
Application Report
SPRA704 - December 2000

1

TMS320C6000 JPEG Implementation
Ajai Narayan
Jungki Min
Vishal Markandey

Digital Signal Processing Solutions

ABSTRACT

This application report describes the implementation of the Joint Photographic Experts Group
(JPEG) Encoder and Decoder on TMS320C6000 digital signal processors (DSPs). The JPEG
Encoder and Decoder are eXpressDSP Algorithm Standard compliant. This document describes
the details of JPEG Encoder and Decoder implementation, APIs, and measured performance.

Contents
1 Introduction 2.

2 The JPEG (ISO DIS 10918) Standard 3.

3 JPEG Encoder 3.
3.1 JPEG Encoder Algorithms 3.
3.2 JPEG Encoder Control Code 5.
3.3 JPEG Encoder Auxiliary Functions 7.
3.4 JPEG Encoder API 8.
3.5 JPEG Encoder Performance 10.

4 JPEG Decoder 10.
4.1 JPEG Decoder Algorithms 11.
4.2 JPEG Decoder Control Code 13.
4.3 JPEG Decoder API 15.
4.4 JPEG Decoder Performance 16.

Appendix A JPEG Bit-Stream Structure 17.
List of Figures

Figure 1. JPEG Encoder 3.
Figure 2. Raster Scanned Image Data 3.
Figure 3. Reformatted Image Data 4.
Figure 4. Zig-Zag Reordering of Transformed Coefficients (Input and Output) 5.
Figure 5. Encoder Control Flow 6.
Figure 6. JPEG Decoder 11.
Figure 7. Decoded Image Data Before Reformat 12.
Figure 8. Reformatted Image Data in Raster Scan Format 13.
Figure 9. Decoder Control Flow 14.
Figure A–1. JPEG Bit-Stream Structure 18.

List of Tables

Table 1. JPEG Encoder Performance 10.
Table 2. JPEG Decoder Performance 16.

TMS320C6000 and eXpressDSP are trademarks of Texas Instruments.

SPRA704

2 TMS320C6000 JPEG Implementation

1 Introduction

This application report describes the implementation of JPEG, the still image compression
standard on TMS320C6000 DSPs. This JPEG implementation is subject to the following
constraints:

• DCT-based, Sequential, 8-bit precision samples of image components (Y–Cb–Cr
4:4:4/4:2:2/4:2:0).

• Two quantization tables (one each for luma and chroma). Supports tables K1 and K2 in the
standards document. Arbitrary quantization tables are supported, tables may change per
image.

• Two DC, 2 AC tables (separate sets for luma and chroma). Supports tables K3, K4, K5, and
K6 in the standards document. Support is limited to these tables only.

• The encoder expects the image data as three separate raster scanned components in
memory (i.e. non-interleaved Y–Cr–Cb).

• The decoder outputs the image as three separate raster scanned components in contiguous
memory.

• Each scan contains a complete image component. A single image component is contained in
a scan.

• The implementation does not handle ‘restart intervals’ even though their presence should not
affect the decoding.

• The decoder expects the first scan to start within the first DMA packet in the bit-stream. At
least the following markers should be included in the first DMA packet.

0xFFD8: Start of Image

0xFFC0: Start of Frame (Baseline DCT)

0xFFDB: Define Quantization Table

0xFFDA: Start of Scan

The TI JPEG encoder outputs those markers within the first 590 bytes, so the decoder minimum
input DMA packet should be 590 bytes and the default is set to 640 bytes.

• Lossless JPEG encode/decode are not supported.

• Progressive image transmission capability is not supported.

• Image component dimensions (rows, columns, Y/C) must be multiples of 8.

• A simple compression ratio control capability is provided in the encoder.

• The decoder can only decode those bit-streams that have a structure identical to that
produced by the encoder. Please see Section 5 for a description of the bit-stream structure
used.

SPRA704

3 TMS320C6000 JPEG Implementation

2 The JPEG (ISO DIS 10918) Standard
It is recommended that this application note be read with reference to the JPEG standards
document ISO DIS 10918. The standard is available as Appendix A in the book by William B.
Pennebaker and Joan L. Mitchell (Von Nostrand Reinhold, New York ISBN 0–442–01272–1).

3 JPEG Encoder

The JPEG standard is a broad standard encompassing several compression and transmission
modes. In order to facilitate future expansion to other modes, this implementation has a very
modular construction. A single thread of control code handles all individual routines (kernels)
which are called multiple times as required by the application. This control code will always be in
‘C’ to facilitate changes in control architecture.

