, A8, All
SHR B11, 2, Al2
MV Al13, BO

MV All, Bl

pmeml loop:

; Setup DMA from DMEM to PMEM1 (step

SHR B6, 2, Al3
MVKL 0x00000050, A6
MVKH 0x0000050, A6
MVK 0x0000, B7

STW A6, *+B4[16]
STW B7, *+B4[18]
STW A5, *+B4[20]
STW B8, *+B4[22]
STW Al3, *+B4[24]

22 TMS320C6000 Memory Test

Get location just after data block
DMEM + LEN BLOCK

Get left-most bit of block size
Set MS bit position

Find bit position of 1lmb

Place lmbd val in bits 9:5 (csta)
Set up for extu (cstb = csta)

Al2 = LEN PO % LEN BLOCK

All = LEN PO / LEN BLOCK

Shift bytgs to words

Set conditional reg to block size
Set conditional reg to block count

Convert from bytes to words
Src inc, Dst inc

TCINT = O

BLOCK IE = O

Set pri ctrl

Set sec ctrl

Set source = DMEM

Set dest = PMEMI1

Set count = Block size



Ji‘ TEXAS

INSTRUMENTS SPRAG630A
; Setup DMA from PMEM1 to DMEM (step 2) ;
MVKL 0x02000050, A9 ; Src inc, Dst inc
MVKH 0x02000050, A9 ; TCINT = 1
MVK 0x80, B7 ; BLOCK IE =1
STW A9, *4+B4[17] ; Set pri ctrl
STW B7, *+B4[19] ; Set sec ctrl
STW B8, *+B4[21] ; Set source = PMEMI1
STW A5, *+B4[23] ; Set dest = DMEM
STW Al3, *+b4d[25] ; Set count = block size
ADD A6, 1, A6 ; Set start = 0lb
ADD A9, 1, A9 ; Set start = 0lb
STW A6, *+B4[16] ; Start DMA 1
STW A9, *+B4[17] ; Start DMA 3
; Wait until transfer completed ;
IDLE
; Check internal data memory for program memory failures ;
MV Al3, Al ; Set loop count section word count
MV A5, B9 ; Set B9 to DMEM
MVK 1, A2 ; Set loop condition to true
[!B2] SUB B14, 1, A4 ; Return original A4 value
pmeml check:
[ A1l] 1LDW *B9++, A3 ; Load data value
NOP 4
[ Al] CMPEQ A3, A4, A2 ; Compare data to test value
['A2] B fail c6x0xintl ; Branch to fail loop
['A2] SUB B9, Z, A5 ; Correct address of fail
[1A2] MVK PTEST1, B3
['A2] SHL B3,4,B3 ; Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 ; M = memory block, T = test count
[ A1l] SUB Al, 1, Al ; Decrement count
[ A1l] B pmeml checkl ; Loop until done
[!B2] ADD2 A4, BI4, A4 ; Increment step if test O
NOP 4
[ Bl] SUB B1, 1, Bl
[ B1] MV A13, BO ; Set conditional reg to block size
['B1] MV Al2, BO ; If no more blocks, set count to remainder
[ BO] B pmeml loop ; Go back to start of loop
ADD B8, B6 B8 ; Increment pmem0O start
NOP 4

TMS320C6000 Memory Test 23



4'-'?T‘EXAS

SPRAG630A INSTRUMENTS
; Loop back for another test ;
pmeml end:
[ B2] B c6x0xintl loop
[ B2] SUB B2, 1, B2
NOP 4
; Pass —— Jump to test of external memory. ;
pass_c6x0Oxintl:
MVKL _cb6x0Oxext test, BlZ2 ; Address of external memory test
MVKH _cb6x0Oxext test, B1l2 ;
B B12
NOP 5
; Fail —— Jump to fail routine ;
fail c6xOxintl:
MVKL fail, BI12
MVKH fail, BI12
B B12
NOP 5
.endif

24 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

A.6 c6x0xext_mem.asm

; c6xOxext mem.asm ;
; written 23 July, 1999 by David Bell ;
; modified 11 August, 2000 by David Bell ;

; The purpose of this code is to verify the external memory of a C6x0x ;
; system. External memory sections are defined in the c6000emem.asm source ;
; file. The DSP will cycle through the external memory table, testing each ;
; section individually. When a section size of zero is read from the table, ;
; the program completes. ;

; The external memory table can consist of any number of memory section. ;
; For a C6x0x device, these sections can be located anywhere in the device ;
; memory map, including internal memory. ;

; The external memory interface is NOT configured by this test program. The ;
; control registers should be configured appropriately by through the host ;
; or emulator interface prior to executing this code. ;

