‘9 TEXAS Application Report
INSTRUMENTS SPRA911C - October 2004

Using the TMS320VC5501/C5502 Bootloader

Gustavo Martinez, Tai Nguyen C5000 Hardware Applications

ABSTRACT

This document describes the features of the on-chip bootloader provided with the
TMS320VC5501 and TMS320VC5502 digital signal processors (DSPs). Included are
descriptions of each of the available boot modes and any interfacing requirements
associated with them, instructions on generating the boot table, and information on the
different versions of the bootloader.

This document contains preliminary data current as of the publication date and is subject to
change without notice.

Important Notice Regarding Bootloader Program Contents:

Texas Instruments may periodically update the bootloader code supplied in the ROM to
correct known problems, provide additional features or improve functionality. These changes
may be made without notice as needed. Although changes to the ROM code will preserve
functional compatibility with prior versions, the locations of functions within the main
bootloader code may change. Users should avoid calling these functions directly, since the
code may change in the future. To call boot mode functions from within the main application
code, users should take advantage of the boot mode branch table included in the C5501 and
C5502 ROM. The boot mode branch table contains jumps to all the boot modes supported
by both devices. The location of this table has been selected such that it will not change
across revisions of the bootloader code. See section 2.5 for more information.

Contents

1 INtrOTUCTION . e e e e 3
1.1 Bootloader FEatUIES it e 3

1.2 ON-Chip ROM DeSCIIPON . ..ottt e e et e e e e e e e e e 5

1.3 Special Considerations for the C5501 and C5502 i, 6
1.3.1 Pin MURIPIEXING . . oot e e e 6

1.3.2 ClOCK GrOUPS . .ottt e e e e e e e e e e e 6

1.3.3 Internal Oscillator and Stabilization Periods 7

2 Bootloader Operationt 8
2.1 Bootloader Initialization i 8

2.2 Boot Mode SeleCtion o 9

2.3 B0OOt MOOE OPLIONS . ..ttt e e e e e e e e e 10
2.3.1 Direct Execution from External Asynchronous Memory —= No Boot 10

2.3.2 HPIBOOtMOOE ... i e e 11

2.3.3 Parallel EMIF BOOt MOdeo e 15

Trademarks are the property of their respective owners.

{'.?‘ TEXAS

SPRA911C INSTRUMENTS
2.3.4 Standard Serial BoOot Mode i e 17

2.3.5 SPIEEPROMBoOOtMOAE i 19

2.3.6 12CEPROMBOOtMOAEo 21

2.3.7 UART BOOt MOOE . .. it e e e e e 23

2.4 GPIO4 BEhaAVIOrt 25

2.5 BootMode Branch Table e e 26

2.6 The Boot Tableo e e 26
2.6.1 DSP Resources Used by the Bootloader 26

2.6.2 The Boot Table StrUCIUIet e e e 27

2.6.3 Register Configuration and Delay DuringBoot 28

2.6.4 Code and Data Sectionsinthe BootTable 29

2.6.5 Creatingthe BootTable i e 30

3 Information about Different Bootloader VErsionsc .. 32
3.1 Determining the Bootloader VErsion e 32

3.2 Differences Between Bootloader VErsionSiuiiii i 32

4 Debugging Bootloader ISSUBS i e 33
4.1 Direct Execution from External Asynchronous Memory i, 33

4.2 Parallel EMIF BOOt MOGEo e e e e e e e 34

4.3 Host Port Interface Boot MOOEot e e 35

4.4 Standard Serial BOOt MOAEt 37

4.5 SPIEEPROM BOOt MOOEot e e e 38

4.6 12C EEPROM BOOt MOOEottt e e e e e e e 39

47 UART BOOtMOUE . ..o e e e e e e e e 40

D REIEIENCES . .o 41

List of Figures

Figure 1. HPI Wait Flag and Entry Point Addresst e e 13
Figure 2. McBSPO Receive Data Formatfor BootLoad 17
Figure 3. GPIO4 Latency for Boot-Table-Programmed Delays 18
Figure 4. Signal Connections for SPI EEPROM BootMode 20
Figure 5. SPI EEPROM Mode Transfer Protocol with 24-bit Addresses 20
Figure 6. Signal Connections for I2C EEPROM Boot Modet 21
Figure 7. Example Memory Space for System With Three I2C EEPROMsS 22
Figure 8. Reading the First Byte in a 64Kbyte Block i 22
Figure 9. Current Address Read Command 23
Figure 10. Signal Connections for UART Boot Mode i 23
Figure 11. Boot Table SIrUCTUIE o e e e e e 27

List of Tables

Table 1. TMS320VC5501/55022 ROM Memory Mapottt 5
Table 2. Stabilization Period DUration ot 7
Table 3. Bootloader Initialization 8
Table 4. Boot Mode Selection OptionSs e 9
Table 5. C5501 GPIO Pin Configuration for No-Boot Options 10

2 Using the TMS320VC5501/C5502 Bootloader

{'? TEXAS

INSTRUMENTS SPRA911C
Table 6. C5502 GPIO Pin Configuration for No-Boot Options i, 11
Table 7. C5501 GPIO Pin Configuration for HPI Boot Mode i, 12
Table 8. C5502 GPIO Pin Configuration for HPI Boot Mode iiiiiiiin.... 12
Table 9. C5501 GPIO Pin Configuration for Parallel EMIF BootMode 16
Table 10. C5502 GPIO Pin Configuration for Parallel EMIF BootMode 16
Table 11. C5501 GPIO Pin Configuration for UART Boot Mode 24
Table 12. C5502 GPIO Pin Configuration for UART BootMode 24
Table 13. Baud Rates as a Function of CLKIN e 24
Table 14. Boot Mode Branch AdAreSSesot e 26
Table 15. Boot Mode Types for the Hex Conversion Utility 31
Table 16. Bootloader VerSiONSo e e e e e e 32
Table 17. Differences Between Bootloader Versions i, 32

List of Examples

Example 1 Creating a Boot Table for Tektronix Output 31
Example 2 Creating a Boot Table for Intel Qutput 31

1 Introduction

This section provides a description of the features of the on-chip bootloader provided with the
TMS320VC5501 and TMS320VC5502 digital signal processors (DSPs). The ROM contents,
including the on-chip bootloader, of both the C5502 and C5501 are the same. However, due to
the differences between the C5502 and the C5501, special considerations must be taken into
account when using the on-chip bootloader on either device. Descriptions of all these special
considerations are included in this section.

Unless otherwise specified, all references in this document to C5502 refer to both the
TMX320VC5502 and TMS320VC5502 and all references to C5501 refer to both the
TMX320VC5501 and the TMS320VC5501.

All references to bootloader in this document apply to both the C5502 and the C5501 unless
otherwise noted.

1.1 Bootloader Features

The bootloader is DSP code that transfers application code from an external source into internal
or external program memory after the DSP is taken out of reset. The bootloader allows
application code to reside in slow non-volatile external memory and be transferred to high-speed
internal memory for execution. The bootloader is permanently stored in the ROM of the DSP
starting at byte address 0xFF8000.

The application code is encoded in a special format that the bootloader understands; this special
format is called a boot table. The boot table contains the code or data sections to be loaded, the
destination addresses for each of the sections, the execution address once loading is
completed, and other configuration information. The boot table format will be discussed later in
this document.

Using the TMS320VC5501/C5502 Bootloader 3

SPRA911C

{'f TExAs
INSTRUMENTS

To accommodate different system requirements, the bootloader offers a variety of ways (boot
modes) to transfer a boot table into internal memory. The following is a list of the available boot
modes and a summary of their functional operation:

Boot from the Host Port Interface (HPI)

In this mode, the bootloader waits until the code to be executed is loaded into on-chip
memory by a host device via the HPI. Code execution begins when the host indicates to the
bootloader that the application has been loaded. No boot table is used in this mode. The
operation of this mode is described in section 2.3.2.

Parallel EMIF boot from 16-bit external asynchronous memory

The bootloader reads the boot table from external 16-bit asynchronous memory via the
external memory interface (EMIF). The bootloader will configure the CE1 space for 16-bit,
asynchronous operation and read the boot table from word address 200000h. The operation
of this mode is described in section 2.3.3.

Standard 16-bit serial boot through McBSPO

The bootloader receives the boot table from a host device via McBSPO operating in standard
mode and loads the code according to the information specified in the boot table. The
operation of this mode is described in section 2.3.4.

SPI EEPROM serial boot though McBSPO

The bootloader uses McBSPO to load the boot table from an SPI-format serial EEPROM. In
this mode the bootloader configures McBSPO to operate in SPI mode. The data can be
received from an SPI EEPROM or from an SPI-compliant serial port. The bootloader only
supports SPI devices based on 24-bit addresses. The operation of this mode is described in
section 2.3.5.

12C EEPROM boot through 12C port

The bootloader reads the boot table into on-chip memory via the 12C interface from an 12C
EEPROM(s) or a device operating as an 12C slave. The bootloader only supports 12C
devices which use 2 bytes for internal addressing of their memory space. The operation of
this mode is described in section 2.3.6.

UART boot

The bootloader receives the boot table from a host device via the UART interface and loads
the code according to the information specified in the boot table. The operation of this mode
is described in section 2.3.7.

Direct Execution from External Asynchronous Memory — No Boot

The C5501 and C5502 also offer two no-boot options in which the DSP executes code
directly from external asynchronous memory. When these options are used, the ROM is
disabled (MPNMC = 1) at reset, effectively forcing the first instruction to be fetched from
external memory at address OxFFFF00. The C5501 and C5502 support direct execution
from 16-bit or 32-bit external asynchronous memory. The operation of this mode is described
in section 2.3.1.

The bootloader also offers the following features:

Pin-controlled boot mode selection

A subset of the general-purpose 1/O pins is used to select the boot mode. The boot mode
selection process is discussed in section 2.2.

4 Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

1.2

e Selectable entry point

The desired entry point (the first address of execution after the boot load is complete) is
programmable and is stored in the boot table. The boot table is discussed in section 2.6.

e Port-addressed register configuration during boot

Port-addressed registers (such as those used to control peripherals) can be configured
during the boot load providing the ability to modify the clock generator, reconfigure the EMIF
strobe timings or preset peripheral register values. The address and contents of the register
to be modified are contained in the boot table. This capability is discussed in section 2.6.3.

e Programmable delay during boot

Programmable delays of up to 65535 CPU clock cycles can be added during the register
configuration process to ensure that new configurations are complete before the boot
process continues. This capability is discussed in section 2.6.3.

e Boot mode branch table

A section in ROM space has been reserved which contain hard-coded branches to each
boot mode. The boot mode branch table can be used to execute bootloader code after the
application code has been loaded (warm-boot). Future spins of the bootloader code could
change the starting point ROM address for each boot mode; however, the location of this
table is not likely to change and can be used to call boot modes if so desired. This capability
if discussed further in section 2.5.