3.1 JPEG Encoder Algorithms

Figure 1 provides an overview of the processing involved in JPEG Encoder.

Quantization
and RLE AC VLC

Byte
stuff

DC
encodeDCTreformat

Data

Figure 1. JPEG Encoder

Data Reformat: This operation converts raster scanned image component data into a
contiguous set of 8x8 image blocks. Figure 2 shows the raw image data as stored in the
memory. All image samples belonging to the same row in the image frame are represented by a
single alphabet. Figure 3 shows the reformatted data as required for any block based
compression scheme. This operation also converts the dynamic range of the pixel intensity
values from (0–255) to (–128, 127) thus eliminating the DC bias of the signal.

x xx xx x x xx xx xx xx x x xx xx

y y y y y y y y y y yy yyy yyy yy yyy yyy yyy yyy yy y y y y y y yy yyy yyy yy y y

z z z z z z z z z z zzz zz z zz zz zzzz zz zz zz zz z zzz z z zz zzzz zz zz zz zz

o o o o o o o o o o oo ooo ooo oo ooo ooo ooo ooo oo o o o o o o ooo o o o ooo o oo

p p p p p p p p p p pppppppppp pppppppppppp p p p p p p p p p ppppp p p p p p p

q q q q q q q q q q qq qqq qqq qq qqq qqq qqq qqq qq q q q q q q qqq q q q qqq q qq

k k k k k k k k k k kkkkk kkkkk kkkkkk kkkkkk k k kk k k k k k k k k k k kkk kkk

n n n n n n n n n n nn nn n n nn nn nnn nn n n nn nn n nn n nn n n n nn n n n n nnn n n n

Figure 2. Raster Scanned Image Data

SPRA704

4 TMS320C6000 JPEG Implementation

nkq

po

zy

ppp

pppppppp

nk

q kkkk

n nn n

q qqq

kkk

kkk n nn

nn n

qqq

qqq

o

zy zz zz

o ooo

y yyy

zz z

z zz

ooo

oooyyy

yyy

p p p p

p p p p

p p p p

k

k k

k k k nn n

n

n

n

qq q q

q q k k k kk k nn n n nnqqq q q q

z

zz

z z z

oo o o

o o

yy y y

y y z zz zzz

oo

o o

o o

yyy y y y

y yy y y y y y

x

xx xx x x xx

xx x xx x

x

x

x xxx x xx

x xxx x x xx

– – – – – – – –

– – – – – – – –

Figure 3. Reformatted Image Data

DCT: This operation performs a 2-D Discrete Cosine Transform (DCT) on the reformatted 8x8
block of image samples and outputs a corresponding 8x8 block of 2-D frequency components.
The mathematical expression for the DCT is given below:

Svu �
1
4

CuC v�
7

x�0

�
7

y�0

Syx cos�(2x � 1)u�
16

� cos �(2y � 1)u�
16

�
where

Cu, Cv = 1/ √2 for u, v = 0; Cu, Cv = 1 otherwise
Svu is the DCT component at u,v
Syx is the spatial sample value of the image pixel at x,y

The 2D DCT is separated into two 1D operations to reduce the number of processing operations
as shown below:

• perform eight 1D DCTs, one for each row of the array (row computation).

• perform eight 1D DCTs, one for each column of the array resulting from the row IDCT
computation (column computation).

DC Encode: This step quantizes and Huffman encodes (also called Variable Length Coding,
VLC) the DC coefficients obtained from the DCT module. In JPEG, the DC coefficient is
differentially encoded i.e, a difference between the present and the preceding DC component is
computed and this difference is quantized and encoded. Quantization involves an inherent
division operation with an element from the quantizer table. In this implementation, a reciprocal
quantizer table, pre-computed from the quantizer table, is used.

Quantization and RLE: This step quantizes the AC coefficients, casts them in a zig-zag pattern
and run-level encodes the resulting coefficients. As in the case of the DC coefficient,
quantization involves an inherent division operation with an element from the quantizer table. In
this implementation, a reciprocal quantizer table, pre-computed from the quantizer table, is used.
The result of the zig-zag re-ordering of transformed coefficients is shown in Figure 4.

