
Application Report
SPRAA69D–September 2009

Using the TMS320C672x Bootloader
Karen Baldwin .. DSP EEE

ABSTRACT
This application report describes the design details of the TMS320C672x bootloader and describes a set
of software utilities designed to facilitate formatting of application code for use with the bootloader.

This application report contains a system level patch, the bootloader utilities and project code that can be
downloaded from this link: http://www-s.ti.com/sc/techlit/sprc203.zip.

Please note that the system level patch fixes a problem in which the DSP may not be left in a known good
state. This patch is required regardless whether any other ROM contents are used by an application.

Contents
1 Introduction .. 3
2 Boot Mode Description ... 3
3 Application Image Script ... 6
4 External Serial EEPROM Boot .. 14
5 External Host Processor Boot ... 14
6 Bootloader Utilities .. 17
7 Boot Examples ... 39
8 Troubleshooting On-chip BootLoad ... 53
9 Calculating CRC ... 55
10 Memory Allocation ... 55
11 Determining On-chip BootLoader/ROM Version .. 55
12 Cache Considerations .. 56
Appendix A Calculating the CRC ... 57

List of Figures

1 Parallel Flash Signature Format .. 5

2 Basic Structure of Application Image Script ... 7

3 Structure of Set Command .. 8

4 <Type> Field... 8

5 Structure of Section Load Command... 9

6 Structure of Section Fill Command.. 10

7 Structure of Jump Command .. 10

8 Structure of Jump_Close Command .. 11

9 Structure of Enable CRC / Disable CRC Commands .. 12

10 Structure of Request CRC Command for Single CRC Option... 13

11 Structure of Request CRC Command for Section-wise CRC Option... 13

12 Flowchart: Start-Word Synchronization... 15

13 Flowchart: Ping Op-code Synchronization ... 16

14 Flowchart: Op-code Synchronization ... 17

15 genBootCfg Main Menu Window .. 18

16 File Pulldown Menu ... 19

17 Package Type Pulldown Menu .. 20

1SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www-s.ti.com/sc/techlit/sprc203.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com

18 PLL Configuration Window ... 21

19 PLL Configuration Solutions Frame... 22

20 Multiple PLL Solution Windows.. 23

21 I2C Clock Configuration Selection from Main Menu .. 24

22 I2C Clock Configuration Window .. 25

23 SDRAM Configuration Window .. 26

24 ASYNC RAM Configuration Menu .. 27

25 GPIO to Address Pin Configuration Window .. 28

26 Mapping a GPIO Pin Using GPIO Pull Down Menu .. 29

27 Selecting GPIO Pin as Latch... 30

28 Build Flow .. 41

29 GPIO Pins .. 43

30 ASYNC RAM Setup ... 44

31 Project File ... 46

32 Bypass Cache Operation ... 56

List of Tables

1 Terms Used in This Document.. 3

2 CFGPIN0 Register Definition .. 3

3 CFGPIN1 Register Definition .. 4

4 Boot Device Pin Allocation... 4

5 HPI Configuration Based on Device Pins.. 4

6 Parallel Flash Boot Mode Field ... 5

7 SPI Configuration for Master Boot .. 6

8 SPI Configuration for Slave Boot ... 6

9 AIS Version 1.0 Supported Opcodes... 7

10 Data Types... 8

11 <Type> Field Descriptions ... 9

12 Numeric Formats that can be used in BTEs .. 9

13 genAIS options... 32

14 AIS Data Output ... 33

15 AIS Data Output in file docExample_i2cMaster.ascii ... 36

16 AIS Data Stream From File, docExample_cfgTypeAis.ascii ... 38

17 Address Range to Page Latch Address Mapping for 16-bit FLASH .. 41

18 On-Chip BootLoader Error Codes... 53

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

2 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Introduction

1 Introduction

The bootloader resides in the internal ROM of TMS320C672x devices. It starts from the beginning of ROM
address space 0x00000000. After reset, the device sets the program counter to the beginning of the ROM
address and begins execution of the bootloader.

The following is the list of boot modes supported by the bootloader:

• HPI
• Parallel Flash
• SPI Master
• I2C Master
• SPI Slave
• I2C Slave

When booting in master mode, the bootloader reads the boot information from the slave device if and
when required. On the other hand, when booting in slave mode, the bootloader depends on the master
device to feed boot information if and when required.