On-Chip ROM Description

The C5501 and C5502 on-chip ROM contain several factory-programmed sections including:
e Bootloader program

e A boot mode branch table containing branches to each boot mode

e Sine look-up table consisting of 256 signed Q15 integers representing 360°

e Interrupt vector table

The ROM memory map is shown in Table 1.

Table 1. TMS320VC5501/55022 ROM Memory Map

Starting Byte Address Contents

FF_8000h Bootloader program
FF_ECAEh Bootloader Revision Number
FF_ECBOh Boot Mode Branch Table
FF_EDOOh Sine Table

FF_EFOOh Reserved

FF_FFOOh Interrupt Vector Table

Using the TMS320VC5501/C5502 Bootloader 5

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

1.3

13.1

1.3.2

Special Considerations for the C5501 and C5502

The user must take some special considerations when using the bootloader on the C5502 and
C5501 since these devices have some differences when compared to other C55x DSPs.

Pin Multiplexing

On the C5502, the EMIF and the HPI share pins to reduce pin count. The function of the shared
pins, or multiplexed pins as they are referred to in the data manual, is determined at reset via
the GPIOG6 pin. If GPIOG6 is low, the EMIF will be disabled and the HPI will use the EMIF address
and data pins for operation (HPI operates in non-multiplexed mode). If GPIO6 is high, the EMIF
will be enabled and the HPI will operate through non-EMIF pins (HPI operates in multiplexed
mode).

There is no sharing of pins between the EMIF and HPI on the C5501, however, the GPIO6 pin

must be kept high at reset to enable both of these modules. If GPIOG6 is low at reset, the C5501
will configure the EMIF and HPI pins as parallel general-purpose input and output pins and the
EMIF and HPI will not be available for use.

The UART and McBSP2 also share pins on the C5502. The state of the GPIO7 pin at reset
determines which peripheral has control of the shared pins. If GPIO7 is low during reset, the
UART will have control of the shared pins. If GPIO7 is high, McBSP2 will have control of the
shared pins and the UART will be disabled. The UART on the C5501 does not share pins with
any other peripheral.

The GPIO configuration of the device being used affects boot modes that use the EMIF, HPI,
and UART. The user must be sure to control the state of the GPIO6 and GPIO7 pins at reset
such that the peripheral that is being used for boot loading is enabled and its pins are available.
For example, if the UART boot mode is used on the C5502, the GPIO7 pin must be pulled low at
reset.

Also, keep in mind that it is possible to load application code to external memory during boot. In
cases like these, the EMIF must be enabled and programmed (via the register configuration
approach discussed in section 2.6.3) so that the bootloader can load the code to external
memory. The EMIF is enabled when GPIOG6 is high during reset on both the C5501 and C5502.

Tables listing the required GPIO pin configuration for each bootmode are included in the
sections that describe the operation of the boot options supported by these two devices.

For more information on the pin multiplexing of the C5501 and C5502 refer to the
TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual (SPRS206) or the
TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual (SPRS166).

Clock Groups

The C5501 and C5502 have several clock groups which allow for specific sections of the DSP to
run at different frequencies. The clock groups are as follows:

e (C55x Subsystem Clock Group

The C55x Subsystem Clock Group includes the C55x CPU core, internal memory (DARAM
and ROM), the Instruction Cache, and all CPU related modules. At reset, this clock group
has a clock frequency equal to that of the input reference clock (CLKIN). All references to
CPU clock within this document refer to the clock of the C55x Subsystem Clock Group.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

1.3.3

e Fast Peripherals Clock Group
The DMA, HPI, and the timers are included in the Fast Peripherals Clock Group. At reset,
this clock group has a frequency equal to 1/4th of the CPU clock frequency.

e Slow Peripheral Clock Group
The Slow Peripherals Clock Group includes the McBSPs, 12C, and the UART. The input
clock to this clock group is equal to 1/4th of the CPU clock.

e External Memory Interface Clock Group

The EMIF is the only module that falls under the External Memory Interface Clock Group. At
reset, this clock group has a clock frequency equal to 1/4th of the CPU clock.

The reset state of these clock groups means that the peripherals of the C5501 and C5502 will
not be running at the same frequency as the CPU. For example, if a 20-MHz input reference
clock (CLKIN) is supplied, the C55x core will be running at 20 MHz and all the peripherals will be
running at 5 MHz. The clock ratios between these clock groups can be changed after boot load
is complete as long as the following equations are not violated:

fC55x Subsystem = f
f

f

Fast Peripheral Subsystem

= f

Fast Peripheral Subsystem =

> f

Fast Peripheral Subsystem =

Slow Peripheral Subsystem
External Memory Interface Subsystem

It is not recommended to change clock ratios between the clock groups during the boot load
process. Furthermore, it is recommended to place all peripherals in idle mode before changing
the frequency of their respective clock group.

Refer to the TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual (SPRS206) or
the TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual (SPRS166) for more
information on the clock generator and the clock groups of these devices.

Internal Oscillator and Stabilization Periods

The C5501 and C5502 include an internal oscillator which can be used, in conjunction with an
external crystal resonator, to generate the input clock source. If the internal oscillator is not used,
an external clock source must be applied to the X2/CLKIN pin.

The clock source (internal oscillator output or external clock) for the device is selected at reset
based on the state of the GPIO4 pin. If GPIO4 is low when the reset signal transitions from low
to high, the input clock source will be taken from the internal oscillator plus external crystal
combination (referred to as OSCOUT in the data manual). If GPIO4 is high during the transition
of the reset signal from high to low, the input clock source will be taken directly from the
X2/CLKIN pin.

The stabilization periods that are added after reset allow the reset signal to properly propagate
through the DSP and to allow the internal oscillator (if used) to stabilize. The state of the GPI1O4
pin affects the duration of these stabilization periods as shown in Table 2. After reset, the
bootloader will begin executing after the stabilization periods have expired.

Table 2. Stabilization Period Duration

GPIlO4 State During Reset Stabilization Period (Input Clock Cycles)
GPIO4 =1 70
GPIO4 =0 41,102

Using the TMS320VC5501/C5502 Bootloader 7

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.1

The GPIO4 pin is configured as an output and driven high when the bootloader starts executing.
Furthermore, some boot modes use the GP104 pin for multiple functions, such as signaling
external hosts when the DSP is ready to receive data. The use of an external pull-up/pulldown
resistor on the GPIO4 pin will set the state of the internal oscillator at reset and also allow the
bootloader to drive the GPIO4 pin. If an external host is controlling the state of the GPIO4 pin,
the host will have to stop driving the GP104 before the stabilization period has expired.

Bootloader Operation

The sections that follow describe the structure and operation of the C5501 and C5502
production bootloader.

Bootloader Initialization

When the bootloader begins execution, the program performs some initialization of the DSP
prior to loading code. The DSP resources that are configured by the bootloader are described in
Table 3.

Table 3. Bootloader Initialization

Resource Initialization Value

Stack Registers: The data stack register (SP) is initialized to word address 000090h, and the
system stack register (SSP) is initialized to word address 000080h. Application
code should start at word address 00090h or higher.

Stack configuration: The stack configuration is set to the default mode of 32-bit stack with slow
return.

Interrupts: The INTM bit of Status Register 1 (ST1_55) is set to the default value of 1, to
disable interrupts.

Memory-mapped registers: Two words are reserved for temporary storage of the entry point address at
000060h and 000061h.

Sign extension: The SXMD bit of Status Register 1 (ST1_55) is cleared to 0, to disable sign
extension mode. After the bootloader copies all of the sections, SXMD is set
back to 1 before execution is transferred to the application.

Compatibility mode: The 54CM bit of Status Register 1 (ST1_55) is set to 1, to enable compatibility
mode during and after the boot load.

After the initialization is performed, the bootloader loads the on-chip RAM according to the boot
mode selected, and then causes the DSP to begin execution of the loaded code. At that point,
the boot load process is complete. Whenever the system is reset, the CPU starts execution of
the bootloader again, and the entire boot load process is repeated.

The remaining sections of this document describe the various boot modes and boot tables in
detail.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

2.2

Boot Mode Selection

The desired boot mode is selected by setting the three boot mode select pins BOOTM[2:0],
which are sampled during reset. The BOOTM pins are shared with the general-purpose 1/0
(GPIO) pins.

e BOOTM2 is shared with GP102.
e BOOTML1 is shared with GPI10O1.
e BOOTMO is shared with GPIOO.

The available boot mode options and their corresponding BOOTM pin configurations are shown
in Table 4.

Table 4. Boot Mode Selection Options

BOOTM2 BOOTM1 BOOTMO For details,
(GP102) (GPIO1) (GP100) Boot Mode Source see section
0 0 0 No boot, execute from 16-bit external asynchronous memory 231

(micro-processor mode)
0 0 1 Serial EEPROM (SPI) boot from McBSPOT 2.35
0 1 0 Standard serial boot from McBSPO 234
0 1 1 EMIF boot from 16-bit external asynchronous memory 2.3.3
1 0 0 No boot, execute from 32-bit external asynchronous memory 231

(micro-processor mode)

1 0 1 HPI boot in 8-bit multiplexed or 16-hit non-multiplexed mode¥ 23.2
1 1 0 12C slave boot from 12C EEPROM or 12C slave 2.3.6
1 1 1 UART boot 2.3.7

1 The initial version of the bootloader does not support the serial EEPROM boot mode.
¥ The c5501 does not support 16-bit non-multiplexed mode for the HPI.

The BOOTM pins are not sampled immediately after the RESET pins transitions from low to
high. Instead, the BOOTM pins are sampled after a certain number of clock periods have
passed. The number of clock periods depends on whether the internal oscillator is being used.
The state of the GP104 pin during reset selects either the internal oscillator or an external clock
as the clock source for the DSP. When the internal oscillator is used as the clock source, the
BOOTM pins are sampled 41,102 input reference clock cycles (CLKIN) after the DSP is taken
out of reset. If the internal oscillator is not used, the BOOTM pins are sampled after 70 input
reference clock cycles. For simplicity, this document assumes that the BOOTM pins are sampled
at reset. Refer to the TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual
(SPRS206) and the TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual
(SPRS166) for more information on the reset sequence of these devices.

The GPIO4 pin is used as an output for handshaking purposes on some of the boot modes.
Although this pin is not involved in boot mode selection, users should be aware that this pin will
become active as an output during the boot load process and should design accordingly. After
the boot load is complete, the loaded application may change the function of GPIO0, GPIO1,
GPIO2 and GPIO4 pins.