.text

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

C6000 .set 1

.elseif DEVICE = 6711
C6000 .set 1

.else ; DEVICE = 6x0x
C6000 .set 0

.endif

.else ; DEVICE not specified...6202
C6000 .set 0

.endif

.if C6000 = O

.ref DMA

.ref DMEM

.ref LEN BLOCK

.ref ETEST

.ref table top

.ref EMEM TBL

.ref table bottom

.ref pass

.ref fail

.global coxOxext test
.global c6xOxext loop
.global c6xOxext testloop
.global data fill2
.global emem loop

TMS320C6000 Memory Test 25



{if‘ TexAS

SPRAG630A INSTRUMENTS
.global emem check
.global emem end
.global testloop end
.global pass c6x0Oxext
.global fail c6xOxext
_cb6x0xext test
MVKL EMEM TBL, B5
MVKH EMEM TBL, B5
MV B5, A7 ; Move table pointer to A7
; Setup DMA to transfer the external memory table from pmem to dmem ;
coxOxext loop:
MVKL DMA, B4
MVKH DMA, B4
MVKL table top, A5
MVKH table top, A5
MVKL EMEM TBL, B5
MVKH EMEM TBL, B5
MVKL table bottom,
MVKH table bottom,
SUB A6, A5, A6 Calculate size of table
MVKL 0x02000050, Bo6 Dst inc, Src inc
MVKH 0x02000050, B6 TCINT = 1
MVK 0x0080, B7 BLOCK IE = 1
STW B6, *+B4[0] Set pri ctrl
STW B7, *+B4[2] Set sec ctrl
STW A5, *+B4[4] Set source = PMEMO
STW B5, *+B4[6] Set dest = DMEM
STW A6, *+B4[8] Set count = Memory size
ADD B6, 1, B6 Set start = 0lb
STW B6, *+B4[0] ; Start DMA
; Wait until transfer completed ;
IDLE
; Init test value ;
LDW *AT74++, A2 ; Load external section size
NOP 4
['A2] B pass_c6xOxext ; If section size == 0, end
[ A2] LDW *AT7+4+, Bl2 ; Load external section address
MV A2, B13 ; Set B13 to LEN EMEM
NOP 3

26 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

MVK 4, B2 ; Set program test count

Cox0ext testloop:

ZERO BO
ZERO B1
ZERO Al
ZERO A2
CMPEQ B2, 1, BO
CMPEQ B2, 2, Bl
CMPEQ B2, 3, Al
CMPEQ B2, 4, A2
[ A2] MVKL OxXFFFFFFFF, A4 ; Test 4: Fill with F’s
[ A2] MVKH OxXFFFFFFFF, A4
[ Al] MVKL OxAAAAAARAA, A4 ; Test 3: Fill with A’s
[ Al] MVKH OxAAAAAAAA, A4
[ B1] MVKL 0x55555555, A4 ; Test 2: Fill with 5’s
[ B1] MVKH 0x55555555, A4
[ BO] ZERO A4 ; Test 0: Step beginning with 1
[!B2] MVKL 0x00020001, A4 ; Test 0: Step beginning with 1
[!B2] MVKH 0x00020001, A4
MVKL DMEM, A5 ; Get base address for dmem
MVKH DMEM, A5
MVKL LEN BLOCK, A6 ; Get length of working block
MVKH LEN BLOCK, A6
SHR A6, 2, Al ; Set loop count to word count
MV A5, A9
MVK 1, A2 ; Set loop condition to TRUE
ADD A4, 1, Bl4 ; increment by 0x00020002
data fill2:
[ A1l] B data fill2
[ Al] STW Ad, *A9++
[ Al] SUB Al, 1, Al ; Decrement count
[!B2] ADD2 A4, Bl4, A4 ; Increment step if test O
NOP
NOP

TMS320C6000 Memory Test 27



4E?TEXAS

SPRA630A INSTRUMENTS
; Verify program memory block 1. ;
; To do this, it is necessary to do the following steps: ;
; 1. DMA test pattern from dmem to emem ;
; 2. DMA test pattern back from emem to dmem ;
; The code must loop, testing the appropriate number of test blocks, as ;
; determined in All, plus any remainder in Al2. ;

MVKL DMA, B4

MVKH DMA, B4

MVKL DMEM, B5

MVKH DMEM, B5

MVKL LEN BLOCK, B6
MVKH LEN BLOCK, B6
ADD B5, B6, B9

MV B12, BS

MV B13, B7

LMBD 1, B6, B1O

MVK 31, A8

SUB A8, B10, A8
SHL B10, 5, Bl11l
ADD B11, B10, Bl1l
EXTU B7, Bll, Bl1l
SHR B7, A8, All
SHR B11, 2, Al2

MV S13, BO

MV All, Bl

emem loop:

; Setup DMA from DMEM to EMEM (step 1)