Table 1. Terms Used in This Document

Term Description

Bootloader Bootloader Code for TMS320C672x

AIS Application Image Script

BL Boot Loader, referring to the bootloader in this text

DSP Digital Signal Processor, referring to TMS320C672x in this text

I2C Inter Integrated Circuit

OS Op-code Synchronization

POS Ping Op-code Synchronization

ROM Read Only Memory

SPI Serial Peripheral Interface

SWS Start-Word Synchronization

2 Boot Mode Description

The selection of the following boot modes depends upon the status of boot device pins documented
below. The device captures the status of these pins on the rising edge of reset into the registers CPGPIN0
and CFGPIN1. The bootloader refers to CFGPIN0 and CFGPIN1 in order to get the status of the boot
device pins. For the sake of clarity, this text refers to the boot device pins instead of their corresponding
bit positions in one of the CFGPIN registers.

Table 2. CFGPIN0 Register Definition

CFGPIN0 bit Bit Name Corresponding Pin

31:8 Reserved Not implemented

7 PINCAP7 SPI0SOMI/SDA0

6 PINCAP6 SPI0SIMO

5 PINCAP5 SPI0CLK/SCL0

4 PINCAP4 SPI0SCS / SCL1

3 PINCAP3 SPI0ENA / SDA1

2 PINCAP2 SPI1SOMI

1 PINCAP1 SPI1SIMO

0 PINCAP0 SPI1CLK

3SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Mode Description www.ti.com

Table 3. CFGPIN1 Register Definition

CFGPIN1 bit Bit Name Corresponding Pin

31:8 Reserved Not implemented

7 PINCAP15 SPI1SCS

6 PINCAP14 SPI1ENA

5 PINCAP13 HCS

4 PINCAP12 HD[0]

3 PINCAP11 HA[0]

2 PINCAP10 AFSX0

1 PINCAP9 AFSR0

0 PINCAP8 AXR0[0]

Table 4 summarizes boot mode pin configuration.

NOTE: The order of different boot modes in the table is not the same as when they are detected.

Table 4. Boot Device Pin Allocation

Boot Mode Description Boot Pin
Allocation

Boot Mode Data Bits Add Bits BL1 boot SPI0SOMI SPI0SIMO SPI0CLK
Description (HCS)

HPI (1) 0 X X X

Parallel - - 1 0 1 0
Flash (2)

SPI0 Master 8 16 1 0 0 1

SPI0 Slave 16 - 1 0 1 1

Reserved - - 1 1 0 0

I2C1 Master 8 16 1 1 0 1

Reserved - - 1 1 1 0

I2C1 Slave 8 - 1 1 1 1
(1) Additional pins used to configure the boot mode. For details, see the Section 2.1.
(2) First byte in parallel flash gives information on the Data/Address bits. For details, see the Section 2.2.

2.1 HPI Boot

Once selected, the bootloader initializes the “Bootloader HPI Jump Address Register (0x10000714)” and
“Bootloader HPI Transfer Done Register (0x10000718)” with zeros. Then, it resets the CSP Bridge and
configures the HPI to run in the desired mode depending on the state of the following pins:

Table 5. HPI Configuration Based on Device Pins

Device Pin Corresponding Bit Name in CFGHPI Register

SPI0SOMI BYTEAD

SPI0SIMO FULL

SPI0CLK NMUX

For more information on these bits, refer to the CFGHPI register description in the official TMS320C672x
specification in TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal Processors
(SPRS268).

After configuring the CFGHPI register based on the logical states of the above mentioned pins, the
bootloader enables the HPI peripheral by writing a 1 to the ENA bit in the CFGHPI register.

4 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Mode Description

Then, the bootloader sets the HINT bit of the HPIC register. This causes the HPI_HINTn pin of the device
to go low, as an indication to the host that the DSP is ready. The host can clear this interrupt by also
writing a 1 to the HINT bit of HPIC. Then the DSP waits while the host places data, via the standard HPI
protocol, into its memory. Once complete, the host writes the application entry address into the memory
location 0x10000714 and a 1 to address location 0x10000718 to signal the completion of HPI bootloading.
The bootloader is continuously polling the address location 0x10000718. As soon as the bootloader finds
a non zero value at that address location, it sets the program counter to the value at address 0x10000714
and begins execution of the application.

2.2 Parallel Flash

The first 8-bits on the flash device gives information about the data bits (8/16) that can be accessed from
the parallel flash simultaneously.