Using the TMS320VC5501/C5502 Bootloader 9

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.3 Boot Mode Options

231

10

Direct Execution from External Asynchronous Memory — No Boot

When BOOTM][2:0] = 000b or 100b at reset, the no boot option is selected. In this mode, the
bootloader program does not execute, and the on chip ROM is not mapped into the internal
memory map. The DSP maps the address space instead to external memory in the CE3 space
by setting the MPNMC bit to 1. When these boot options are selected, the DSP configures CE3
space for 16- or 32-bit asynchronous memory (depending on the boot option selected), then
branches to the reset vector in external CE3 memory space (byte address location OxFFFF00)
and executes the reset vector. For more information on the C5502 memory map, refer to the
TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual (SPRS206) and the
TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual (SPRS166).

On the C5502, the EMIF pins and the HPI pins are shared to reduce pin count. The function of
the shared pins is determined at reset via the GPI106 pin. If GPI06 is low, the EMIF is disabled
and the HPI uses the EMIF address and data pins. If GPIOG6 is high, the EMIF is enabled and
the HPI operates through non-EMIF pins.

On the C5501, the EMIF and HPI are enabled when GPIO6 is high during reset. On the other
hand, the EMIF and HPI are disabled and their pins are configured as parallel general-purpose
input and output pins when GPIO6 is low during reset.

To use the no-boot options on these devices the GPIO6 pin must be high at reset, otherwise, the
EMIF will be disabled and the CPU will not be able to read the reset vector in external CE3
memory space.

Table 5 and Table 6 list the GPIO pin configuration for both devices that must be implemented
during reset to use the no-boot options.

Table 5. C5501 GPIO Pin Configuration for No-Boot Options

BOOTM[2:0] GPIO4 GPIO6 GPIO7t Summary

000 0 1 0 CE3 memory space is configured to 16-bit asynchronous
memory.

Internal oscillator provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

000 1 1 0 CE3 memory space is configured to 16-bit asynchronous
memory.

External clock provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

100 0 1 0 CE3 memory space is configured to 32-bit asynchronous
memory.

Internal oscillator provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

100 1 1 0 CE3 memory space is configured to 32-bit asynchronous
memory.

External clock provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

T On the C5501, GPIO7 must be kept low during reset.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

2.3.2

Table 6. C5502 GPIO Pin Configuration for No-Boot Options

BOOTM[2:0] GPIO4 GPIO6 GPIO7T Summary

000 0 1 X CE3 memory space is configured to 16-bit asynchronous
memory.

Internal oscillator provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

000 1 1 X CE3 memory space is configured to 16-bit asynchronous
memory.

Internal oscillator provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

100 0 1 X CE3 memory space is configured to 32-bit asynchronous
memory.

Internal oscillator provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

100 1 1 X CE3 memory space is configured to 32-bit asynchronous
memory.

Internal oscillator provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

T GPIO7 determines whether the UART or McBSP2 is enabled after reset. The UART is enabled, and McBSP2 is disabled, if GPIO7
is low during reset. McBSP2 is enabled, and the UART is disabled, if GPIO7 is high during reset. The state of GPIO7 during reset
should be selected based on the needs of the application running on the DSP.

The TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual (SPRS206) and the
TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual (SPRS166) contain more
information on the pin configurations for both devices.

HPI Boot Mode

The description in this section assumes familiarity with the C5501/5502 HPI. For detailed
information on the C5501/5502 HPI refer to the TMS320VC5501/5502 DSP Host Port Interface
(HPI) Reference Guide (SPRUG620).

In HPI boot mode, an external host can load code and data directly into the DSP memory while
the CPU waits. HPI boot does not use a boot table. The code and/or data sections are directly
loaded to the desired locations by the host. When the HPI has finished loading the application, it
signals the CPU to begin execution and the CPU begins executing at the specified entry point.

The host has access to the DARAM of the C5501 and C5502, excluding the memory-mapped
registers. Note that the bootloader uses word address 000090h and below for stack operation,
therefore it is recommended that all code loaded through an HPI boot start at word address
000090h or higher. Refer to the TMS320VC5501 Fixed-Point Digital Signal Processor Data
Manual (SPRS206) and the TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual
(SPRS166) for specific information on the starting and ending addresses of the DARAM space
of each device.

Using the TMS320VC5501/C5502 Bootloader 11

{'f TExAs
SPRA911C INSTRUMENTS

The C5502 supports HPI data transfers in multiplexed or non-multiplexed modes. The mode of
the HPI is determined at reset by the state of the GPIO6 pin. HPI is configured to 8-bit
multiplexed mode GPIO6 = 1 at reset. When GPIO6 = 0 at reset, the HPI is configured to 16-bit
non-multiplexed mode.

The C5501 only supports HPI data transfers in multiplexed mode. Furthermore, the HPI is
disabled when the GPIOG6 pin is low at reset. Therefore, to use this boot mode, the GPIO6 pin
must be high at reset.

Table 7 and Table 8 list the GPIO pin configuration that must be implemented during reset to use
the HPI boot mode.

Table 7. C5501 GPIO Pin Configuration for HPI Boot Mode

BOOTM[2:0] GPIO4 GPIO6 GPIO7T Summary

101 0 1 0 Internal oscillator provides clock source. GPIO4 goes low
to signal DSP is ready for data after 41,250 input clock
cycles.

EMIF and HPI are enabled (HPI operates in multiplexed
mode).

101 1 1 0 External clock provides clock source. GPIO4 goes low to
signal DSP is ready for data after 325 input clock cycles.

EMIF and HPI are enabled (HPI operates in multiplexed
mode).

T On the C5501, GPIO7 must be kept low during reset.

Table 8. C5502 GPIO Pin Configuration for HPI Boot Mode

BOOTM[2:0] GPIO4 GPIO6 GPIO7t Summary

101 0 0 X Internal oscillator provides clock source. GPIO4 goes low to
signal DSP is ready for data after 41,250 input clock cycles.

HPI operates in non-multiplexed mode (HPI/EMIF shared pins
have HPI function and EMIF is disabled).

101 0 1 X Internal oscillator provides clock source. GP1O4 goes low to
signal DSP is ready for data after 41,250 input clock cycles.

HPI operates in multiplexed mode (HPI/EMIF shared pins have
EMIF function and HPI operates in multiplexed mode using HD
bus).

101 1 0 X External clock provides clock source. GP1O4 goes low to signal
DSP is ready for data after 325 input clock cycles.

HPI operates in non-multiplexed mode (HPI/EMIF shared pins
have HPI function and EMIF is disabled).

101 1 1 X External clock provides clock source. GPIO4 goes low to signal
DSP is ready for data after 325 input clock cycles.

HPI operates in multiplexed mode (HPI/EMIF shared pins have
EMIF function and HPI operates in multiplexed mode using HD
bus).

T GP107 determines whether the UART or McBSP2 is enabled after reset. The UART is enabled and McBSP2 is disabled if GPIO7
is low during reset. McBSP2 is enabled and the UART is disabled if GPIO7 is high during reset. The state of GPIO7 during reset
should be selected based on the needs of the application running on the DSP.

12 Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

The GPIO4 is used by the bootloader to signal the host it is ready to receive data from the host.
When the bootloader begins execution, it will set GPIO4 as an output and drive the pin high. The
bootloader will set the GP104 pin low when it is ready to receive data from the host. The number
of input clock cycles that it takes for the DSP to be ready for data depends on the use of the
internal oscillator. If the internal oscillator is used as a clock source for the DSP, GPI0O4 will go
low approximately 41,250 input clock cycles after reset is released. If the internal oscillator is not
used as a clock source, the DSP will be ready to receive data approximately 325 input clock
cycles after reset is released. The host can monitor the GP104 to determine when to start
transferring data to the DSP or it can wait the necessary number of clock cycles before
commencing the data transfer.

The entry point is the byte address where execution of the application will begin. The entry point
is stored in DARAM at word addresses 0060h and 0061h as shown in Figure 1 below. The most
significant word is stored at 0060h and the least significant word is stored at 0061h. The least
significant 24-bits form the byte address of the entry point. The most significant 8-bits are used
as a signal to the CPU when to start executing at the entry point specified in the low 24-bits. The
CPU will continue to loop, monitoring the high 8-bits, as long as they remain all zeros. This
allows the HPI time to load the desired code and data sections. When the host has completed
loading the application, it writes the entry point byte address and a non-zero wait flag value to
word addresses 0060h and 0061h as shown below. When a non-zero value is detected in the
wait flag, the CPU will branch to the byte address specified in the low 24 bits and begin
execution of the loaded application. Remember that the HPI host addresses are
word-addressed, while program fetches are byte-addressed. So, for example, to load a section
of code to be executed from byte address 2000h, the HPI will load the section to word address
1000h.

Word Address Word Address
0060h 0061h

MSB LSB MSB LSB

V/
8-Bit 24-Bit Entry Point
Wait Flag Address

Figure 1. HPI Wait Flag and Entry Point Address

Since the CPU will transfer control to the application as soon as it detects a non-zero value in
the wait flag, address 0060h (the MSW) should be written after address 0061h (the LSW).

The general procedure for boot loading using the HPI is:

e The RESET pin is released (low-to-high transition) with BOOTM][2:0] = 101b selecting the
desired mode, GPIO6 selecting the desired HPI mode (the GPIO6 pin must be high on the
C5501), and GPI04 selecting the state of the internal oscillator.

e The CPU executes the on-chip ROM bootloader and begins to poll word address 0060h to
determine when the host load is complete. The time it takes for the bootloader to begin
polling is dependant on the state of the internal oscillator as described above.

e The host loads the desired code and data sections into DSP internal memory within the
address limits mentioned above.

Using the TMS320VC5501/C5502 Bootloader 13

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

e The host writes to word address 0061h with the least significant 16-bits of the desired 24-bit
entry point address.

e The host writes to word address 0060h, with the most significant 8-bits of the desired 24-bit
entry point address in bits 7-0, and a non-zero value in bits 15-8.

e The CPU will then transfer execution (branch) to the previously specified entry point address
and begin running the application.

In the event that the application has been previously loaded and another reset is necessary
(warm boot), it is not necessary for the host to reload the application. The host can simply
rewrite the entry point and the wait flag after the bootloader begins execution (GP104 goes low).

The peripheral register reconfiguration and delay features are not available during HPI since
these features are associated with the use of a boot table.

More detailed information on the C5501/C5502 HPI can be obtained from the
TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide (SPRU620). For more
information on the pin multiplexing of the C5501 and C5502 ,refer to the TMS320VC5501
Fixed-Point Digital Signal Processor Data Manual (SPRS206) or the TMS320VC5502
Fixed-Point Digital Signal Processor Data Manual (SPRS166).

2.3.2.1 Using the HEX55 Utility to Create an Output File

14

Although a boot table is not needed for HPI boot mode, the hex utility can be used to create an
output file that can be read by the host. Two possible options are to create a binary file or an
ASCII file.