SHR B6, 2, Al3
MVKL 0x00000050, A6
MVKH 0x00000050, A6
MVK 0x0000, B7

STW A6, *+B4[16]
STW B7, *+B4[18]
STW A5, *+B4[20]
STW B8, *+B4[22]
STW Al3, *+B4[24]

28 TMS320C6000 Memory Test

Get location just after data block
DEM + LEN BLOCK

Set B8 EMEM address

Set B7 = EMEM length

Get left-mpst bit of block size
Set MS bit position

Find bit position of 1lmb

Place lmbd val in bits 9:5 (csta)
Set up for extu (cstb = csta)

; Al2 = LEN EMEM % LEN BLOCK

All = :EM EMEM / LEN BLOCK
Shift bytes to words

Set conditional reg to block size
Set conditional reg to block count

Convert from bytes to words
Src inc, Dst inc

TCINT = 0

BLOCK IE = 0

Set pri ctrl

Set sec ctrl

Set source = DMEM

Set dest = EMEM

Set count = Block size



Ji‘ TEXAS

INSTRUMENTS SPRAG630A
; Setup DMA from EMEM to DMEM (step 2) ;
MVKL 0x02000050, A9 ; Src inc, Dst inc
MVKH 0x02000050, A9 ; TCINT = 1
MVK 0x80, B7 ; BLOCK IE =1
STW A9, *+B4[17] ; Set pri ctrl
STW B7, *+B4[19] ; Set sec ctrl
STW B8, *+B4[21] ; Set source = EMEM
STW A5, *+B4([23] ; Set dest = DMEM
STW Al3, *+B4[25] ; Set count = block size
ADD A6, 1, A6 ; Set start = 01b
ADD A9, 1, A9 ; Set start = 01b
STW A6, *+B4[106] ; Set DMA 1
STW A9, *+B4[17] ; Set DMA 3
; Wait until transfer completed ;
IDLE
; Check internal data memory for program memory failures ;
MV Al3, Al Set loop count section word count
MV A5, B9 Set B9 to DMEM
MVK 1, A2 Set loop condition to true
emem_check:
[ A1] LDW *B9++, A3 ; Load data value
NOP 4
[ Al] CMPEQ A3, A4, A2 ; Compare data to test wvalue
['A2] B fail c6xOxext ; Branch to fail loop
['A2] SUB A9, 4, AS ; Correct address of fail
[!A2] MVK ETEST, B3
[!A2] SHL B3,4,B3 ; Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 ; M = memory block, T = test count
[ A1l] SUB Al, 1, Al ; Decrement count
[ A1] B emem_check ; Loop until done
[!'B2] ADD2 A4, B1l4, A4 ; Increment step if test O
NOP 4
[ B1] SUB B1, 1, Bl
[ B1] MV Al3, BO ; Set conditional reg to block size
['B1] MV Al2, BO ; If no more blocks, set count to remainder
[ BO] B emem_loop ; Go back to start of loop
ADD B8, B6, Bi ; Increment emem start
NOP 4

TMS320C6000 Memory Test 29



4'-'?T‘EXAS

SPRA630A INSTRUMENTS
; Loop back for another test ;
[ B2] SUB B2, 1, B2

NOP 4
; Loop back for another section ;
testloop end:

B coxOxext loop

NOP 5
; Pass —— Jump to pass routine ;
pass_coxOxext:

MVKL pass, Bl2

MVKH pass, Bl2

B B12

NOP 5
; Fail —-— Jump to fail routine ;
fail co6xOxext:

MVKL fail, BI12

MVKH fail, BI12

B B12

NOP 5

.endif

30 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

A.7 c6x1xint_mem.asm

; c6bxlxint mem.asm
; written 23 July, 1999 by David Bell
; modified 11 August, 2000 by David Bell

; The purpose of this code is to verify the internal memory of a C6xlx
; DSP. The internal memory description is defined in c6000imem.asm, and
; provides the number and size of L2 blocks present. The program tests
; each block individually. When complete, the CPU branches to the C6xlx
; external memory test.

; Assumptions made in x6xlxint test.asm are as follows:

; — The internal memory consists of four blocks

; — Each block is identical in size

; — The code is located at the base address of Block 0

; In the case that a future c6000 device is made available that has
; more than four blocks, these may be added in c¢c6000imem. If

; the blocks are not of the same size, then the block size should

; set to a size that is evenly divisible into each of the blocks,

; along with the appropriate “sub block” count.