Figure 1. Parallel Flash Signature Format

7 6 5 4 3 2 1 0

Reserved Boot Mode

Table 6. Parallel Flash Boot Mode Field

Boot Mode Description

00 8-bit parallel flash

01 16-bit parallel flash

10 Reserved

11 Reserved

Once the bootloader detects EMIF boot mode, it reads the first byte from the flash device to determine 8
or 16 bit boot mode. The bootloader then sets the EMIF control registers for accessing 8 or 16 bits
according to the mode selected. The first 1024 bytes of data are copied from the FLASH memory into the
first 1kBytes of TMS320C672xx internal memory. The bootloader sets the program counter to 0x10000004
(offset of 0x4 in internal memory) and execution of code begins at this address. It is assumed that the first
1024 bytes of code/data contain a user defined secondary bootloader or other user application code that
will load/execute the application.

2.3 I2C Master

The bootloader expects data from the I2C to be in AIS format. It first attempts to read the magic word
(0x41504954) from the I2C on address 0x50. If the magic word is not detected, the boot mode will fail and
the bootloader will execute an infinite while loop. If the bootloader reads the correct magic word, it will
expect a valid AIS command as the next data in the stream. The bootloader will continue processing AIS
commands and data until an AIS "JUMP_CLOSE" command is encountered.

The bootloader supports devices obeying the standard SPI serial EEPROM protocol established by
Motorola. The data burnt into the serial EEPROM must be in AIS format.

2.4 I2C Slave

The DSP I2C peripheral has its own address set of 0x29. The host (master) is required to establish a link
with the DSP in the beginning. The host begins transmitting data in application image script (AIS) format.
For details about link establishment, see Section 5. For details about, AIS see Section 3.

2.5 SPI Master

The bootloader attempts to read a magic word (0x41504954) through SPI. If the magic word is not
obtained during the read call, the detection of this boot mode fails and the bootloader logic ends up in an
infinite while loop.

5SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Application Image Script www.ti.com

The bootloader supports devices obeying the standard SPI serial EEPROM protocol established by
Motorola. The data burnt into the serial EEPROM must be in AIS format.

The bootloader initializes SPI0 of the DSP to operate with following configuration.
• SIMO, SOMI, and CLK are configured as functional SPI pins.
• SCS0 is configured as GPIO pin , with chip select being driven by state of this pin.
• SPI0 Control registers are set as follows:

Table 7. SPI Configuration for Master Boot

Register Value Description

SPIPC0 0x00000E00 Selects SIMOFUN, SOMIFUN and CLKFUN to be SPI
functional pins, SCSFUN is configured as GPIO

SPIPC1 0x00000001 Sets SCSDIR0 direction as output

SPIGCR1 0x00000003 Sets CLKMOD as internal, places SPI in MASTER mode

SPIFMT0 0x0002FF10 Selects CHARLEN of 16, PRESCALE of 256, and CLK
polarity as clock inactive HIGH

SPIDELAY 0x06021030 Sets C2EDELAY of 48, T2EDELAY of 17, and T2CDELAY
of 2

2.6 SPI Slave

The host (master) is required to establish a link with the DSP in the beginning. The host begins
transmitting data in AIS format. For details about link establishment, see the Section 5. For details about
AIS, see the Section 3.

When SPI slave boot mode is selected, the on-chip bootloader configures SPI0 as follows:
• SIMO, SOMI, CLK, and SCS are configured as functional SPI pins.
• SPI0 control registers are set as follows:

Table 8. SPI Configuration for Slave Boot

Register Value Description

SPIPC0 0x00000E01 Selects SIMOFUN, SOMIFUN, CLKFUN, and SCSFUN
are configured as functional SPI pins

SPIGCR1 0x00000000 Sets CLKMOD as external, with slave mode selected

SPIFMT0 0x00020010 Selects CHARLEN of 16, and CLK polarity as clock
inactive HIGH

3 Application Image Script

The bootloader accepts boot information in the form of a script, called application image script (AIS).
Application image script is a Texas Instruments proprietary application image transfer format. This script is
a binary file consisting of a script header followed by various commands that are interpreted and executed
by the bootloader. Each command contains an op-code, followed by optional additional data required to
execute the op-code. The bootloader supports AIS Version 1.0.

6 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

MAGIC − 0x41504954

Command 1

. . .

Command 2

Command N

Op−code

Optional data

. . .

www.ti.com Application Image Script

The AIS starts with a magic word (0x41504954), followed by a series of commands shown in Figure 2.
Each command, in turn, consists of an op-code followed by optional additional data.