(1)

SPRA704

5 TMS320C6000 JPEG Implementation

 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

 16 17 18 19 20 21 22 23

 24 25 26 27 28 29 30 31

 32 33 34 35 36 37 38 39

 40 41 42 43 44 45 46 47

 48 49 50 51 52 53 54 55

 56 57 58 59 60 61 62 63

 0 1 5 6 14 15 27 28

 2 4 7 13 16 26 29 42

 3 8 12 17 25 30 41 43

 9 11 18 24 31 40 44 53

 10 19 23 32 39 45 52 54

 20 22 33 38 46 51 55 60

 21 34 37 47 50 56 59 61

 35 36 48 49 57 58 62 63

Figure 4. Zig-Zag Reordering of Transformed Coefficients (Input and Output)

AC VLC: This step performs Variable Length Coding (VLC) of the run-level pairs that are output
by the quantization routine to construct the entropy coded segments of the image. The variable
length codes in JPEG do not map directly to quantized AC coefficients. Instead, they map to a
positive integer value. This integer represents the additional number of bits to be appended to
the variable length code itself. The value of the additional bits is calculated as part of the
encoding process.

Byte Stuff: In the JPEG standard, control markers are flagged by a 0xFF. This flag is followed
by one or more bytes of control code. A 0x00 byte following a 0xFF byte signifies that the 0xFF
byte is indeed part of the data and not control segments. This step inserts a 0x00 byte after
every 0xFF byte within the entropy coded (i.e. VLC) segments.

3.2 JPEG Encoder Control Code

The encoding process consists of several data processing and transmission operations. The
encoder has to insert several headers (frame-header, scan-headers etc.) into the JPEG
bit-stream to facilitate decoding. The standard specifies that a JPEG file contain all the
necessary tables required for decoding. Hence, the encoder has to perform several auxiliary
transmission related functions in addition to image compression.

The control function jpgenc_ti() is found in the file ‘jpgenc_ti.c’ . It chronologically calls all the
encoder component routines like DCT, quantization, run-level encoding, variable length
encoding etc., and performs data translations between the encoder routines. It operates the
required double buffering scheme for DMA read-in of image component data from the external
memory and DMA write-out of the JPEG bit-stream to the external memory. It takes care of
masking the data transfers by the encoding operation itself.

Figure 5 shows the schematic diagram for the control flow for the encoder:

SPRA704

6 TMS320C6000 JPEG Implementation

Has the preceding JPEG
bit-stream write-out (if any)

completed?

• Insert the Start-of-Image (SOI) flag into the JPEG bit-stream.
• Insert the frame-header into the JPEG bit-stream.

• Insert the Quantization tables and the compressed Variable-length tables into
the JPEG bit-stream.

• Set i = 0 (‘ i ’ defines the image component).

• Insert scan-header(i) into the JPEG bit-stream.
• Start reading in DMA_packet(0) of the image data from the external memory.
• Set n = 1 (‘n’ defines the DMA_packet counter).

Has read-in of
DMA_packet(n–1)

completed?

• Start reading in DMA_packet(n) of the image data from the external memory.
• Start encoding DMA_packet(n–1).

• Write-out the accumulated JPEG Bit-stream to external memory: n++

Completed
complnent ‘i’?

Completed
all components?

• Insert the EOI flag as the last byte in the bit-stream

�

i++

NO

YES

NO

YES

YES

NO

Figure 5. Encoder Control Flow

SPRA704

7 TMS320C6000 JPEG Implementation

The function jpegenc_ti() contains the overall control logic for the encoder application. It is
called from the driver function with all the required parameters defined. A prototype for the
driver is shown in the file ‘main_interface.c’. The form of the function jpegenc_ti() is shown
below.

jpegenc_ti (const unsigned char sample_prec,
const unsigned char num_comps,
const unsigned char num_qtables,
const unsigned char interleaved,
const unsigned int format,
const unsigned short *num_lines,
const unsigned short *num_samples,
unsigned char **raw_img,
unsigned char *output_area);

sample_prec: 8–12 bit image samples (only 8–bits currently supported)
num_comps: 3 – color; 1 – grayscale
num_qtables: 2 – color; 1 – grayscale
interleaved: 1 – interleaved; 2 – non–interleaved
format: 0x01110111 – 4:4:4; 0x01120112 – 4:2:0; 0x01110112 – 4:2:2
num_lines: Vertical dimension of the frame in terms of lines
num_samples: Horizontal dimension of the frame in terms of samples
raw_img: Pointer to the three memory areas that hold the image data

3.3 JPEG Encoder Auxiliary Functions

Frame-header Specification: Frame header specification is performed in the routine
framehdr_spec() . This routine inserts the standard frame header into the JPEG bit-stream. The
frame header contains the image specific parameters eg., image height, width, number of image
components etc. which are to be transmitted to the decoder.