.text

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

C6000 .set 1

.elseif DEVICE = 6711
C6000 .set 1

.else ; DEVICE = 6x0x
C6000 .set 0

.endif

.else ; DEVICE not specified...6201
C6000 .set 0

.endif

.if C6000 = 1

.ref QDMA

.ref EDMA

.ref EDMA CTRL

.ref NUM L2

.ref LEN L2

.ref L2TEST

.ref table bottom

.ref _coxlxext test

.ref fail

.ref RESET

.global c6xlxint test
.global cé6xlxint loop
.global 12 fill

TMS320C6000 Memory Test 31



{ir‘ TexAS

SPRAG630A INSTRUMENTS
.global 12 checkl
.global 12 loop
.global submit
.global 12 check2
.global c6x1lx pass
.global cé6xlx fail
.global testblockO
_cbxlxint test:
; Initialize interrupt 8 for EDMA channels. ;
MvVC CSR, BO ; Get Control Status Register
OR BO, 1, BO ; Set GIE bit
MVC BO, CSR ; Restore CSR
MvVC IER, BO ; Get Interrupt Enable Register
SET BO, 1, 1, BO ; Set NMIE bit
SET BO, 8, 8, BO ; Set IE8 bit
MVC B0, IER ; Restore IER
MVKL RESET, BO ; Base address for program memory
MVKH RESET, BO
MVC BO, ISTP ; Set IST address

and allow TCCl to

; Enable channel 8,

MVKL
MVKH
MVK
STW
MVK
STW

MVK

c6xlxint loop:
ZERO
ZERO
ZERO
ZERO
CMPEQ
CMPEQ
CMPEQ
CMPEQ

EDMA CTRL, Bl4
EDMA CTRL, Bl4

2, B3

B3, *+Bl4[2]
0x100, B3
B3, *+B1l4[3]
4, B2

BO

Bl

Al

A2

B2, 1, BO
B2, 2, Bl
B2, 3, Al
B2, 4, A2

32 TMS320C6000 Memory Test

’

Address of the EMDA control
registers
Set bit 1
Enable TCCl to interrupt the CPU
Set bit 8
Enable EDMA channel 8 to receive TCCS8

Set program test count



‘E?'TEXAS

INSTRUMENTS SPRA630A
[ A2] MVKL OxFFFFFFFF, A4 Test 4: Fill with F’s
[ A2] MVKH OxFFFFFFFF, A4
[ Al] MVKL OxAAAAAAAA, A4 Test 3: Fill with A’s
[ Al] MVKH OxAAAAAAAA, A4
[ B1] MVKL 0x55555555, A4 Test 2: Fill with 5’s
[ B1] MVKH 0x55555555, A4
[ BO] ZERO A4 Test 1: Step beginning with 1
[!B2] MVKL 0x00020001, A4
MVKL LEN L2, A6
MVKH LEN L2, A6

[1B2]
12 fill:

[ Al]
[ Al]
[ Al]
[1B2]

[!B2]

12 checkl:
[ Al]

[ Al]
[!A2]
[!A2]
[!A2]
[!A2]
[!A2]
[ Al]
[ Al]
[!B2]

SHR
MV

MVK
ADD

STW
SUB
ADD2
NOP
NOP

SHR
MV

MVK
SUB

LDW
NOP
CMPEQ

SUB
MVK
SHL
ADD
SUB

ADD2
NOP

1, A2
A4, 1, Al4

12 fill
A4, *A9++
Al, 1, Al
A4, Al4, A4

1, A2
Al4, Al, A4

*A9++, A3

4

A3, A4, A2
fail céxlxint
A9, 4, A5
L2TEST, B3
B3,4,B3

B3, B2, B3
Al, 1, Al
12 checkl
A4, Al4, A4
4

Set loop count to word count

Set loop condition to TRUE
Set increment value to 0x00020002

Decrement count
Increment step if test O

Set loop count to word count
Set A9 to L2 block 1 address
Set loop condition to TRUE
Return original A4 value

Load data value

Compare data to test value
Branch to fail loop
Correct address of fail

Set error code = 0x000000MT.
M = memory block, T = test count
Decrement count
Loop until done
Increment step if test O