Figure 2. Basic Structure of Application Image Script

The bootloader only accepts data in AIS format for all modes leaving parallel flash and HPI. The following
sections define each command with appropriate op-code, structure, and placement in AIS. Table 9 lists
the various opcodes that are supported by AIS 1.0:

Table 9. AIS Version 1.0 Supported Opcodes

Opcode Value

Section Load 0x58535901

Request CRC 0x58535902

Enable CRC 0x58535903

Disable CRC 0x58535904

Jump 0x58535905

Jump_Close 0x58535906

Set 0x58535907

Start Over 0x58535908

Reserved 0x58535909

Section Fill 0x5853590A

Ping 0x5853590B

3.1 SET Command

Set commands are a simple mechanism that enables you to write 8-bit, 16-bit, or 32-bit data to any
address in DSP address space. There is a provision to provide delay after the memory write happens.
This can be used for memory mapped register write to take effect. Set commands are used to configure
various peripherals of DSP which includes PLL and EMIF at minimum and can configure more
peripherals, if required.

When the DSP is powered-up, the PLL multiplier is bypassed and PLL Divider D1 is set to divide-by-1. As
a result, the CPU is clocked at the same frequency as connected crystal/CLK IN, which is generally very
low. This results in slow communication and high boot time. In order to reduce boot time, PLL and EMIF
registers should be configured at the very beginning of boot process. For this reason, all set commands
are placed at the beginning of AIS as shown in Figure 3.

7SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

MAGIC − 0x41504954

SET command

. . .

More SET commands

SET op−code

Data

. . .

Other commands

. . .

0x58535907

<TYPE>

<DATA>

<ADDRESS>

<DELAY>

Application Image Script www.ti.com

Figure 3. Structure of Set Command

Each set command consists of SET (0x58535907) op-code, followed by four words of additional data as
shown. SET entries in AIS are explained using the following representation:
<Address> = <Data><Type>: : <Sleep>

The above command instructs the bootloader to write <Data> to address <Address> in DSP address
space and the sleep for <Sleep> * CPU clocks. The number of CPU cycles specified by <Sleep> is treated
as unsigned value. The data-type field <Type> determines the size of the data item such as 8-bit(B),
16-bit(S) or 32-bit(l). Data-type also may be a “field” or “bits”. This allows setting of a particular range of
bits within the data at the specified address. For “field” and “bits” data-types, the <Type> field also
encodes the “start” and “stop” bit positions that define the field to be modified. Table 10 gives a full list of
the data-types that may be used.

Table 10. Data Types

Data Type Value

8-bit 0

16-bits 1

32-bits 2

Field (1-32bits) 3

Bits (1-32bits) 4

The “field” and “bits” data-types are handled similarly by the bootloader. The difference between these
types are that with a specifier of “field” , the bootloader performs a read/modify write operation at the given
address. The “bits” data type results in a read of the address, followed by a write of the new value to the
address. The <Type> specification is a 32 bit word that contains fields for data type (shown above), “start
bit”, and “stop bit”. The “start bit” and “stop bit” fields are required only if a data-type of “field(3)” or (bits(4)”
is used. These fields delimit the number of bits that are affected by the instruction. Table 12 shows the
encoding of the 32 bit <Type>.

Figure 4. <Type> Field

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd Stop bit Start bit Data type

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

8 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

SET commands

SL command

. . .

More SL commands

SECTION_LOAD op−code

Data

. . .

Other commands

. . .

0x58535901

<ADDRESS>

<DATA>

<SIZE>

MAGIC − 0x41504954

. . .

www.ti.com Application Image Script

Table 11. <Type> Field Descriptions

Bit Field Value Description

31-24 Reserved

23-16 Stop bit Stop bit (for "bits" and "fields" data type) last bit position in word that delimits field

15-8 Start bit Start bit (for "bits" and "fields" data type) first bit position in word that delimits field

7-0 Data type Data Type (0,1,2,3,4) specifies type of data to write

Table 12. Numeric Formats that can be used in BTEs

Name Format Example 1 Example 2 Example 3

Hexadecimal 0[xX][0-9a-fA-F]+ 0x1234abCD 0x1000 0X5a

Hexadecimal [0-9a-fA-F]+[hH] 1234ABCDh 1000H 5ah

Octal 0[0-7]+ 02215125715 010000 0132

Decimal [0-9]+ 305441741 4096 90

3.2 Section Load Command

Section load commands are used to load a particular chunk of code/data to DSP memory. All initialized
sections (such as .text) are loaded to DSP memory using Section load commands. These commands are
placed after all set commands in AIS.