Quantization Tables Specification: Quantization tables are specified in the routine
quant_table_spec() . This routine inserts the quantization tables into the JPEG bitstream.

Variable Length Tables Specification: Variable length tables are specified by the routine
Huffman_tables_spec() . This routine inserts compressed forms of huffman tables into the
JPEG bit-stream.

Scan-header Specification: Frame header specification is performed in the routine
scanhdr_spec(). This inserts a standard scan-header into the bit-stream. The scan header
contains image component specific information required by the decoder such as number of
image components in this scan, the tables to be used to decode the data in this scan etc.

SPRA704

8 TMS320C6000 JPEG Implementation

3.4 JPEG Encoder API

The API wrapper is derived from template material provided in the TMS320 DSP Algorithm
Standard documentation. Knowledge of the algorithm standard is essential to understand the
API wrapper. A complete discussion on how to make the algorithm eXpressDSP compliant is
beyond the scope of this document, however the algorithm interface will be discussed as
knowledge of this ensures inter-operability of algorithms. An algorithm is said to be eXpressDSP
compliant if it implements the IALG Interface and observes all the programming rules in the
algorithm standard. The core of the ALG interface is the IALG_Fxns structure type, in which a
number of function pointers are defined. Each eXpressDSP-compliant algorithm must define
and initialize a variable of type IALG_Fxns. In IALG_fxns, algAlloc(), algInit() and algFree() are
required, while other functions are optional.

typedef struct IALG_Fxns {

Void *implementationId;

Void (*algActivate)(IALG_Handle);

Int (*algAlloc)(const IALG_Params *, struct IALG_Fxns **, IALG_MemRec *);

Int (*algControl)(IALG_Handle, IALG_Cmd, IALG_Status *);

Void (*algDeactivate)(IALG_Handle);

Int (*algFree)(IALG_Handle, IALG_MemRec *);

Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

Void (*algMoved)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

Int (*algNumAlloc)(Void);

} IALG_Fxns;

The algorithm implements the algAlloc() function to inform the framework of its memory
requirements by filling the memTab structure. It also informs the framework whether there is a
parent object for this algorithm. Based on information it obtains by calling algAlloc(), the
framework then allocates the requested memory. AlgInit() initializes the instance persistent
memory requested in algAlloc(). After the framework has called algInit(), the instance of the
algorithm pointed to by handle is ready to be used. To delete an instance of the algorithm
pointed to by handle, the framework needs to call algFree(). It is the algorithm’s responsibility to
set the addresses and the size of each memory block requested in algAlloc() such that the
application can delete the instance object without creating memory leaks.

The API for the JPEG Encoder is:

SPRA704

9 TMS320C6000 JPEG Implementation

/*
 * ======== ijpegenc.h ========
 * IJPEGENC Interface Header
 */
#ifndef IJPEGENC_
#define IJPEGENC_

#include <std.h>
#include <xdas.h>
#include <ialg.h>
#include <ijpeg.h>

/*
 * ======== IJPEGENC_Handle ========
 * This handle is used to reference all JPEGENC instance objects
 */
typedef struct IJPEGENC_Obj *IJPEGENC_Handle;

/*
 * ======== IJPEGENC_Obj ========
 * This structure must be the first field of all JPEGENC instance objects
 */
typedef struct IJPEGENC_Obj {
 struct IJPEGENC_Fxns *fxns;
} IJPEGENC_Obj;
/*
 * ======== IJPEGENC_Params ========
 * This structure defines the creation parameters for all JPEGENC objects
 */
typedef struct IJPEGENC_Params {
 Int size; /* must be first field of all params structures */
 unsigned int sample_prec;
 unsigned int num_comps;
 unsigned int num_qtables;
 unsigned int interleaved;
 unsigned int format;
 unsigned int quality;
 unsigned int num_lines[3];
 unsigned int num_samples[3];
 unsigned int output_size;

} IJPEGENC_Params;
typedef IJPEGENC_Params IJPEGENC_Status;
/*
 * ======== IJPEGENC_PARAMS ========
 * Default parameter values for JPEGENC instance objects
 */
extern IJPEGENC_Params IJPEGENC_PARAMS;