The following is an example of the options that would be used to create a binary file, assuming a
16-bit HPI:

-boot /* generate boot table */

-v5510:2 /* boot table format = 2.0 */

-memwidth 8 /* Binary must have memory width of 8 */

-romwidth 16 /* 16-bit wide i/f -physical bus size */

-map hpilé.mxp /* Name hex utility map file x/

boot img.out /* input file - replace with your file */

-e start /* entry point - code exec starts here - replace according to code */
-b /* Output format = binary */

-0 hpil6.bin /* Name binary output file */

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

The following is an example of the options that would be used to create a straight ASCII file,
assuming a 16-bit HPI:

-boot /* generate boot table */

-v5510:2 /* boot table format = 2.0 */

-romwidth 16 /* 16-bit wide i/f -physical bus size */

-memwidth 16 /* 16-bit wide (host) memory */

boot img.out /* input file - replace with your file */

-e start /* entry point - code exec starts here - replace according to code */
-a /* output format = straight ASCII */

-map hpilé6.mxp /* map file */

-0 hpilé6.asc /* boot table file (output file) */

2.3.3

The -boot option is used in order to ensure that all initialized sections are placed in memory.

Parallel EMIF Boot Mode

Parallel EMIF Boot Mode is selected when BOOTM[2:0] = 011b at reset. This mode reads the
boot table from external asynchronous memory that is 16-bit wide. The data width is configured
at reset by the bootloader and cannot be changed during the boot process.

Parallel EMIF mode begins reading the boot table at word address 200000h, which is located in
CE1 space. The external memory containing the boot table must start at this location. The
execution entry point is contained in the boot table and is programmable.

When this boot mode is initiated, the programmable timings for the EMIF are set to the following:
e READ SETUP is 15 cycles (1111b).

e READ STROBE is 63 cycles (111111b).

e READ HOLD is 7 cycles (111b).

READ SETUP, READ STROBE and READ HOLD are set to their most conservative setting to
assure interface to a wide range of memory speeds. However, if this default setting proves to be
too slow (85 cycles per access), these EMIF timings can be modified using the port-addressed
register configuration feature discussed in section 2.6.3. These timing parameters are controlled
in the EMIF CE1 Space Control Register 1 (CE1_1). For more information on the EMIF and the
effects of these parameters, see the TMS320VC5501/5502 DSP External Memory Interface
(EMIF) Reference Guide (SPRU621).

Be aware that changing the timing parameters on the EMIF during the boot process can cause
the boot load to fail. The external CE1 space must be maintained as asynchronous memory and
with the same data width as the original boot mode chosen. When reconfiguring the CE1_1
EMIF register, write the value to MTYPE that matches the original boot mode selected.

Using the TMS320VC5501/C5502 Bootloader 15

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

16

Modifications to the EMIF control registers also have some latency before becoming active. The
bootloader should not make read requests to the EMIF while the configuration is changing, so
the entry in the boot table that reconfigures the EMIF should be followed by a delay of no less
than 10 EMIF clock cycles to allow the EMIF configuration to complete. Also remember that
using the register configuration feature to change the clock generator frequency will change the
memory timings generated by the EMIF since they are cycle-based. Carefully verify that the
clock and EMIF configurations being programmed will produce memory timings compatible with
the external memory to be used.

During this boot mode, GP104 will go low at the beginning of the boot process. GPIO4 will go
high during execution of the programmable delay feature in the boot table. When the delay is
completed, GPIO4 will go low again. At the end of the boot load, GPIO4 will go high and the
DSP will begin execution at the entry point address. GP104 is not necessary for memories, but
can be used as a handshaking signal if some other source is generating the data for the EMIF.

If ARDY goes low during the boot load, the DSP will stall until ARDY is high (ready) again. If the
target system does not drive ARDY, it should be pulled high.

On the C5502, the EMIF pins and the HPI pins are multiplexed to reduce pin count. The function
of the multiplexed pins is determined at reset via the GPIO6 pin. If GPI06 is low, the EMIF will be
disabled and the HPI will use the EMIF address and data pins for operation. If GPIO6 is high,
the EMIF will be enabled and the HPI will operate through non-EMIF pins.

On the C5501, the EMIF and HPI are enabled when GPIOG6 is high during reset. On the other
hand, the EMIF and HPI are disabled and their pins are configured as parallel general-purpose
input and output pins when GPIO6 is low during reset.

To use the parallel EMIF boot mode on these devices, the GPIO6 pin must be high at reset,
otherwise, the EMIF will be disabled and the bootloader will not be able to read the boot table
from external memory.

Table 9 and Table 10 list the GPIO pin configuration that must be implemented during reset to
use the EMIF boot mode.

Table 9. C5501 GPIO Pin Configuration for Parallel EMIF Boot Mode

BOOTM[2:0] GPIO4 GPIO6 GPIO7T Summary

011 0 1 0 The bootloader configures CE1 memory space for 16-bit
asynchronous memory.

Internal oscillator provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

011 1 1 0 The bootloader configures CE1 memory space for 16-bit
asynchronous memory.

External clock provides clock source.
EMIF and HPI are enabled (HPI operates in multiplexed mode).

T On the C5501, GPIO7 must be kept low during reset.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

Table 10. C5502 GPIO Pin Configuration for Parallel EMIF Boot Mode

BOOTM[2:0] GPIO4 GPIO6 GPIO7T Summary

011 0 1 X The bootloader configures CE1 memory space for 16-bit
asynchronous memory.

Internal oscillator provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

011 1 1 X The bootloader configures CE1 memory space for 16-bit
asynchronous memory.

External clock provides clock source.

HPI/EMIF shared pins have EMIF function (HPI operates in
multiplexed mode).

T GPI07 determines whether the UART or McBSP2 is enabled after reset. The UART is enabled and McBSP2 is disabled if GPIO7
is low during reset. McBSP2 is enabled and the UART is disabled if GPIO7 is high during reset. The state of GPIO7 during reset
should be selected based on the needs of the application running on the DSP.

More detailed information on the C5502 EMIF can be obtained from the TMS320VC5501/5502
DSP External Memory Interface (EMIF) Reference Guide (SPRU621). The TMS320VC5501
Fixed-Point Digital Signal Processor Data Manual (SPRS206) and the TMS320VC5502
Fixed-Point Digital Signal Processor Data Manual (SPRS166) also contain more information on
the pin multiplexing of these devices.

234 Standard Serial Boot Mode

The description in this section assumes familiarity with the Multichannel Buffered Serial Port
(McBSP). For detailed information on the C5501/C5502 McBSP, refer to the
TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference
Guide (SPRU592).

Standard serial boot mode loads the boot table from McBSPO in 16-bit mode when
BOOTM][2:0] = 010. The McBSPO receiver is configured by the bootloader with the following
parameters:

e Single phase (RPHASE = 0b)
e One word per frame (RFRLEN1 = 0000000b)
e Word length is 16 bits (RWDLEN1 = 010b for 16-bit mode)

e Data is right-justified (RJUST = 00b) with one cycle delay (RDATDLY = 01b) for the first bit
relative to FSR

e Receive clock (CLKRO) and receive frame sync (FSR0) are generated externally.

The expected receive data format implied by this configuration is shown in Figure 2. The serial
port sending data to the DSP must conform to this data format.

Using the TMS320VC5501/C5502 Bootloader 17

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

18

o []
TT

MSB LSB

FSR

Figure 2. McBSPO Receive Data Format for Boot Load

McBSPO falls under the Slow Peripheral Clock Group which, at reset, runs at one-fourth the
input clock frequency to the DSP. It is not recommended to change the frequency of the Slow
Peripheral Clock Group during the boot process.

The following conditions must be met in order to ensure proper operation of this boot mode:

e The serial port receive clock externally supplied on CLKRO should not exceed the frequency
of the Slow Peripheral Clock Group.

e Appropriate delay should be provided between the transmission of each 16-bit word to
prevent receiver overflow. This can be achieved by either slowing down the receive clock
frequency or providing additional serial port clock cycles between transmitted words.

The pin multiplexing of the C5501 and C5502 only effects this boot mode if the destination of the
loaded application is external memory. In cases like these, the DSP being used must be
configured such that the EMIF is enabled (refer to section 1.3.1 for more information).

When standard serial boot mode is selected, the bootloader configures McBSPO as described
above and then drives GP104 low to indicate to the sender that the DSP is ready to receive
(approximately 500 input reference clock cycles after the DSP is taken out of reset if GPIO4 is
high during reset or approximately 41,450 input reference clock cycles if GPIO4 is low during
reset). One frame sync pulse is associated with each word exchanged.

As the sender provides the words of the boot table to McBSPO, GPIO4 responds as a
handshaking signal to indicate the state of the boot. When the serial port is ready to receive
another 16-bit word, GP104 goes low. When the serial port is in the process of copying a
received word to memory or when a programmed delay is in progress, GPIO4 is high and only
goes low again when the serial port is ready to receive another 16-bit word.

An overflow of the receiver will cause the boot load to fail. There are two basic options for
managing the rate of words sent to the serial port to prevent overflow: Use GPIO4 as a
handshaking signal or allow sufficient time between transmissions to prevent overflow.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

2.3.4.1 Using GPIO4 to Prevent Receiver Overflow

As mentioned previously, GP104 goes low when the receiver is ready to receive a 16-bit word
and goes high when some other transaction is in progress. This signal can be polled as an
indicator of when the serial port is ready and therefore can be used directly to prevent overflow.
Note that the use of GPIO4 as a handshaking signal is different on the C5501/C5502 bootloader
from that of other C55x bootloaders.

There is some latency in the response of GPIO4 after a word has been received as shown in
Figure 3. The latency is associated with the interaction of the serial port and the bootloader code
that interprets the boot table, copies data and initiates the delays. From the point of view of the
sender, GP104 will respond to indicate the delay is in progress approximately 100 CPU cycles
after last bit of the word was received. This latency is accounted for automatically if the serial
port clock is operated at 1/4 of the CPU clock frequency or slower.

\
FSRO _‘_| |
\

\
|
GPIO4 |
} GPIO4 ‘ Receiver ‘ Receiver
| Response | Not | Ready
Latency Ready

~100 Cycles ~40 CyclesT
L |

: » CPU Cycles

T Assumes no programmed delays and internal memory destination.

Figure 3. GPIO4 Latency for Boot-Table-Programmed Delays

Polling GPIO4 provides an automatic method to account for delays in the boot load process due
to programmed delays or access delays associated with the EMIF (such as programmed strobe
timings or ARDY delays).

2.3.4.2 Preventing Receiver Overflow Without Polling GPIO4

If GP104 is not monitored, then appropriate delays must be inserted between transmitted words
to prevent receiver overflow. When the destination for the boot table contents is internal memory,
the time when the receiver is ready is approximately 140 CPU cycles after the end of the
reception of the word (as shown in Figure 3). The sender should allow at least this much time
between transmitted words destined for internal memory on the DSP.

If the programmed delay feature is used, additional time must be included to accommodate the
extra delay. Similarly, if the destination for the code or data is external memory, the sender must
allow additional time to allow for the memory conditions.