TMS320C6000 Memory Test

33



{if‘ TexAS

SPRAB30A INSTRUMENTS
; Transfer block i data to block 1 + 1 ;
MVK NUM L2, Al ; The number of L2 blocks
MVKL LEN L2, AZ ; The length (in bytes) of each L2 block
MVKH LEN_L2 , A2
MV A2, A5 ; Set base address of L2 block 1
SUB Al, 1, Al ; Decrement block counter (block 1 tested)
12 loop:
N SUB Al, 1, Al ; Decrement block counter.
['Al] B test block0 ; If testing the last block, do sep routine
MVKL QDMA, B3 ; Base address of QDMA registers
MVKH QDMA, B3
MVKL 0x41310001, B4 ; Set options for 1D to 1D FS transfer
[ A1] MVKH 0x41310001, B4 ; TCCl is generated.
[!Al] MVKH 0x41380001, B4 ; Set TCC8 for
ADD A5, A2, AT ; Get base address of L2 block i + 1
ZERO BO ; Set index value of 0
SHR A2, 2, A6 ; Convert count to words
STW B4, *+B3[0] ; Store channel options
STW A5, *+B3[1] ; Store source address
STW A6, *+B3[2] ; Store transfer count
STW A7, *+B3[3] ; Store destination address
submit:
STW B0, *+B3[12] ; Store index and initiate transfer
; Wait until transfer completed ;
IDLE
; Check L2 data for memory failures ;
MV A6, BO ; Set loop count
MV A7, A9 ; Set A9 to L2 block i + 1
MVK 1, B1 ; Set loop condition to TRUE
[!'B2] SUB Ald4, 1, A4 ; Return original A4 value
12 check2:
[ BO] LDW *A9++, A3 ; Load data value
NOP 4
[ BO] CMPEQ A3, A4, A2 ; Compare data to test value
['A2] B fail céxlxint ; Branch to fail loop
['A2] SUB A9, 4, AS ; Correct address of fail
['A2] MVK L2TEST, B3
['A2] SHL B3,4,B3 ; Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 ; M = memory block, T = test count
[ BO] SUB BO, 1, BO ; Decrement counter
[ BO] B 12 check2 ; Loop until done
[!B2] ADD2 A4, Al4, A4 ; Increment step if test O
NOP 4

34 TMS320C6000 Memory Test



Ji‘ TEXAS

INSTRUMENTS SPRAG30A
; Loop back to test block i + 1 ;
[ A1l] B 12 loop ; Return to loop
[ A1l] MV A7, A5 ; Move address of 1 + 1 to that of i
NOP 4
; Loop back for another test ;
[ B2] B cé6xlxint loop
[ B2] SUB B2, 1, B2
NOP 4
; Pass —-— Branch to external memory test ;
pass_cébxlxint:
MVKL _cobxlxext test, BlZ2 ; Address of external memory test
MVKH _coxlxext test, Bl12 ;
B B12
NOP 5
; Fail -- Branch to fail loop ;
fail c6xlxint:
MVKL fail, B12 ; Address of fail loop
MVKH fail, BI12
B B12
NOP 5
; Setup EDMA channel 8 to transfer data from L2 block n to L2 block 0 ;
; data from L2 block 0 to L2 block n ;
; code from L2 block 1 to L2 block O ;
; These will be triggered by the QODMA of code from L2 block 0 to L2 block 1 ;
test blockO:
MVKL EDMA, A3 ; Base address of EDMA channel registers
MVKH EDMA, A3
MVK 24, AlOQ ; Size of channel parameters
SHL Al10, 3, AlO0 ; Get offset for EDMA ch8
ADD A3, Al0, A3 ; Get address of EDMA channel 8 registers
; Setup QDMA to transfer code to block 1 ;
ADDK 2, B4 ; Set LINK =1
MVKL RESET, B10 ; Base address of vectors
MVKH RESET, B10

TMS320C6000 Memory Test 35



{if‘ TexAS

SPRAG630A INSTRUMENTS
MVKL table bottom, A9
MVKH table bottom, A9
SUB A9, B10, A9
ZERO BO
SHR A9, 2, A9 ; Convert from bytes to words
STW B4, *+B3[0] ; Store channel options ( set TCC8)
STW B10, *+B3[1] ; Store source address (L2 block 0)
STW A9, *+B3[2] ; Store transfer count ( code size)
STW A2, *+B3[3] ; Store destination address (L2 block 1)
; Setup EDMA ch8 to transfer data from block n to block O ;
SHL Al10, 2, AlO ; Get offset for EDMA ch32
STW B4, *+A3[0] ; Store channel options ( set TCC8)
STW A5, *+A3[1] ; Store source address (L2 block n)
STW A6, *+A3[2] ; Store transfer count (block size)
STW BO, *+A3[3] ; Store destination address (L2 block 0)
STW BO, *+A3[4] ; Store index ( 0)
STW Al10, *+A3[5] ; Store link address ( EDMA ch32)
; Setup EDMA chlé6 to transfer data from block 0 back to block n ;
MV Al10, A3 ; Move pointer to EDMA channel 32
MVKH EDMA, A3 ;
ADDK 24, Al10 ; Get offset for EDMA ch33
STW B4, *+A3[0] ; Store channel options ( set TCC8)
STW BO, *+A3[1] ; Store source address (L2 block 0)
STW A6, *+A3[2] ; Store transfer count (block size)
STW A5, *+A3[3] ; Store destination address (L2 block n)
STW BO, *+A3[4] ; Store index ( 0)
STW A10, *+A3[5] ; Store link address ( EDMA ch33)
; Setup EDMA chl7 to transfer code from block 1 back to block 0 ;
MV Al0, A3 ; Move pointer to EDMA channel 33
MVKH EDMA, A3 ;
MVKL 0x41310001, B11 ; Set options for 1D to 1D FS transfer
MVKH 0x41310001, B11 ; TCCl is generated. LINK = 0
STW B11l, *+A3[0] ; Store channel options ( set TCC1)
STW A2, *+A3[1] ; Store source address (L2 block 1)
STW A9, *+A3[2] ; Store transfer count ( code size)
STW B10, *+A3[3] ; Store destination address (L2 block 0)
STW BO, *+A3[4] ; Store index ( 0)
STW Al10, *+A3[5] ; Store link address ( EDMA ch33)
B submit ; wait for transfer to complete
NOP 5
.endif