SPRA704

10 TMS320C6000 JPEG Implementation

/*

 * ======== IJPEGENC_Fxns ========

 * This structure defines all of the operations on JPEGENC objects

 */

typedef struct IJPEGENC_Fxns {

 IALG_Fxns ialg; /* IJPEGENC extends IALG */

 XDAS_Bool (*control)(IJPEGENC_Handle handle, IJPEG_Cmd cmd, IJPEGENC_Status

*status);

 XDAS_Int32 (*encode)(IJPEGENC_Handle handle, XDAS_Int8* in, XDAS_Int8* out);

} IJPEGENC_Fxns;

#endif /* IJPEGENC_ */

3.5 JPEG Encoder Performance

JPEG Encoder performance has been measured on a wide range of test images. The following
performance is based on measurements on C6201 EVM and C6211 DSK.

Table 1. JPEG Encoder Performance

Image Resolution Frames/Sec With 200 MHz C6201 Frames/Sec With 150 MHz C6211 †

128x128 (4:2:0) 569 frames/sec 382 frames/sec

256x256 (4:2:0) 156 frames/sec 106 frames/sec

352x288 (4:2:0) [CIF resolution] 104 frames/sec 69 frames/sec

640x480 (4:2:0) [VGA resolution] 36 frames/sec 24 frames/sec

720x480 (4:2:0) [SDTV resolution] 32 frames/sec 21 frames/sec

† C6211 performance data based on [48K cache/16K SRAM] configuration. Recommended for JPEG.

4 JPEG Decoder

The JPEG standard is a broad standard encompassing several compression and transmission
modes. In order to facilitate future expansion to other modes, this implementation has a very
modular construction. A single thread of control code handles all individual routines (kernels)
which are called multiple times as required by the application. This control code will always be in
‘C’ to facilitate changes in control architecture.

SPRA704

11 TMS320C6000 JPEG Implementation

4.1 JPEG Decoder Algorithms

Figure 6 provides an overview of the processing involved in JPEG Decoder.

Byte Unstuff VLD
RLD and

Dequantization
IDCT

Data
Reformat

Figure 6. JPEG Decoder

Byte Unstuff: In the JPEG standard, control markers are flagged by a preceding 0x’FF’ followed
by one or more bytes of control code. A 0x00 byte following a 0xFF byte signifies that the 0xFF
byte is indeed part of the data and not control. Thus, every 0xFF byte occurring in the entropy
(VL) coded data is followed by a redundant 0x00 byte which has to be stripped off.

Variable Length Decode (VLD): VLD decodes the JPEG bit-stream and generates image data
in the DCT domain. The decoding is done in two steps 1) DC coefficient decoding followed by 2)
AC (run, level) decoding. The decoding is conceptually implemented as a series of exhaustive
look-ups into a predefined table. The C6000 ISA has a single cycle instruction lmbd that can
reduce the decoding complexity. It facilitates a faster decoding 1) by decoding several bits
during each table look-up and 2) by effectively constraining the search range within the table for
each look-up.

The lmbd instruction gives the bit-position where a first bit reversal occurs in a register. Many
intelligent decoding methods can be designed using this capability. For example, in this
implementation, the value returned by the lmbd instruction is used to select a sub-table from the
entire variable length table for an exhaustive search. VLD using the lmbd operation is shown
below, register A4 contains valid 32 bits from the JPEG bit-stream. The lmbd operation on A4
returns the number of leading 1’s in A4 which results in

• Decoding of 5 code-bits in a single cycle.

• Unique identification the sub-table for exhaustive search.

• Identification of the number of additional bits after the five 1’s to be extracted from A4 for the
exhaustive search.

lmbd (0, A4) = 5 ⇒ Unique sub-table and number of additional bits to be
 extracted from A4 for further decoding

1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0A4 =

Such optimizations in the VLD mechanism restrict the use of the algorithm to a specific table.
This is because the structure of the table is exploited during the decoding process. The baseline
JPEG recommends separate DC and AC tables for luminance and chrominance components.
Hence VLD decoding has to be done separately for the two components in order to exploit
individual table structures.