Using the TMS320VC5501/C5502 Bootloader 19

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.3.5

20

Since the delay is in terms of CPU cycles (not serial port clock cycles), the required timing can
be met by inserting additional serial port clock cycles between transmitted words, by slowing
down the serial port clock relative to the CPU clock, or both. Since the delay after the reception
of each word (or byte) is not the same, the user must select a word (or byte) rate that
accommodates the worst case delay.

When the end of the boot table is received, GP10O4 will be driven high and the CPU will branch to
the execution entry point specified in the boot table and begin execution.

SPI EEPROM Boot Mode

The description in this section assumes familiarity with the McBSP SPI operation using the
clock-stop mode. For detailed information on the C5501/C5502 McBSP, refer to the
TMS320VC5501/5502/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference
Guide (SPRU592).

The bootloader supports boot from SPI EEPROMSs or a device operating as an SPI slave that
emulates the appropriate format. The bootloader supports SPI EEPROMs based on 24-bit byte
addresses (up to 16M bytes) as mode BOOTM = 001b. Note that the initial version of the
bootloader does not support this boot mode (see section 3 for more details on the different
versions of the bootloader).

The minimum connection required between McBSPO and the SPI EEPROM is shown in

Figure 4. CLKXO is the master clock driving the EEPROM CLK signal. DXO0 transmits data to the
EEPROM serial data input (SI) signal. DRO receives data from the EEPROM serial data output
(SO) signal. GP104 is used to operate the EEPROM chip select (CS) signal. GP1O4 will
automatically enable the EEPROM when the boot load is ready to begin and will disable the
EEPROM when the boot load is complete.

Some serial EEPROMs may additionally provide write-protect (WP) and HOLD signals.
Write-protect prevents an external device from writing to internal memory and registers in the
EEPROM. Since the bootloader only performs reads on the EEPROM, the state of the
write-protect function is not relevant. If it is not used, the pin can be pulled inactive (high). The
HOLD input is used to suspend serial input to the EEPROM. Having this pin active will prevent
the bootloader from operating correctly. The HOLD pin (if present) should be pulled inactive

(high).

C5502 SP|I EEPROM
DRO |-« o) L
DXO0 v i WP |—— High
If Present
CLKXO > €¢ FoIs |— High
GPIO4 > CS

Figure 4. Signal Connections for SPI EEPROM Boot Mode

The pin multiplexing of the C5501 and C5502 only affects this boot mode if the destination of the
loaded application is external memory. In cases like these, the DSP being used must be
configured such that the EMIF is enabled (refer to section 1.3.1 for more information).

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

In SPI EEPROM boot mode, the DSP acts as an SPI master and the memory acts as the slave.
The bootloader code sets the serial port clock to run at a rate of the Slow Peripheral Clock
Group divided by 4. The serial port clock speed can be calculated through the following formula:

Serial Port Clock = Slow Peripheral Clock/4 = (CLKIN/4)/4

This serial port clock speed should be used to determine the required speed for the EEPROM to
be used.

The bootloader reads the boot table from the EEPROM as a sequential block of data. It does not
perform random accesses. In the 24-bit SPI EEPROM mode, the format of the beginning of the
transfer is shown in Figure 5.

GPIO4/CS —|

Ll T T L =LALALALANALALALAL oo
R R TR XX ITITTIXTLILIT
DX/Sl=n_l | | | | \ 990 AAoA0MAoA0A0Ammmma‘m‘om
I e O e
I N N N (I) A AP N I
ORISO ———— T \.\.\.\.\.\.\.\ |
READ instruction Byte Data

(03h) Address

Figure 5. SPI EEPROM Mode Transfer Protocol with 24-bit Addresses

The process begins with the DSP driving GP104 low (EEPROM CS). Then the DSP issues a
READ instruction (03h) to the EEPROM, followed by the starting byte address, which will always
be address zero. The EEPROM responds by sending data bytes back to the DSP. The DSP
does not resend the address for each byte, but depends on the ability of the serial EEPROM to
automatically increment the address internally. The DSP continues to read bytes sequentially
from the EEPROM until the entire boot table has been transferred. Then the DSP drives GPI0O4
high to disable the EEPROM chip select and the bootloader branches to the beginning of the
loaded application to begin execution.

The boot table must be programmed into the EEPROM as a single continuous image starting at
EEPROM address zero.

Although Figure 5 shows the address and data being continuous there may be gaps between
the READ instruction, the address and all of the subsequent data bytes. Since the DSP is the
master, it will only operate the clock when it is ready for the next byte so no user intervention is
required to accommodate delays during boot load.

Using the TMS320VC5501/C5502 Bootloader 21

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.3.6

22

I2C EPROM Boot Mode

The description in this section assumes familiarity with the 12C operation using the master
receiver and master transmitter modes. For detailed information on the C5501/C5502 12C refer
to the TMS320VC5501/5502/5509 DSP Inter-Integrated (12C) Module Reference Guide
(SPRU146).

The bootloader supports boot from 12C EEPROMSs or devices operating as 12C slaves that
emulate the appropriate format. The bootloader has the following requirements for the 12C
EEPROMSs:

e The memory device complies with Philips 12C Bus Specification v 2.1.
e The memory device uses two bytes for internal addressing.

e The memory device has the capability to auto-increment its internal address counter such
that the contents of the memory device can be read sequentially.

In 12C boot mode, the DSP acts as the master and the 12C EEPROM acts as the slave. The
minimum connection required between DSP and one 12C EEPROM is shown in Figure 6. Be
sure to place the required pull-ups on SDA and SCL to make the 12C EEPROM interface work

properly.

Pull-up
C5502 12C EEPROM
A2 — Low Slave
SCL © > SCL Al I— Low 2> Address = 000b
SDA |« »| spa AC [Low

WP |— High} If Present

Figure 6. Signal Connections for 12C EEPROM Boot Mode

Some 12C EEPROMSs have a write-protect (WP) feature that prevents unauthorized writes to
memory. This feature is not needed for boot loading purposes since the DSP will only read data
from the 12C EEPROM(s). The write protect feature can be enabled or disabled without
impacting the operation of the bootloader.

The pin multiplexing of the C5501 and C5502 only affects this bootmode if the destination of the
loaded application is external memory. In cases like these, the DSP being used must be
configured such that the EMIF is enabled (refer to section 1.3.1 for more information).

The bootloader supports up to eight I2C EEPROMSs connected to the 12C bus as long as the
each EEPROM has a unique slave address and the memory space made up by all the
EEPROMs combined is contiguous. The bootloader will start with slave address 1010 000b
(50h) and increment to the next slave address at every 64K boundary. This allows for up to eight
64KByte (512KBit) 1I2C EEPROMs to be connected on the same bus.

An example of valid I2C EEPROM system is two 64Kbyte EEPROMSs and one 32Kbyte
EEPROM, where the first two devices are used for addresses 50 0000h — 51 FFFFh and the
third device is used for addresses 52 0000h — 52 7FFFh.

Using the TMS320VC5501/C5502 Bootloader

{'? TEXAS

INSTRUMENTS SPRA911C
50 0000h
EEPROMO
A2A1A0=000b
64K x 8 Bits
50 FFFFh
51 0000h
EEPROM1
A2A1A0=001b
64K x 8 Bits
51 FFFFh
52 0000h
EEPROM?2
A2A1A0=010b
32K x 8 Bits
52 7FFFh

Figure 7. Example Memory Space for System With Three I2C EEPROMs

The 12C peripheral input clock is set to 1/4th the frequency of the CPU clock at reset. The
bootloader will set the ICSPC = 0 and ICCLKL=ICCLKH=7. The frequency of the 12C bus can be
calculated using the following formula:

SCL_Freq = (CLKIN/4)/[(ICSPSC + 1)(ICCLKL + ICCLKH + 12)]
SCL_Freq = (CLKIN/4)/[0 + 1)(7 + 7 + 12)]
SCL_Freq = CLKIN/104

A CLKIN frequency should chosen such that the frequency of the 12C bus is not greater than
400 kHz since that is the maximum speed supported by the 12C module.

The process begins with the bootloader using a random read command to read address zero of
the first EEPROM. A random read command, as shown in Figure 8, consists of a dummy write
command with the address set to zero immediately followed by a current address read
command. The EEPROM responds by sending a data byte to the DSP. The bootloader does not
use the random read command for each byte within the 64K boundary, but depends on the
ability of the serial EEPROM to automatically increment the address internally. All subsequent
bytes with the 64K block are read using the current address read command as shown in

Figure 9.
Bus Activity: Start Slave Word Word Start Slave Stop
DSP Address Address (1) Address (0) Address Data

spA Line | J1o[afo] [[fo] fofo]ofolofofo]o] foJolo]ofofofolo] | [afofaof [[Ia] [T TTTJIT11]
Bus Activity: T T T T T

EEPRgM ACK ACK ACK ACK No ACK

SO SO
S1 S1

S2 S2

Figure 8. Reading the First Byte in a 64Kbyte Block

Using the TMS320VC5501/C5502 Bootloader 23

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.3.7

24

ACK
Slave

Start _\ Address l Data f Stop
No ACK j

Figure 9. Current Address Read Command

When the address reaches a 64K boundary, the bootloader will increment the slave address
(S[2:0]) by one and repeats the process described above to continue reading the boot table from
the next EEPROM on the 12C bus.

The bootloader will stop requesting data when the first zero-length memory section is
encountered in the boot table. All data bytes will be processed in accordance with the boot table
description given later in this document.

The bootloader will set GPIO4 low when reading a data byte from the 12C EEPROM and set it
high while it copies the data to its destination (this feature is not included on Version 1 of the
bootloader, see section 3 for more details on the different versions of the bootloader). Upon
successful load of the boot table the bootloader will set GP104 as an input and branch to the
entry point address.

UART Boot Mode

The description in this section assumes familiarity with the UART peripheral. For detailed
information on the C5501/C5502 UART refer to the TMS320C5501/5502 DSP Universal
Asynchronous Receiver/Transmitter (UART) Reference Guide (SPRU597).

The bootloader supports boot from a host via the UART peripheral. The minimum connection
required between UART and the external UART device is shown in Figure 10. The RX line will
be used to receive data from the host UART, while the TX line will be used to echo all received
data back to the host.

C5502 UART

X

\4

RX

X

A

RX

Figure 10. Signal Connections for UART Boot Mode

On the C5502, the UART RX and TX pins are multiplexed with the CLKR2 and FSR2 pins,
respectively. GPIO7 must be held low at reset to enable the UART pins. The C5501 does not
multiplex the UART pins.