Figure 5. Structure of Section Load Command

Each section load command consists of SECTION_LOAD (0x58535901) op-code, followed by section’s
start address, size and contents.

9SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

SET commands

SL/SF commands

. . .

More SL/SF commands

SECTION_FILL op−code

Optional data

. . .

Other commands

. . .

0x5853590A

<ADDRESS>

<TYPE>

<SIZE>

MAGIC − 0x41504954

SF command

<PATTERN>

SET commands

SL/SF commands

. . .

More SL/SF commands

JUMP op−code

Optional data

. . .

Other commands

. . .

0x58535905

<ADDRESS>

MAGIC − 0x41504954

JMP command

Application Image Script www.ti.com

3.3 Section Fill Command

Section fill commands are used when a particular section is filled with a specific pattern. For example, a
section that contains all zeros is initialized with section fill command. These commands are placed
anywhere where a regular section load command occurs.

Figure 6. Structure of Section Fill Command

Each section fill command consists of SECTION_FILL (0x5853590A) op-code, followed by section’s start
address, size, pattern-type (8/16/32-bit) and pattern to be filled.

3.4 Jump Command

This command instructs the DSP to jump to start address of earlier loaded application. It consists of JUMP
(0x58535905) op-code, followed by the jump address.

Figure 7. Structure of Jump Command

This command may be used to execute code that has been previously loaded through Section Load and
Section Fill commands. It could be used to implement a secondary load process or to execute application
code necessary to setup other processes before remainder of code/data is loaded. Once, the JUMP
command is issued, execution will begin at the indicated start address. When execution is over, it is the
responsibility of the application code to execute a return instruction. This enables return of control to the
on-chip bootloader. Normal AIS interpretation and execution will continue at that point.

10 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

SET commands

SL/SF commands

JUMP_CLOSE op−code

Optional data

. . .

0x58535906

<ADDRESS>

MAGIC − 0x41504954

JC command

www.ti.com Application Image Script

3.5 Jump_Close Command

This command is used at the end of the boot process to start execution of loaded application. This
command instructs the DSP to terminate boot process and jump to start address of loaded application.

Figure 8. Structure of Jump_Close Command

The command is placed at the end of AIS, after all other commands. It consists of JUMP_CLOSE
(0x58535906) op-code, followed by the start address of the application where the bootloader should jump.

3.6 CRC Options

There is a possibility of error in communication when DSP is booting up. Execution of a corrupted
application image may result in instability or malfunction. In order to avoid such problems, AIS supports
opcodes to verify the validity of data loaded through Section Load / Section Fill commands. A proprietary
32-bit CRC computation algorithm is used for verification. The three options available are:

No CRC

With this option, CRC computation is disabled and there is no way to detect or correct any error.

Single CRC

With this option, single CRC will be computed for all the sections. Verification will be done at the end, just
before Jump_Close command. In case of error, all the sections are loaded again. CRC will be recalculated
and re-verified again at the end.

Section-Wise CRC

With this option, CRC is computed for each section. Verification is done at the end of each section. The
section is reloaded in case of error.

11SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

SET commands

SL/SF commands

ENABLE_CRC op−code

Optional data

. . .

0x58535903

(No optional data)

MAGIC − 0x41504954

JC command

ENABLE_CRC command

SL/SF commands (No optional data)Optional data

JC command
. . .

MAGIC − 0x41504954

SET commands

DISABLE_CRC command DISABLE_CRC op−code 0x58535904

Application Image Script www.ti.com

3.6.1 Enable/Disable CRC Commands

These commands are used to enable/disable computation of CRC for sections loaded through Section
Load / Section Fill commands.

Figure 9. Structure of Enable CRC / Disable CRC Commands

These commands consist of only a single ENABLE_CRC (0x58535903) or DISABLE_CRC (0x58535904)
op-code. There is no additional data required.

3.6.2 Request CRC Command

This command is used to request and validate current value of CRC computed by DSP. Using this
command requires that the Enable CRC command is issued earlier in the AIS stream. This command
consists of REQUEST_CRC(0x58535902) op-code, followed by the expected CRC value and a
seek-value. The CRC of loaded/filled section(s) are compared with the expected CRC value. If the CRC is
correct, seek-value is ignored and execution shall continue from next command.

A mismatch in CRC indicates that the data loaded to the DSP memory using earlier Section Load/ Section
Fill commands is corrupted. In order to load data again, AIS has to be re-executed from the last error-free
point (i.e last valid command). The seek-value is expressed in bytes, and is a negative number that is
added to the current address in AIS. By adding the seek-value, the AIS stream is then pointed back to the
last known good state and AIS interpretation continues from this address.