36 TMS320C6000 Memory Test



J@ TEXAS
INSTRUMENTS SPRA630A

A.8 c6x1xext_mem.asm

; cbxlxext mem.asm
; written 23 July, 1999 by David Bell
; modified 11 August, 2000 by David Bell

; The purpose of this code is to verify the external memory of a C6xlx

; system. External memory sections are defined in the c6000emem.asm source

; file. The DSP will cycle through the external memory table, testing each

; section individually. When a section size of zero is read from the table,
; the program completes.

; External memory sections can be added and removed from the external

; memory table in c6000emem.asm so long as the table always contains a

; section of zero size as the final entry. If there is no external memory
; the table should simply contain the zero entry.

; The external memory table can consist of any number of memory sections.
; For a Cé6xlx device, these sections can be located in any cacheable (by L2
; location in the memory map.

; The external memory interface is NOT configured by this test program. The
; control registers should be configured appropriately by through the host
; or emulator interface prior to executing this code. The Memory Attribute
; Registers of the EMIF are, however, set to enable caching.

; Assumptions made in this code include:

; - All external memory is cacheable.

; — There are four Memory Attribute Registers (MARs) that control
; the cacheability of each CE space.

.text

.if $isdefed (”DEVICE”)
.1if DEVICE = 6211

C6000 .set 1

.elseif DEVICE = 6711
C6000 .set 1

.else ; DEVICE = 6x0x
C6000 .set 0

.endif

.else ; DEVICE not specified...6202
C6000 .set 0

.endif

.if C6000 = 1

.ref NUM_CE

.ref ETEST

.ref table top

.ref fail

.ref pass

TMS320C6000 Memory Test 37



SPRAG630A

{ir‘ TexAS

INSTRUMENTS

.global
.global
.global
.global
.global
.global
.global
.global
.global

_cbxlxext test
mar loopl

mar loopZ2
coxlxext loop
testloop c6x1lx
coxlxext fill
coxlxext check
pass_coxlxext
fail ceoxlxext

rrrrrrrrrrrr LN r L rrL NI L r I LI LI LI LI LI LI LTI rr LI LT rrrrr L rrrrrrrrs

_coxlxext test:

MVK
MVK
MVKL
MVKH
MVK
mar loopl:
[ Al] SUB
[ Al] B
[ Al] STW
[ Al] STW
[ Al] STW
[ Al] STW
[ A1l] ADD
LDW
NOP
MVKL
MVKH
MV

B4
0x40,

0x01848200,
0x01848200,

B5 ;
B3 ;
B3

NUM CE, Al

Al, 1,

Al

mar loopl

B4,
B4,
B4,
B4,
B3,

*B3,
4

table top,
table

B5, A7

*+B3[0]
*+B3[1]
*+B3[2]
*+B3[3]
B5,

B3

B5 ;

top,

Offset between CE MAR sets
Address of MARO

Read a MAR to ensure completion

Move table pointer to

coxlxext loop:
LDW
NOP

[!A2] B
NOP
LDW
SHR

[ AZ]

38

*AT7++,
4

A2 ;

pass_coxlxext ;

5
*AT7++,
A2, 2,

TMS320C6000 Memory Test

B10 ;
A3 ;