Using the TMS320VC5501/C5502 Bootloader

{'? TEXAS

SPRA911C

INSTRUMENTS
Table 11. C5501 GPIO Pin Configuration for UART Boot Mode
BOOTM[2:0] GPIO4 GPIO6T GPIO7f Summary
111 0 Internal oscillator provides clock source. GPIO4 goes low to
signal DSP is ready for data after 41,450 input reference clock
cycles.
111 1 External clock provides clock source. GPIO4 goes low to signal

DSP is ready for data after 570 input reference clock cycles.

T GPIO6 determines whether the EMIF is enabled or disabled after reset. If the destination of the loaded application is external

memory, GPIO6 must be pulled high during reset.
¥ On the C5501, GPIO7 must be kept low during reset.

Table 12. C5502 GPIO Pin Configuration for UART Boot Mode

BOOTM[2:0] GPIO4 GPIO6t GPIO7 Summary

111 0 X 0 Internal oscillator provides clock source. GP1O4 goes low to

111

signal DSP is ready for data after 41,450 input reference clock
cycles.

External clock provides clock source. GP1O4 goes low to signal
DSP is ready for data after 570 input reference clock cycles.

UART pins are enabled.

T GPI06 determines whether the EMIF is enabled or disabled after reset. If the destination of the loaded application is external

memory, GPIO6 must be pulled high during reset.

The baud rate for the transmission is not fixed; instead it is dependant on the input clock
frequency to the DSP (CLKIN). At reset, the UART peripheral input clock is set to divide by four
of CLKIN. The baud rate that the UART peripheral will generate can be calculated using the

equation

Baud Rate = CLKIN/(16 x 4 x Divisor Value)

The bootloader will always set the divisor value to 4. Table 13 lists possible baud rates based on

common input clock frequencies.

Table 13. Baud Rates as a Function of CLKIN

CLKIN (MHz) UART Clock (MHz) Target Baud Rate (bps) Actual Baud Rate (bps) Percent Error (%)
1.25 0.3125 4,800 4,883 1.73
25 0.625 9,600 9,766 1.73
5 1.25 19,200 19,531 1.73
10 2 38,400 39,063 1.73
15 3.75 57,600 58,594 1.73
30 7.5 115,200 117,188 1.73

Using the TMS320VC5501/C5502 Bootloader

25

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.4

26

The bootloader will configure the UART with the following parameters:
e No parity

e One stop bit

e Eight-bit character length

The host UART must have the same settings for the transmission to work properly. The UART
bootloader will also make use of the peripheral’'s 16-byte FIFO register (one-byte trigger level) to
store incoming data.

After the bootloader has determined that the UART bootmode was selected it will initialize the
UART peripheral to the settings described above, set the GP104 signal low, and wait until there
is new data in the UART FIFO. All incoming data will be processed in accordance with the boot
table description given later in this document. Each received byte will be echoed back to the
host. The bootloader will stop checking for incoming data when the first zero-length section is
encountered in the boot table.

The GPIO4 pin will be set low when the UART bootloader is ready to start receiving data and will
remain low until the boot table transfer is complete. GP104 will go low after a specific number of
input clock cycles depending on whether the internal oscillator is enabled or not. If GP104 is low
during reset, the internal oscillator will be enabled and GP10O4 will go low approximately 41,450
clock cycles after the DSP is taken out of reset. If GPIO4 high during reset, the internal oscillator
will be disabled and GP104 will go low 570 clock cycles after the DSP is taken out of reset.

The bootloader will echo all received data back to the host, a feature that could be used to avoid
overrun errors. Note that since the bootloader will enable the UART FIFO register, it is possible
to keep sending data to the DSP even if it has not yet echoed the previous data. Keep in mind,
however, that the UART FIFO has a size limit of 16 bytes.

Upon successful load of the boot table the bootloader will set the GPIO4 pin to input and branch
to the entry point address. Note that there is no guard against errors such as parity bit errors or

overrun errors; the success/failure of the UART bootmode can be determined by monitoring the
echoed data and the status of the GP104 pin.

GPIO4 Behavior

The GPIO4 pin is configured as an output and used for multiple functions depending on the boot
mode selected as indicated below.

In the standard serial boot mode modes, GPIO4 is used to indicate that the serial port is ready to
receive data. If a programmed delay occurs, GP104 goes not ready (high) until the delay is
completed and then ready (low) when the serial port is ready to receive again. GP10O4 also goes
not ready while data is being moved. It can be used as a handshaking signal to prevent receiver
overflow.

In the external asynchronous memory boot modes, GP10O4 goes low at the beginning of the boot
process and only goes high during the programmed delays as an indication of the delay. When
the boot load is complete, GP10O4 goes high.

In the serial EEPROM boot modes, GPIO4 is used as a chip select (CS) signal to the serial
EEPROM. It goes low at the beginning of the boot process and goes high when the boot
process is complete. GP1O4 does not go low during delays in this mode, but since the DSP is
the master, delays are handled automatically.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

2.5

2.6

26.1

In 12C EEPROM boot mode, GPI10O4 is set low when the peripheral is reading a data byte from
the EEPROM and is set high the rest of the time.

The GPIO4 pin will be set low when the UART boot mode is ready to receive data and will
remain low during the operation of the bootloader. The GPIO4 pin is used in the same manner
for the HPI boot mode.

At the end of the boot process (in any boot mode), the GP104 pin is set high for a brief period of
time and then set as input. The bootloader will then branch to the specified entry point address.
Boot Mode Branch Table

A boot mode branch table has been included in the C5501 and C5502 ROM that can be used by
an application to jump to any boot mode. The location of this table has been selected such that it
will not change across revisions of the bootloader code. Table 14 lists the addresses within the
table that can be used to jump to a specific boot mode.

Table 14. Boot Mode Branch Addresses

BOOTM[2:0] Boot Mode Boot Mode Branch Address
001 Serial EEPROM (SPI) Boot from McBSPO OFFECB4h
010 Standard Serial Boot from McBSPO (16-bit) OFFECB8h
011 External Asynchronous Memory (16-bit) OFFECBCh
101 HPI boot OFFECC4h
110 Serial EEPROM (I12C) Boot from 12C OFFECCS8h
111 Standard Serial Boot from UART (8-bit) OFFECCCh

The Boot Table

The boot table is a block of data that contains the code and data sections to be loaded by the
bootloader as well as other information including the entry point address, register configurations,
and programmable delays. The boot table is created by the hex conversion utility (a standard
component of the TMS320C55x Assembly Language Tools), based on the COFF (common
object file format) output of the linker for the application code. The hex conversion utility provides
several output options such as industry-standard ASCII formats that can be used to program
parallel or serial EEPROMSs, and formats that can be used in code for a host to transmit the boot
table to the DSP. A more detailed description of the role of the hex conversion utility in creating
the boot table is covered later.

DSP Resources Used by the Bootloader

The bootloader program uses several internal resources on the DSP during the entire boot
process. These resources are reserved for use by the bootloader and should not be altered until
the boot load is completed, and the bootloader has passed control to the loaded application
code.

The following resources are used by the bootloader:
e Accumulators: ACO, AC1, AC2, AC3

e Auxiliary registers: XAR5, XAR6

e Temporary registers: T0, T1, T2, T3

Using the TMS320VC5501/C5502 Bootloader 27

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.6.2

The entry point address is stored as word addresses 0060h and 0061h
e The stack pointer (SP) is located at word address 0090h
e The system stack pointer (SSP) is located at word address 0080h

To avoid corruption of these memory locations, the sections contained in the boot table should
not contain any destinations lower than word address 0090h (byte address 0120h).

The Boot Table Structure

The boot table has a specific format that is independent of the boot mode chosen and contains
information relating to program sections, data sections and other information used by the
bootloader. The components of the boot table are shown in Figure 11.

Byte Address | Byte Address | Byte Address | Byte Address
+0 +1 +2 +3

32-Bit Entry Point Address

Byte Address +4 32-Bit Register Configuration Count
Byte Address +8 16-Bit Register Address 16-Bit Register Contents Repeated According to Coumﬁ
16-Bit Delay Indicator 16-Bit Delay Count Repeated According to Count

28

32-Bit Section Byte Count

32-Bit Section Byte Start Address Repeated for
Each Section

Data Byte Data Byte Data Byte Data Byte

Data Byte Data Byte Data Byte Data Byte

32-Bit Zero Byte Count (End of Boot Table)

Figure 11. Boot Table Structure

A description of each of the components of the boot table is given below:

e 32-bit Entry Point Byte Address is the address where the bootloader will begin execution
after the application is loaded.

e 32-bit Register Configuration Count is the number of registers to be configured or delays to
be implemented during the boot load process (see section 2.6.3). The following four
components are only included in the boot table if the register configuration count is non-zero.

— 16-bit Register Address for the register to be configured
— 16-bit Register Contents contains the value to be programmed in the above register
— 16-bit Delay Indicator (FFFFh) indicates a delay will be implemented
— 16-bit Delay Count contains the number of CPU cycles to delay
e 32-hit Section Byte Count contains the number of bytes to be copied in the current section.
e 32-bit Section Start Byte Address is the destination address of the current section.
e Data bytes are the actual data in the section to be copied.
e 32-bit Zero Byte Count (00000000h) indicates the end of the boot table.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

2.6.3 Register Configuration and Delay During Boot

The bootloader supports a feature that allows peripheral port-addressed registers to be
configured during the boot process before the code and data sections are copied. This feature
provides the capability to change the device mode for specific purposes such as changing the
clock generator frequency (to speed up the boot process) or configuring the EMIF external
memory spaces.

A register configuration entry will be added to the boot table when the option —reg_config
address, data is added to the command line in the hex conversion utility when the boot table is
created. In this option, address is the port address of the register to be configured and data is
the data that will be written to the register. For example, to program the C5502 clock mode
register (CLKMD is at port address 1C00h) with the value of 0, the following option would be
added to the hex utility command line:

-reg config 0x1C00, 0x0000 ;write 0000h to port address 1CO00h

The hex conversion utility will add a 32-bit entry to the boot table containing this information. The
first 16 bits are the port address and the second 16 bits are the contents to be written to that
address. Multiple register configurations can be included in the boot table and one will be added
for each —reg_config reference in the command line (or command file).

Since some configurations of the device may have some latency before becoming active, a
delay feature is also available that can delay the boot process until the configuration changes
are valid. The delay is implemented in a similar manner.

The option —delay delay _count is added to the hex utility command line to generate a delay. The
delay_count is a value between 1 and 65535 and represents the number of CPU cycles to wait
before the bootloader proceeds with the boot process. The delay option will put a 32-bit entry in
the boot table in which the first 16 bits are FFFFh and the second 16 bits are the delay count.
Since this is the same format as the register configuration feature, the bootloader will always
interpret a reference to port address FFFFh as a request for a delay and use the next 16 bits as
the delay count.

Some examples where inserting delays are useful are:

e Changing the clock generator

The delay can stall the boot process until the clock generator is locked on the new frequency
and is running at the appropriate speed.

e Configuring the EMIF memory type and timings

If it is necessary to change the configuration of one of the EMIF external spaces, the delay
can be used to wait until the changes have become valid and the EMIF is ready to operate.