SPRA704

12 TMS320C6000 JPEG Implementation

Variable length decoding with partial JPEG bit-streams is a non-trivial problem. The DMA
packets used for transferring data to DSP generally do not end at block boundaries. Complex
structures would be required to track the number of run-level pairs decoded and to ensure that
data is not read beyond the end of a DMA packet. To circumvent this problem, the number of
bytes that are consumed from the DMA packet when a complete block (8x8) is decoded is
monitored. If this number exceeds a threshold value (smaller than the DMA packet size), the
VLD is discontinued and the blocks that have been decoded thus far are grouped into a set. This
set of blocks is passed down the decoding chain in a single pass. The succeeding DMA packet
is concatenated to the remaining bytes in the present packet and the process is repeated.

Run Level Decoding (RLD) and Dequantization: The quantized DC coefficient and the (run,
level) pairs that were decoded from the variable length decoder routines are input to this
function. This function expands the (run, level) pairs with explicit zeroes and quantized AC
coefficients in the same zig-zag pattern as at the encoder. It then performs inverse quantization
(i.e, a multiplication with the corresponding element in the quantization tables) of all non-zero
coefficients.

Inverse Discrete Cosine Transform (IDCT): This routine performs the inverse DCT on the
frequency components of an 8x8 data block and outputs a corresponding 8x8 block of image
component samples. The input to this routine is an array of amplitude values corresponding to
specific 2D frequencies. The output from it is an array containing a 2D array of amplitude values
which correspond to image samples.

Syx �
1
4
�

7

u�0

�
7

v�0

CuCvSvu cos�2x � 1)u�
16

� cos�2y � 1v�
16

�
where Cu, Cv = 1/ √2 for u, v = 0; Cu, Cv = 1 otherwise.
Svu is the DCT component at u,v
Syx is the spatial sample value of the image pixel at x,y

The 2D IDCT is separated into two 1D operations to reduce the number of processing
operations as shown below:

• perform eight 1D IDCTs, one for each row of the array (row computation).

• perform eight 1D IDCTs, one for each column of the array resulting from the row IDCT
computation (column computation).

Data Reformat: Data reformatting converts a contiguous set of 8x8 image blocks into a raster
scanned image frame. Figure 7 shows the decoded image data as stored in the memory before
reformat.

nkq

po

zy

ppp

pppppppp

nk

q kkkk

n nn n

q qqq

kkk

kkk n nn

nn n

qqq

qqq

o

zy zz zz

o ooo

y yyy

zz z

z zz

ooo

oooyyy

yyy

p p p p

p p p p

p p p p

k

k k

k k k nn n

n

n

n

qq q q

q q k k k kk k nn n n nnqqq q q q

z

zz

z z z

oo o o

o o

yy y y

y y z zz zzz

oo

o o

o o

yyy y y y

y yy y y y y y

x

xx xx x x xx

xx x xx x

x

x

x xxx x xx

x xxx x x xx

– – – – – – – –

– – – – – – – –

Figure 7. Decoded Image Data Before Reformat

(2)

SPRA704

13 TMS320C6000 JPEG Implementation

All image data belonging to a single 8x8 block occur contiguously followed by the data for the
next block. Successive groups of 8 samples are depicted by a different alphabet. Figure 8 shows
the reformatted data as required for display of an image frame. Reformatting also converts the
dynamic range of the pixel intensity values from (–128, 127) to (0, 255) as per the JPEG
standard.

x xx xx x x xx xx xx xx x x xx xx

y y y y y y y y y y yy yyy yyy yy yyy yyy yyy yyy yy y y y y y y yy yyy yyy yy y y

z z z z z z z z z z zzz zz z zz zz zzzz zz zz zz zz z zzz z z zz zzzz zz zz zz zz

o o o o o o o o o o oo ooo ooo oo ooo ooo ooo ooo oo o o o o o o ooo o o o ooo o oo

p p p p p p p p p p pppppppppp pppppppppppp p p p p p p p p p ppppp p p p p p p

q q q q q q q q q q qq qqq qqq qq qqq qqq qqq qqq qq q q q q q q qqq q q q qqq q qq

k k k k k k k k k k kkkkk kkkkk kkkkkk kkkkkk k k kk k k k k k k k k k k kkk kkk

n n n n n n n n n n nn nn n n nn nn nnn nn n n nn nn n nn n nn n n n nn n n n n nnn n n n

Figure 8. Reformatted Image Data in Raster Scan Format

4.2 JPEG Decoder Control Code

The control function jpgdec_ti() is found in the file ‘jpgdec_ti.c’ . It chronologically calls all the
decoder component routines like variable length decoding, run-level decoding, inverse
quantization, IDCT etc., and performs data translations between the decoder routines. It
operates the required double buffering scheme for DMA read-in of the JPEG bit-stream from the
external memory and DMA write-out of image data to the external memory. It takes care of
masking the data transfers by the decoding operation itself.