Load external section size

If section size == 0, end

Load external section
Shift bytes to words

address



‘E?'TEXAS

INSTRUMENTS SPRAG630A
; Init test wvalue ;
MVK 4, B2 ; Set program test count
testloop c6xlx:
ZERO BO
ZERO B1
ZERO Al
ZERO A2
CMPEQ B2, 1, BO
CMPEQ B2, 3, Al
CMPEQ B2, 4, A2
[ A2] MVKL OxXFFFFFFFF, A4 ; Test 4: Fill with F’s
[ A2] MVKH OxXFFFFFFFF, A4
[ A1l] MVKL OxAAAAAAAA, A4 ; Test 3: Fill with A’s
[ A1l] MVKH OxAAAAAAAA, A4
[ B1] MVKL 0x55555555, A4 ; Test 2: Fill with 5's
[ B1] MVKH 0x55555555, A4
[ BO] ZERO A4 ; Test 1: Step beginning with 1
[!B2] MVKL 0x00020001, A4 ; Test 0: Step beginning with 1
[!B2] MVKH 0x00020001, A4
MV B10, A5
; Fill data memory ;
MV A3, A2
[!'B2] ADD Ad, 1, Bl4 ; set increment value to 0x00020002
coxlxext fill:
[ A2] B coxlxext fill
[ A2] STW A4, *A5++
[ A2] SUB A2, 1, A2 ; Decrement count
[!B2] ADD2 A4, Bl4, A4 ; Increment step if test O
NOP
; Invalidate L1D to force all data to its external location ;
MVKL 0x01840000, Al10 ; Address of CCFG
MVKH 0x01840000, A10
STW B10, *+A10[7] ; Store external section address in L1DFBAR
STW A3, *+A10[8] ; Store external section size in L1DFWC
LDW *+A10[8], AS8 ; Read back LIDFWC to make sure cmd was issued
NOP 4

TMS320C6000 Memory Test 39



4E?TEXAS

SPRAG630A INSTRUMENTS
; Check internal data memory for program memory failures ;
MV A3, Al Set loop count
MV B10, A5 Set A9 to DMEM
MVK 1, A2 Set loop condition to true
[!B2] SUB B14, 1, A4 Return original A4 value
coxlxext check:
[ Al] LDW *A5++, A3 Load data value
NOP 4
[ A1l] CMPEQ A3, Ad, A2 Compare data to test value
[!A2] B fail céxlxext Branch to fail loop
[!A2] SUB A5, 4, A5 Correct address of fail
[!A2] MVK ETEST, B3
['!A2] SHL B3,4,B3 Set error code = 0x000000MT.
['A2] ADD B3, B2, B3 M = memory block, T = test count
[ Al] SUB Al, 1, Al Decrement counter
[ Al] B céoxlxext check Loop until done
[!B2] ADD2 A4, Bl4, A4 ; Increment step if test O
NOP 4
; Loop back for another test of the external memory section ;
[ B2] B testloop c6xlx
[ B2] SUB B2, 1, B2
NOP 4
; Loop back to test the next external memory section ;
B coxlxext loop
NOP 5
; Pass —— Jump to pass routine ;

; Invalidate L1D ;
MVKL 0x01840000, A1l0 ; Address of CCFG
MVKH 0x01840000, AlO0
LDW *A10,A8 ; Get current CCFG value
MVK 0x0100, A9 ; Set bit 8
NOP 3

40 TMS320C6000 Memory Test



Ji‘ TEXAS

INSTRUMENTS SPRAG30A
OR A8, A9, A8 ; Set ID bit to ’'1’ (bit 8)
STW A8, *Al0 ; Store CCFG to flush L1D
LDW *A10,A8 ; Read back CCFG to make sure flush completed
NOP 4
; Set MAR bits to ;
MVK 0, B4
MVK 0x40, BS ; Offset between CE MAR sets
MVKL 0x01848200, B3 ; Address of MARO
MVKH 0x01848200, B3
MVK NUM_CE, Al
mar loopZ2:
[ Al] SUB Al, 1, Al
[ A1] B mar loopZ2
[ Al] STW B4, *+B3[0]
[ Al] STW B4, *+B3[1]
[ Al] STW B4, *+B3[2]
[ Al] STW B4, *+B3[3]
[ A1l] ADD B3, B5, B3
LDW *B3, B5 ; Read a MAR to ensure completion
NOP 4
MVKL pass, Bl2
MVKH pass, Bl2
B B12
NOP 5
; Fail —- Jump to fail routine ;
fail coxlxext:
MVKL fail, BI12
MVKH fail, BI12
B B12
NOP 5
.endif

TMS320C6000 Memory Test

41



{ir‘ TexAS

SPRA630A INSTRUMENTS

A.9 ¢c6000mem.cmd

/* C6x0x Map 1 or Céxlx */

MEMORY

{
IP_ RAM: o = 00000000h , 1 = 00010000h
ID RAM: o = 80000000h , 1 = 00010000h

/* C6x0x Map 0 */

/*

MEMORY

{
IP RAM: o = 01400000h , 1 = 00010000h
ID RAM: o = 80000000h , = 00010000h

=
|

SECTIONS
{
GROUP : load = IP_ RAM
{
.vectors
.text

}
memorytable: load = IP RAM, run = ID RAM

42 TMS320C6000 Memory Test



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated


http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Application Report
	Dave Bell Sebastien Tomas
	TMS320C6000 Applications
	ABSTRACT
	This set of programs has been compiled to provide a way to verify the integrity of internal DSP memory and external system memory for all devices currently in the TMS320C6000 (C6000) family. Included with the memory test are all source files, the Co...