The bootloader has reserved port address FFFFh for the delay feature and has reserved port
addresses FFFOh—FFFEh for future features. These port addresses cannot be used in the
register configuration feature. If port address FFFFh is used it will be interpreted as a delay. Only
port addresses below FFEFh will be interpreted as register configurations.

Using the TMS320VC5501/C5502 Bootloader 29

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

2.6.4

30

Note that the bootloader provides no protection with regard to the programmed register contents
specified in these features. It is the responsibility of the user to configure register values
correctly. Altering peripheral registers that are associated with the bootloader can cause the boot
load to fail. Some guidelines for register configuration during boot are given below:

e |[f the serial boot modes are used, do not alter the configuration of any of the registers
associated with McBSPO.

e [f the EMIF boot modes are used, do not alter the configuration of any of the registers
associated with EMIF CE1 space. This space is where the boot table is located and if
reconfigured, the ability of the bootloader to read the rest of the boot table may fail. The
programmable memory timings for CE1 space may be altered, but the user should carefully
consider the effect of the changes on the memory timing and the ability of the bootloader to
continue to read the memory. Changing the memaory timing for CE1 space can speed up the
boot process, but it can also cause the boot to fail if changed incorrectly. MTYPE for CE1
space should never be changed.

e |f the clock generator is reconfigured, think carefully about the timing effects on the boot
process. Changing the clock frequency will change the EMIF timings (since the EMIF timings
are relative to the DSP clock) and may cause interface timings that are incompatible with the
external memory used. Frequency changes may also affect whether the serial port timing
provided externally still meets the data sheet and bootloader requirements. Consider these
issues very carefully before making any changes.

The hex conversion utility will automatically count the number of register configurations and
delays specified in the command line (or command file) and will insert this information in the
boot table. The register configurations and delays will be inserted in the boot table (and
executed by the bootloader) in the order they are specified in the hex conversion utility
command line or command file. Once all of the configurations have been completed during
the boot load, the bootloader will proceed to copying code and data sections.

Code and Data Sections in the Boot Table

Code and data sections are inserted into the boot table automatically by the hex conversion
utility. The hex conversion utility uses information embedded by the linker in the .out file to
determine each section’s destination address and length. Adding these sections to the boot
table requires no special intervention by the user. The hex conversion utility will add all initialized
sections in the application to the boot table. The remaining information included in this section
describes the format of the sections in the boot table.

In the C55x architecture, program sections are byte-addressed, have variable widths (in bytes)
and may start and/or end on byte boundaries. Data sections are word-addressed and always
start and end on word boundaries. To accommodate these two types of sections, the boot table
will pad program sections to temporarily align the sections to start and end on word boundaries.
This structure causes the bootloader code to be simpler and execute more quickly. These added
pad bytes do not affect the content of the sections or their address alignments because the
bootloader code strips the pad bytes out before writing the sections to their destinations.
However, if a user reads the output of the hex conversion utility, the pad bytes will be present.

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

If a program section starts on an even byte address, no pad byte is added to the beginning of
the section. If a program section starts on an odd byte address, one pad byte is added to the
beginning of the section. If a program section ends on an even byte address, one pad byte is
added to the end of the section. If a program section ends on an odd byte address, no pad byte
is added to the beginning of the section. Because of this structure in the boot table, all sections
to be included in the boot table must contain at least two bytes.

Each section is added to the boot table with the same format. The first entry is a 32-bit count
representing the length of the section in bytes. The next entry is a 32-bit destination address.
This is the address where the first byte of the section will be copied. Although these entries
reserve 32 bits in the boot table for alignment, the destination address and byte count will not
exceed 24 bits since the address range of the C5501 and C5502 is limited to 24 bits. The
remainder of the section in the boot table contains the actual program or data information for
that section.

The bootloader will continue to read and copy these sections until it encounters a section whose
byte count is zero. This is the indication of the end of the boot table and the bootloader will
branch to the entry point address (specified at the beginning of the boot table) and begin
execution of the application.

2.6.5 Creating the Boot Table

To create the boot table, proceed through the following steps:

1. Use the hex conversion utility (HEX55.exe) revision 2.10 or later. Earlier versions may not
support the boot table features correctly.

2. Use the —boot option to cause the hex conversion utility to create a boot table.

3. Use the -v5510:2 option. Even though this option refers to the C5510, it also applies to
the C5501 and C5502. This option is very important since some early versions of the
C55x hex conversion utility supported a different boot table format. The wrong boot table
format will cause the bootloader to fail.

4. Specify the boot type —parallel8, —parallel16, —seriall6, or —serial8. Table 15 shows the
correct option to select for each supported boot mode. HPI boot mode does not require a
boot table.

5. Specify the entry point using the —e entry_point_address option. The entry point is the
address to which the bootloader will transfer execution when the boot load is complete.

6. Specify the desired output format. See the TMS320C55x Assembly Language Tools
User’s Guide (SPRU280) for detailed information on the available hex conversion utility
output formats.

7. Specify the output filename using the —o output_filename option. If you do not specify an
output filename, the hex conversion utility will create a default filename based on the
output format.

Using the TMS320VC5501/C5502 Bootloader 31

{'.?‘ TEXAS

SPRA911C INSTRUMENTS

Table 15. Boot Mode Types for the Hex Conversion Utility

BOOTM[2:0] For Boot Mode Source ... Include this Option ...
001 Serial EEPROM (SPI) Boot from McBSPO supporting 24-bit address —serial8
010 Standard Serial Boot from McBSPO (16-bit) —seriall6
011 External Asynchronous Memory (16-bit) —parallel16
110 Serial EEPROM (12C) Boot from 12C -serial8
111 Standard Serial Boot from UART (8-bit) —serial8

Some examples of how to set the hex conversion utility options to create a boot table are shown
below.

Example 1. Creating a Boot Table for Tektronix Output

To create a boot table for the application my_app.out with the following conditions:
e Desired boot mode is from 16-bit external asynchronous memory

e No registers will be configured during the boot

e No programmed delays will occur during the boot

e Desired output is Tektronix format in a file called my_app.hex

Use the following options on the hex conversion utility command line or command file:

-boot ;option to create a boot table

-v5510:2 ;use C55x boot table format for TMS320VC5502
-parallellé ;boot mode is 16-bit external asynchronous memory
-X ;desired output format is Tektronix format

-0 my_ app.hex ;specify the output filename

my app.out ;specify the input file

Example 2. Creating a Boot Table for Intel Output

32

To create a boot table for the application my_app.out with the following conditions:

e Desired boot mode is from 8-bit standard serial boot

e Configure the PLLDIV1 register (port address 0x1C8C) with the value 0x0001

e After the PLLDIV1 register is configured, wait 256 cycles before continuing the boot
e Desired output is Intel format in file a called my_app.io.

Use the following options on the hex conversion utility command line or command file:

-boot ;option to create a boot table

-v5510:2 ;use C55x boot table format for TMS320VC5502
-serials8 ;boot mode is 8-bit standard serial boot

-reg config 0xlc8c, 0x0001 ;write 0x0001 to peripheral register at address
0x1C8C

-delay 0x100 ;delay for 256 CPU clock cycles

-1 ;desired output format is Intel format

-o my_app.io ;specify the output filename

my app.out ;specify the input file

For detailed information about the C55x hex conversion utility, see the TMS320C55x Assembly
Language Tools User’s Guide (literature number SPRU280).

Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS SPRA911C

3

3.1

3.2

Information about Different Bootloader Versions

This document has described the operation of Version A of the bootloader which exists on the
C5501 and C5502. Some TMX samples of these devices contain an initial version of the
bootloader which is different from Version A. Several enhancements were included in the
Version A of the bootloader. This section describes how to determine the bootloader version and
also explains the differences between the two bootloader versions.

Determining the Bootloader Version

The bootloader version can be determined by reading the contents of byte address OFFECAEh
in the ROM. Table 16 lists the contents of byte address OFFECAEh associated with each
version of the bootloader.

Table 16. Bootloader Versions

Contents of Address OFFECAEh Bootloader Version

O0F106h Initial

OF107h A

The bootloader version can also be determined through the package markings by reading the
bootloader version letter. The TMS320VC5502 Digital Signal Processor Silicon Errata
(SPRZz020) has more information on these package markings.

Differences Between Bootloader Versions

Some differences exist between the initial version of the bootloader and Version A of the
bootloader. Table 17 lists the major differences between both bootloaders.

Table 17. Differences Between Bootloader Versions

Initial Version Version A

SPI EEPROM Boot Mode SPI EEPROM Boot Mode
e Not supported e Adds capability to boot from 24-bit SPI EEPROMSs (Serial Flash)

I2C Boot Mode I2C Boot Mode
e GPIO4 not used to reflect boot mode status e GPIO4 used to reflect boot mode status (12C boot mode section

in this document for more information on this feature).

Using the TMS320VC5501/C5502 Bootloader 33

SPRA911C

{'f TExAs
INSTRUMENTS

4 Debugging Bootloader Issues

This section is designed to assist in the debug of bootloader issues. The recommended
approach is to break down the problem by verifying what external indicators have occurred, and
then further isolate the problem to the boot media, hardware, or software.

4.1 Direct Execution from External Asynchronous Memory

The DSP configures the CE3 space for asynchronous memory and branches to the reset vector

at location OxFFFFOO in external CE3 space.

Check:

If no, then verify that:

Does CPU hit breakpoint at the reset vector at byte address
location OXFFFFO0?

BOOTMJ[2:0] pins are set to 000b or 100b at
reset, for 16- or 32-bit memory, respectively.

The DSP is released from reset with a
low-to-high transition of the reset signal.

The GPIO6 pin is pulled high at reset to enable
the EMIF.

The internal oscillator is enabled or disabled
appropriately. The GP104 pin should be set to 0
to enable, and 1 to disable, the internal
oscillator.

The MPNMC bit is setto 1. Use a JTAG
emulator and a debugger such as Code
Composer Studio.

CE3 space is configured appropriately for 16- or
32-bit asynchronous memory. Use a JTAG
emulator to view the registers using Code
Composer Studio.

The external memory has been programmed
properly with the reset vector at byte address
location OXFFFFQO.

34 Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS

SPRA911C

4.2 Parallel EMIF Boot Mode

The GPIO4 signal will go low at the start of the bootload process, then high, then low again, then
high, serving as an indicator of the progress of the bootloader. Lastly, the CPU will branch to the
entry point and begin execution of application code.