When operating in master mode, CRC read/compare/seek adjustment are performed automatically by the
bootloader. In slave mode operation, a REQUEST_CRC command results in the bootloader transmitting
the current CRC value calculated by the DSP to the Host. The Host may then send a Start-Over command
as described in next section. On receiving the Start-Over command the DSP knows that CRC error has
occurred. It resets its CRC computation and becomes ready to accept more commands from the host. The
next command expected by the DSP is a PING command, followed by Host/slave mode exchange
(XMT_START/RECV_START).

Please refer to Appendix A for code used to calculate CRC values.

12 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

SET commands

First SL/SF command

REQUEST_CRC op−code

Optional data

. . .

0x58535902

MAGIC − 0x41504954

JC command

ENABLE CRC command

More SL/SF commands

. . .

REQ CRC command

<CRC>

<SEEK>

SET commands

SL/SF command

REQUEST_CRC op−code

Data

. . .

0x58535902

MAGIC − 0x41504954

JC command

ENA CRC command

REQ CRC command

<CRC>

<SEEK>

SL/SF, REQ CRC
commands

. . .

. . .
commands

More SL/SF, REQ CRC

www.ti.com Application Image Script

Figure 10. Structure of Request CRC Command for Single CRC Option

For single CRC option, this command appears only once in AIS after the last Section Load / Section Fill
command. The seek value is interpreted as a negative number, which when added to the current offset in
AIS, will make offset point to start of the first Section Load / Section Fill command as shown.

Figure 11. Structure of Request CRC Command for Section-wise CRC Option

For section-wise CRC option, this command appears after each Section Load / Section Fill commands.
The seek value is interpreted as a negative number, which when added to current offset in AIS, will make
offset point to start of the previous Section Load / Section Fill command as shown.

3.6.3 Start-over Command

The start-over command consists of a STARTOVER (0x58535908) op-code with no additional data. This
instructs the bootloader to reset its computed CRC value to 0.

It has to be issued by the host on its own when it detects a CRC mismatch for slave modes. For master
modes, this is handled by the bootloader state machine.

13SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

External Serial EEPROM Boot www.ti.com

4 External Serial EEPROM Boot

The bootloader contains the AIS interpreter for parsing the data read from the serial EEPROM. After
parsing the data retrieved, the bootloader takes appropriate actions in order to execute the opcode.

5 External Host Processor Boot

When booting from the external host processor, the host processor acts as a boot master and the DSP
acts as slave. Since the DSP does not have direct access to AIS, the host processor has to transfer it to
the DSP through a well-defined protocol explained in following sections. An AIS interpreter is required on
the host processor to control this transfer.

5.1 AIS Interpreter on the Host

The AIS interpreter on the host is responsible for transferring the AIS to the DSP. For this, it has to
understand the transfer protocol and implement the required handshake mechanism. The AIS interpreter
on host directly interacts with the bootloader on the DSP.

NOTE: For the sake of simplicity, AIS interpreter on host will be simply referred to as ‘host’ and
bootloader on TMS320C672x devices as ‘DSP’ in this section.

It is important to have a successful link establishment between the DSP and the host before starting
transfer of AIS. Once the link is established, AIS is transferred to DSP. The whole process is divided into
three phases:
• start-word synchronization (SWS)
• ping op-code synchronization (POS)
• op-code synchronization (OS)

5.2 Start-Word Synchronization

Start-word synchronization (SWS) is the default power-up state and is responsible for initiating
communication between the DSP and the host.

The bootloader tries to read the transmit start-word (XMT_START) from the host. After receiving it, the
DSP acknowledges by sending receiver-start-word (RECV_START) to the host.

The XMT_START and RECV_START can be 8-bit, 16-bit, or 32-bit depending on the boot mode used.
The following table shows corresponding values for different boot modes. Please note that in all cases the
bootloader expects data to be transmitted most significant bit (MSB) first.

Boot Mode XMT_START RECV_START

8-bit 0x58 0x52

16-bit 0x5853 0x5253

32-bit 0x58535441 0x52535454

14 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Start

Send XMT_START

Receive a word

Is it
RECV_START

?

Start

No

Yes

XMT_START

XMT_START

XMT_START

RECV_START

Host DSP

www.ti.com External Host Processor Boot

The host must keep on sending XMT_START until it receives RECV_START from the DSP. This process
initiates communication between the DSP and the host. Figure 12 shows the flowchart of how SWS is
implemented on the host.