	Contents
	A.2 c6000imem.asm
	A.3 c6000emem.asm
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
	A.4 c6x0xint_mem.asm
	A.5 c6x0xint1_mem.asm
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
	A.6 c6x0xext_mem.asm 25
	A.7 c6x1xint_mem.asm 31
	A.8 c6x1xext_mem.asm 37
	A.9 c6000mem.cmd 42


	1 Program Description
	In order to facilitate the verification and integrity of internal DSP memory and external system memory for all devices currently in the TMS320C6000 (C6000) family, a test has been put together. The C6000 memory verification program exists for the pur...
	Five test patterns are run to verify each section of memory: all 1’s, alternating 1-0, alternating 0-1, all 0’s, and a ramp function. If all five tests pass, the CPU spins in a pass loop upon completion.
	If any test fails, the program is immediately aborted and the CPU branches to a fail loop. The address of the memory fail is held in register A5, the test value is held in A4, and the stored value is held in A3.
	1.1 File Descriptions
	The memory verification program is made up of several source files, each of which has a particular function. In order to incorporate the ability to test the internal memory of multiple internal architectures, there are two basic file sets: those for t...
	The memory verification program contains the following source files:
	 c6000memtest.asm: This is the main program, which contains the control code and the interrupt vector table. This control code consists of the calling function for the internal memory test, the pass and fail loops entered upon completion; and the int...
	 c6000imem.asm: This file contains information describing the location and sizes of the internal memory on each of the C6000 DSPs. As new C6000 devices become available, descriptions of their internal memory can be added here to expand the test cover...
	 c6000emem.asm: This file contains user-defined information describing the external memory sections to be included in the verification. This is in table form, and should be entered by the user according to the system memory available to be tested. Ea...
	 c6x0xint_test.asm: This file contains the internal data memory and internal program memory (block 0) test for all C6x0x DSPs. After completion, the CPU branches to the program memory block 1 test program.
	 c6x0xint1_test.asm: This file contains the internal program memory (block 1) test for all C6x0x DSPs. After completion, the CPU branches to the external memory test.
	 c6x0xext_test.asm: This file contains the external memory test for all C6x0x DSPs. The memory table defined in c6000emem.asm is used to dictate which external memory sections are tested. The external memory test runs until a section size of zero is ...
	 c6x1xint_test.asm: This file contains the internal L2 memory test for all C6x1x DSPs. Each block of L2 memory is tested. After completion the CPU branches to the external memory test.
	 c6x1xext_test.asm: This file contains the external memory test for all C6x1x DSPs. The memory table defined in c6000emem.asm is used to dictate which external memory sections are tested. The external memory test runs until a section size of zero is ...
	 c6000memtest.cmd: This is the linker command file. This file contains two sets of link options—one for C6x0x devices in Map 1 or all C6x1x devices, and one for C6x0x devices in Map 0. The appropriate portion of the file must be uncommented by the us...
	 c6000memtest.mak: This is the CCS project file. This file contains the project information for the memory verification program. This project should be loaded into Code Composer Studio to edit and build the memory test.
	 c6000memtest.out: This is the COFF generated by building the c6000memtest project. This file is loaded into the DSP memory for testing.


	2 Edit and Build Process
	The project source files can easily be edited to suite different C6000 DSPs as well as different systems. There are several things that must be changed within the source, as well as preprocessor variables that can be passed to the compiler to rebuild ...
	 Start Code Composer Studio
	 Load the project c6000memtest.mak
	 Open c6000emem.asm and modify memory table to reflect C6000 system. Comments are provided in the source along with an example memory list.
	 Open project options and select the “assembler” tab. Manually insert “-DDEVICE=6xxx” (where xxx is 201, 701, 202, 203, 204, 205, 211, 711) into the options field. This flag is passed to all source files to select the appropriate memory configuration...
	 Build the project
	After following these steps a new c6000memtest.out file is generated and can be loaded into the DSP and run.
	2.1 Example Build
	An example of how to modify and build the memory test is as follows. Consider a C6211 system with 16MB of SDRAM in external memory CE0 and 8kB of asynchronous memory in CE1. First, the project must be loaded into CCS (c6000memtest.mak). To include the...
	To compile the test for the C6211, the assembler options in Code Composer Studio must be modified to include “-DDEVICE=6211”.
	To generate a new c6000memtest.out file simply build the project.
	The .out file is then ready to load and be run on the C6211. Note that the EMIF configuration to communicate to the SDRAM and asynchronous memory is not included in the test suite. Before executing the code it is necessary to configure the EMIF approp...


	3 Summary
	In summary, the TMS320C6000 memory test is a configurable test suite capable of being run on all C6000 devices in different systems. The test includes a verification of internal memory as well as any user-defined external memory sections. To select th...

	4 References
	Appendix A Memory Test Source Files
	A.1 c6000memtest.asm
	A.2 c6000imem.asm