The function jpegdec_ti() contains the overall control logic for the decoder application. It is
called from the driver function with all the required parameters defined. A prototype for the driver
is shown in the file ‘main_interface.c’. The form of the function jpegdec_ti() is shown below.

jpegdec_ti (unsigned char *jpg_bit_stream,
unsigned char *output_addr);

jpg_bit_stream: The pointer to the JPEG bit-stream (input)
ouput_addr: The pointer to the output data (Y–Cr–Cb)

Figure 9 shows the schematics of the control code for the decoder in this implementation.

SPRA704

14 TMS320C6000 JPEG Implementation

Has
rea-in of

DMA_packet(0)
completed

?

Start reading in DMA_packet(0)
of the JPEG bit-stream from

the external memory

No

Yes

Search for the Start-Of-Image
(SOI) flag in the Next byte

SOI flag
?

FoundNo

Yes

Parse the Next byte

Yes

frame-header
FoundNo

?

– Parse the frame-header and for frame
 parameters; Set n=1; i=0;

– Assume quantization and VL tables to
 be those recommended in the
 standards document

Parse the Next byte

scan-header(i)
Found

?

No

Yes

Parse the scan-header(i) for
the decoding information

Start reading in DMA_packet(n)
of the JPEG bit-stream from

the external memory

– Decode the remaining bits from
 DMA_packet(n-1) which are
 exclusively compressed image data
– Write-out the accumulated
 image data to external memory.

Yes
Are

all blocks of
image component

”i” decoded
?

No

No

Yes
Is

read-in of
DMA_packet(n)

complete
?

i++

image

decoded
components

?

Are
No

Yes

Done

Figure 9. Decoder Control Flow

SPRA704

15 TMS320C6000 JPEG Implementation

4.3 JPEG Decoder API

The API wrapper is derived from template material provided in the TMS320 DSP Algoriuthm
Standard documentation. Knowledge of the algorithm standard is essential to understand the
API wrapper.The API for the JPEG Decoder is:

/*

 * ======== ijpegdec.h ========

 * IJPEGDEC Interface Header

 */

#ifndef IJPEGDEC_

#define IJPEGDEC_

#include <xdas.h>

#include <ialg.h>

#include <ijpeg.h>

/*

* ======== IJPEGDEC_Handle ========

 * This handle is used to reference all JPEG_DEC instance objects

 */

typedef struct IJPEGDEC_Obj *IJPEGDEC_Handle;

/*

 * ======== IJPEGDEC_Obj ========

 * This structure must be the first field of all JPEG_DEC instance objects

 */

typedef struct IJPEGDEC_Obj {

struct IJPEGDEC_Fxns *fxns;

} IJPEGDEC_Obj;

/*

* ======== IJPEGDEC_Params ========

 * This structure defines the creation parameters for all JPEG_DEC objects

 */

typedef struct IJPEGDEC_Params {

 Int size; /* must be first field of all params structures */

} IJPEGDEC_Params;

/*

 * ======== IJPEGDEC_Status ========

 * This structure defines the status parameters for all JPEG_DEC objects

 */

SPRA704

16 TMS320C6000 JPEG Implementation

typedef struct IJPEGDEC_Status {

 Int size; /* must be first field of all params structures */

 unsigned int num_lines[3];

 unsigned int num_samples[3];

 unsigned int gray_FLAG;

 unsigned int outputSize;

} IJPEGDEC_Status;

/*

 * ======== IJPEGDEC_PARAMS ========

 * Default parameter values for JPEG_DEC instance objects

 */

extern IJPEGDEC_Params IJPEGDEC_PARAMS;

 /* ======== IJPEGDEC_Fxns ========

 * This structure defines all of the operations on JPEG_DEC objects

 */

typedef struct IJPEGDEC_Fxns {

 IALG_Fxns ialg; /* IJPEGDEC extends IALG */

 XDAS_Bool (*control)(IJPEGDEC_Handle handle, IJPEG_Cmd cmd, IJPEGDEC_Status
*status);

 XDAS_Int32 (*decode)(IJPEGDEC_Handle handle, XDAS_Int8 *in, XDAS_Int8 *out);

} IJPEGDEC_Fxns;

#endif /* IJPEGDEC_ */

4.4 JPEG Decoder Performance

JPEG Decoder performance has been measured on a wide range of test images and
compression factors. The following performance is based on measurements on C6201 EVM and
C6211 DSK.