Figure 12. Flowchart: Start-Word Synchronization

5.3 Ping Op-code Synchronization

Ping Op-code Synchronization (POS) is used to make sure that the boot mode selected is correct and the
communication link between the host and the DSP is reliable.

After successful SWS,

• DSP waits for the host to send PING_DEVICE (0x5853590B) op-code. On receiving it, DSP
acknowledges it by sending RECV_PING_DEVICE (0x5253590B) to the host.

• The host then sends a number N to the DSP and gets back the same number from the DSP as
acknowledgment.

• The host shall then start sending numbers 1 to N to DSP and will receive the same sequence as
acknowledgment.

POS is implemented as a simple bootloader command and it can be issued any time during AIS transfer
to check reliable communication. If POS fails at any point, the DSP and the host are required to start all
over again from SWS. Figure 13 shows the flowchart of how POS is implemented on the host.

15SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Start

Send PING_DEVICE
and receive a word

SWS
No

Yes

and receive a word
Send N

N
?

Is it

Yes

SWS
No

2,3,...,N−1

Is it
1
?

SWS
No

Send 1
and receive a word

Yes

Is it
N
?

No

Send N
and receive a word

SWS

End

PING_DEVICE

RECV_PING_DEVICE

N (2)

N (2)

1

2

1

2

Host

Is it
RECV_PING_

DEVICE?

DSP

External Host Processor Boot www.ti.com

Figure 13. Flowchart: Ping Op-code Synchronization

5.4 Op-code Synchronization (OS) for Serial Slave Modes

After a successful link establishment, the DSP and the host are ready to transfer AIS commands. Since all
AIS commands start with an op-code, the DSP waits to receive one of valid op-codes from the host. For
serial slave modes on receiving an opcode, the DSP acknowledges by sending corresponding RECV
opcode. This process is referred to as opcode synchronization.

All opcodes (including PING_DEVICE) transmitted by the host to the DSP are of the form 0x585359##,
where ## varies for individual op-codes. DSP acknowledges each op-code by corresponding RECV
op-code. RECV op-codes are generated from the original op-codes by changing the most significant byte
to 0x52. Thus, they are of the form 0x525359##.

16 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Start

Send <0p−code>
and receive a word

Is it
RECV_

<op−code>
?

End

No

Yes

<op−code>

RECV_<op−code>

<op−code>

<op−code>

Host DSP

www.ti.com Bootloader Utilities

Not getting a correct response (RECV op-code) from DSP means that the DSP is busy executing an
earlier op-code. The host should continue sending the op-code until successfully acknowledged by the
DSP. Figure 14 shows the flowchart of how OS is implemented on the host.

Figure 14. Flowchart: Op-code Synchronization

DSP starts executing the op-code only after the OS is finished. If more information is required in order to
execute the op-code, the DSP gets it from the host before starting execution. The host is required to
understand each op-code and supply required data to the DSP from the AIS.

The DSP keeps on executing commands from the host until it gets a Jump_Close command, using
Op-code synchronization at the beginning of each command. On getting JNC command, the DSP closes
the peripheral used for booting, terminates the boot process and jumps to the address specified along with
the op-code.

6 Bootloader Utilities

Two software utilities, genBootCfg and genAIS, have been developed to assist in creating AIS data
streams for booting in SPI or I2C boot modes. genAIS, may also be used with output from genBootCfg to
generate a template for a secondary bootloader that can be used for booting from Parallel Flash.
genBootCfg is a Perl TK GUI that assists you in creating configuration data for PLL, EMIF SDRAM and
ASYNC RAM, and GPIO pin configuration for GPIO pins that may be used as address pins for extending
the addressing for Parallel Flash boot. genBootCfg produces two output files, *.cfg and *cfg.c. The .c file
contains code to perform peripheral initialization for PLL, SDRAM, ASYNC RAM according to options
selected when running genBootCfg. If the secondary bootloader is not used, this code could be
incorporated in any source code to initialize PLL or EMIF.

The SPI, I2C and secondary bootloader require AIS data streams for boot load. genAIS, creates the
necessary AIS boot format needed for each of these boot modes. This utility expects as input an
application object (*.out) and an optional *.cfg file saved from invocation of genBootCfg, and produces an
AIS boot format file in either ASCII, binary, or C672x assembly format. The AIS data stream produced can
be programmed onto an I2C or SPI EEPROM or Flash. When using C672x assembly format as output,
this assembly can be assembled and linked and then input to the TMS320C6000 Hex Conversion Utility
(hex6x, see Code Gen Tools UG).