Check: If no, then verify that:
Does GPIO4 go low at the start of the bootload process? ® BOOTMJ[2:0] pins are set to 011b.
® The DSP is released from reset with a
low-to-high transition of the reset signal.
Does GPI0O4 go high during execution of the programmable ® There is a delay programmed in the boot table.
delay, and then low a second time after the delay? . .
® ARDY is not stuck low, and that ARDY is pulled
high if not driven by the target system.
® GPIO6 is high at reset to enable the EMIF boot
mode.
® The timing parameters on the EMIF are not
changed during the bootload process. If CE1
space is reconfigured, the value of MTYPE must
be maintained.
Does GPI0O4 go high a second time, and does CPU hit a ® ARDY is not pulled or driven low; if not used it
breakpoint at the entry point address? Use a JTAG emulator should be driven high, otherwise it will toggle.
and debugger such as Code Composer Studio.
® The start of the boot table can be found at word
address location 0x200000 in CE1 space. Use
an XDS emulator and debugger such as Code
Composer Studio to verify.
® The correct code entry point is specified in the
boot table. The entry point must be specified as
a byte address.
® HEXS55 tool version 2.10 or later was used to

create the boot table, and the C5510:2 option
was used.

Using the TMS320VC5501/C5502 Bootloader 35

SPRA911C

{'f TExAs
INSTRUMENTS

4.3

Host Port Interface Boot Mode

The GPIO signal is driven high at the start of the bootload process, and then low after a delay,
when the DSP is ready to receive data. when the bootload process is complete, the CPU will
branch to the entry point and begin code execution.

Check: If no, then verify that:
Does the GPIO4 pin go high at the start of the bootload ® BOOTMI[2:0] pins are set to 101b at reset.
process, and then low after a short delay, indicating that the . .
; . ® The DSP is released from reset with a
DSP is ready to receive data from the host?] -)
low-to-high transition of the reset signal.
Does the host write the entry point address and a non-zero ® The signal integrity between the host and the
wait flag value to word addresses 0x61 and 0x60 in the DSP is good by writing values to DSP memory
proper order, to indicate that the application has been from the host and reading them back. You may
loaded? Use a JTAG and debugger such as Code Composer also use a JTAG emulator to verify that data is
Studio. being written properly to DSP memory.
® The GPIOG6 setting is appropriate for the HPI
data width. GP1O6 should be set to 1 for 8-bit
multiplexed mode, and to O for 16-bit
non-multiplexed mode.
® The host is completing its data transfer.
® |f the host is not monitoring GPIO4, ensure that
there is sufficient delay between the DSP
release from reset and the start of code
download.
36 Using the TMS320VC5501/C5502 Bootloader

{'? TEXAS

INSTRUMENTS SPRA911C
Does the CPU hit a breakpoint at the entry point that is set in ® The word addresses 0x60 and 0Ox61 contain a
word address 0x60 and 0x61? Use a JTAG emulator and byte address for the entry point, and not a word
debugger such as Code Composer Studio. address.

® The breakpoint is set at this byte address in
program memory.

® The host writes to word address 0x61 and 0x60
in the proper bit configuration and order. 0x61
should be written first with the least significant
16 bits of the entry point byte address. 0x60
should then be written with the most significant
8 bits of the entry point address in the lower
half, and the non-zero flag value in the upper
half.

® The host does not load any other data to word
addresses 0x60 and 0x61, except for the entry
point address and the flag value.

Does the user application begin to execute properly? ® The entry point contains the start of executable
code (not a boot table). The host will load code
to the DSP memory by word address, while
program fetches from the DSP’s point of view
byte addressed.

® The host does not attempt to load code outside
of the word address range 0x0090 - Ox7FFF.

Using the TMS320VC5501/C5502 Bootloader 37

SPRA911C

{'f TExAs
INSTRUMENTS

4.4 Standard Serial Boot Mode

The GPI0O4 signal can be used as an external indicator of the status of the standard serial boot
process. GPIO4 is driven low, then toggles while it acts as a handshaking signal during the

download, and is finally driven high at the end of the process, at which point the CPU branches
to the code entry point specified in the boot table.

Check:

If no, then verify that:

Does the DSP drive the GP104 signal low and configure the
McBSP as follows:

RPHASE = 0b, RFRLEN1 = 0Oh,

RWDLEN1 = 010b, RJUST = 00b,

RDATDLY = 01b, externally generated CLKRO and FSRO?

BOOTMJ[2:0] pins are set to 010b.

The DSP is released from reset with a
low-to-high transition of the reset signal.

Does GPIO toggle between low (serial port ready to receive)
and high (serial port not ready), acting as a handshaking
signal during the bootload process?

The receiver has not overflowed. To avoid
overflow, either use GPIO4 as a handshaking
signal as described in 2.3.4.1 of SPRA911
(Using the TMS320VC5502 Bootloader) or allow
at least 180 CPU clock cycles between
transmission of words.

The serial device is connected to the DSP via
McBSP 0.

The external device is generating clock and
frame sync signals.

Is GP104 driven high, and does the CPU hit a breakpoint at
the entry point address? Use a JTAG emulator and debugger
such as Code Composer Studio.

The boot table contains the correct entry point
byte address. Open the file containing the boot
table in an editor and make sure that the first
four bytes contain the 32-bit entry point address.

The Slow Peripheral Clock groups runs at 1/4
the input clock frequency to the DSP.

The frequency of the Slow Peripheral Clock
Group is not changed during the bootload
process.

The boot media is programmed properly.

The proper options were chosen to create the
boot table.

HEX55 tool version 2.10 or later was used to
create the boot table, and the C5510:2 option
was used.

38 Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS

SPRA911C

4.5 SPI EEPROM Boot Mode

The GPIO4 signal is driven low at the start of the SPI EEPROM bootload process, after which
the DSP exchanges data with the EEPROM. After the boot table is transferred, the GPIO4 signal
is driven high, and the CPU branches to the code entry point specified in the boot table.

Check:

If no, then verify that:

Does the DSP drive the GPI04?

® BOOTMJ[2:0] pins are set to 001b.

® The DSP is released from reset with a
low-to-high transition of the reset signal.

Does the DSP issue a read instruction (03h) and the starting
byte address (00h) to the EEPROM on the DXO0 signal,
followed by bytes sent from the EEPROM to the DSP on the
DRO pin?

® The signals between the DSP and the EEPROM
are correct and intact.

® The EEPROM is connected to McBSPO of the
DSP.

® The /HOLD signal is pulled inactive high.

® The required speed for the EEPROM matches
the serial port clock speed according to the
following formula:
Serial port clock = Slow Peripheral Clock/4

Does the DSP drive the GP104 signal high to indicate that
the boot table has been transferred?

® The boot table is programmed into the
EEPROM as a single continuous image starting
at EEPROM address 0.

® HEX55 tool version 2.10 or later was used to
create the boot table, and the C5510:2 option
was used.

Does the CPU hit a breakpoint at the code entry point byte
address? Use a JTAG emulator and debugger such as Code
Composer Studio.

® The boot table is programmed into the
EEPROM as a single continuous image starting
at EEPROM address 0.

Using the TMS320VC5501/C5502 Bootloader 39

{'f TExAs
SPRA911C INSTRUMENTS

4.6 12C EEPROM Boot Mode

At the start of the 12C bootload process, the bootloader will cause the DSP to issue a random
read command to the 12C device on the SDA line. GPIO4 will toggle as data is copied from the
EEPROM to DSP memory. Finally, the bootloader sets GPIO4 as an input and branches to the
entry point address specified in the boot table.

Check: If no, then verify that:

Does the DSP issue a random read command to the 12C ® BOOTM[2:0] pins are set to 110b.

device on the SDA line?) .
® The DSP is released from reset with a

low-to-high transition of the reset signal.

® Connections between 12C device and DSP
peripheral are correct and intact.

® There are pull-ups on the SDL/SDA signals.

® The I12C device configuration is compatible:
Philips bus spec v2.1 compliant, slave address
50h, has auto-increment capability, operating
frequency is <= 12MHz.

® The I12C bus frequency is set to CLKIN/104.

Does GPI04 toggle during the random read part of the ® The boot table was created with the correct
bootload process? options.

® HEX55 tool version 2.10 or later was used to
create the boot table, and the C5510:2 option
was used.

® The boot media is programmed properly.

® The proper options were chosen to create the

boot table.
Does the CPU hit a breakpoint at the code entry point byte ® The boot table contains the correct entry point
address? Use a JTAG emulator and debugger such as Code byte address. Open the file containing the boot
Composer Studio. table in an editor and make sure that the first

four bytes contain the 32-bit entry point address.

40 Using the TMS320VC5501/C5502 Bootloader

{'f TeExAS
INSTRUMENTS

SPRA911C

4.7 UART Boot Mode

The GPIO4 signal goes low at the start of the UART bootload process, and the bootloader
configures the UART for the transfer. Each time data is transmitted, the target echoes data back
to the host, which can serve as an indicator that data transfer is successful. Finally, the DSP
branches to the entry point address and the start of user code.

Check:

If no, then verify that:

Does the GPIO4 signal go low, and is the UART peripheral
configured for 8 data bits, no parity, one stop bit, after
RESET?

® BOOTMJ[2:0] pins are set to 111b.

® The DSP is released from reset with a
low-to-high transition of the reset signal.

Is data echoed back to the host each time it is transmitted?

® The Tx/Rx signals between the UART host and
the DSP are intact and functional.

® The host UART is set for 8 data bits, no parity,
one stop hit.

® GPIO7 is held low at reset to enable the UART.

® The baud rate generated by the UART
peripheral is CLKIN/(16 x 4 x 4).

® Data is transferred on the RX pin from the host
to fill up the FIFO.

® There is no data overrun.

Does the DSP set the GPIO4 signal to input, and branch to
the entry point byte address? Use an XDS emulator and a
debugger such as Code Composer Studio to set a break-
point at the entry point byte address.

® There is no data overrun.

® The boot table contains a valid entry point byte
address in the first 32-bit field.

® HEX55 tool version 2.10 or later was used to
create the boot table, and the C5510:2 option
was used.

Using the TMS320VC5501/C5502 Bootloader 41

SPRA911C

{'f TExAs
INSTRUMENTS

5

42

References

o0 A~ wN PR

TMS320VC5502 Fixed-Point Digital Signal Processor Data Manual (SPRS166).
TMS320VC5501 Fixed-Point Digital Signal Processor Data Manual (SPRS206)
TMS320C55x Assembly Language Tools User’s Guide (SPRU280).

TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide (SPRU620).
TMS320VC5501/5502 DSP External Memory Interface (EMIF) Reference Guide (SPRU621).

TMS320VC5502/5509/5510 DSP Multichannel Buffered Serial Port (McBSP) Reference
Guide (SPRU592).

TMS320VC5501/5502/5509 DSP Inter—Integrated Circuit (1I2C) Module Reference Guide
(SPRU146).

TMS320VC5501/5502 DSP Universal Asynchronous Receiver/Transmitter (UART)
Reference Guide (SPRU597).

TMS320VC5502 Digital Signal Processor Silicon Errata (SPRZ020).

Using the TMS320VC5501/C5502 Bootloader

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