Table 2. JPEG Decoder Performance

Image Resolution Frames/Sec With 200 MHz C6201 Frames/Sec With 150 MHz C6211 †

128x128 (4:2:0) 528 frames/sec 374 frames/sec

256x256 (4:2:0) 159 frames/sec 108 frames/sec

352x288 (4:2:0) [CIF resolution] 107 frames/sec 72 frames/sec

640x480 (4:2:0) [VGA resolution] 39 frames/sec 26 frames/sec

720x480 (4:2:0) [SDTV resolution] 35 frames/sec 23 frames/sec

† C6211 performance data based on [48K cache/16K SRAM] configuration. Recommended for JPEG.

SPRA704

17 TMS320C6000 JPEG Implementation

Appendix A JPEG Bit-Stream Structure

The JPEG Encoder implementation discussed in this document produces a specific type of
bit-stream upon encoding an image. This type of bit-stream can be decoded by most JPEG
decoders. On the other hand, the JPEG Decoder implementation discussed in this document is
limited to decoding bit-streams that have a structure idential to the one produced by the encoder
discussed in this document. This bit-stream structure for each compressed frame is as shown in
Figure A–1.

The bit-stream for each compressed frame starts with the Start Flag of value FFD8 as specified
by the ISO JPEG standard. The start flag is followed by the Frame Header, which specifies the
source image characteristics such as sample precision, number of lines, number of samples per
line, number of image components in frame, component identifier, horizontal sampling factor,
vertical sampling factor, and quantization table selector. See section B.2.2 of the ISO JPEG
standard for further details.

The frame header is followed by the Quantization Tables. By default, tables K1 and K2 of the
ISO JPEG standard are used. However, the encoder may change the quantization tables per
frame. The quantization tables are included in the bit-stream using the syntax provided in
tsection B.2.4.1 of the ISO JPEG standard.

The quantization tables are followed by the Huffman Tables. 2 DC and 2 AC component tables
(separate table for luminance and chrominance) are supported. The supported tables are tables
K3, K4, K5, K6 from the ISO JPEG standard. The Huffman tables are coded, using the coding
scheme described in sections K.3.3.1 and K.3.3.2 of the ISO JPEG standard. These coded
tables are then included in the bit-stream using the syntax specified in section B.2.4.2 of the ISO
JPEG standard. The encoder does not provide the option to use any tables other than the ones
from the ISO JPEG standard mentioned above. Please note that while the encoder includes
these tables in the bit-stream, as required by the standard, the decoder does not use this
information from the bit-stream to reconstruct the Huffman tables. Instead, the decoder assumes
that the tables used are the ones mentioned above, and the software for Huffman decoding is
specific to those tables only.

The Huffman tables are followed by the Huffman encoded Y data in the bit-stream. This is the Y
data for the entire frame or image, and it is considered a single “scan” in the terminology of the
JPEG standard. A Scan Header is included before the actual Y data. See section B.2.3 of the
ISO JPEG standard for a description of the Scan Header Syntax. The Y data is followed by Cb
and Cr data, including corresponding scan headers, in similar form.

The Cr data is followed by the End Flag of value FFD9 as specified by the ISO JPEG standard.

This structure of the bit-stream is repeated for each frame.

Note that the decoder expects the first scan to start within the first DMA packet in the bit-stream.
The Quantization and Huffman tables for any frame should be contained within the first DMA
packet corresponding to that frame. This restricts the decoder to only the type of bit-streams
shown in Figure 5-1. As an example of a bit-stream that the decoder will not decode, one could
potentially have bit-streams where the Quantization and Huffman tables for Y and C data were
located separately, say contiguous with the Y and C data. The current control code is not set up
to handle such variations in bit-stream structure and the decoder will not decode such
bit-streams.

SPRA704

18 TMS320C6000 JPEG Implementation

Start flag (FFD8)

Frame header

Quantization
tables

Huffman
tables

Scan header

Scan header

Scan header

End flag (FFD9)

Y Data

Cb Data

Cr Data

Figure A–1. JPEG Bit-Stream Structure

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