NOTE: The .cfg file is optional for SPI and I2C boot, but is required when generating secondary
bootloader for Parallel Flash boot.

genAIS can be invoked from a command line or within a makefile, so that it may be included as part of an
application build script.

17SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

6.1 Installing Bootloader Utilities

If you do not currently have Perl 5.8.4 or 5.8.6 installed on your machine, please download and install the
latest version for your platform from any available site. Versions later than 5.8.6 have been reported to
cause problems.

Once installation is complete, please add the following variables to your environment:

PERL5LIB=myUtilInstalDirl\lib
PATHEXT = %PATHEXT%, .PL
PATH = %PATH%; myUtilInstallDir\bin

From any command window, genBootCfg or genAIS, may now be invoked.

6.2 Using genBootCfg

genBootCfg is a simple Perl Tk GUI. No arguments are needed when invoking the utility. To start the GUI,
type ‘genBootCfg’ on the command line. The main GUI interface will be displayed.

Figure 15. genBootCfg Main Menu Window

There are a few generic operations that will apply to all configuration windows:
• To save a configuration, click OK provided in each configuration window.
• To clear a current set of choices, click CLEAR provided in the configuration window. This will remove

all choices back to the power on default settings.
• To cancel any configuration operation, click CANCEL. No configuration will be performed for any

configuration window that has been cancelled.

18 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

6.2.1 File Operations

To perform any file operation such as open or save, choose the appropriate item from the File pulldown
menu. The following set of options is supported.

• New - Creates a new set of configuration files. The root filename for the configuration file will be used
in naming the corresponding C source file.

• Open - Opens a previously saved configuration file.
• Save - Saves configuration to the current selected file.
• Save as - Saves configuration to another file.
• Exit - Exits configuration tool.

Figure 16. File Pulldown Menu

By default, the script will produce output files, boot.cfg and bootcfg.c. To change the output file name, use
the File pulldown menu and select New or use the Save as feature to save the configuration in a different
file.

6.2.2 Selecting Device Package Type

From the main menu you should first choose the device type for which you want to perform configuration.
This is either “BGA” or “TQFP”. Choosing the package type affects the number of address pins which may
be configured and the number of GPIO pins available for configuration when extending the EMIF address
range for boot from Parallel Flash.

19SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Figure 17. Package Type Pulldown Menu

6.2.3 Configuring the PLL

From the main menu window, click the “Configure PLL” checkbox. A new window will pop-up. Configuring
the PLL requires the following input parameters:

• Oscillator source - Choose either the "internal" or "external"
• Oscillator frequency - Input oscillator frequency
• Maximum CPU frequency - Maximum CPU frequency required by application
• Maximum EMIF frequency - Maximum EMIF frequency required by application
• CPU versus EMIF weight - Weight given to approximation method when determining PLLM, and

PLLDIV values needed to generate the requested CPU and EMIF frequencies.

20 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Figure 18. PLL Configuration Window

To have the best-fit algorithm calculate a set of PLL settings, click “Calculate ‘n’ Best Solutions” button in
the PLL configuration window. The best-fit algorithm will generate a number of possible combinations of
PLLM, and PLLDIV0, PLLDIV1, PLLDIV2 , and PLLDIV3 values that will approximate the CPU and EMIF
frequencies. The solutions will be displayed in a separate frame which is generated once calculations are
complete. The best fit solution will be highlighted. To see other possible solutions, use the “prev” and
“next” buttons to browse through the solution data base.

21SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Figure 19. PLL Configuration Solutions Frame

To save a particular set of PLL configurations, simply click OK while that solution is being displayed. The
PLL configuration is capable of providing solutions for more than one set of PLL oscillator, CPU and EMIF
frequency inputs, if comparison between different PLL input settings is required. Multiple solution frames
will be generated.

22 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Figure 20. Multiple PLL Solution Windows

23SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

To save the PLL settings, simply click OK in the frame where the needed solution is currently being
displayed.

6.2.4 I2C Clock Configuration

The I2C clock may be configured by selecting the I2C Clock Config checkbox on the genBootCfg main
menu.

Figure 21. I2C Clock Configuration Selection from Main Menu

A configuration window will then open that allows you to specify the clock dividers, PSC, CLKH, and
CLKL.

24 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Figure 22. I2C Clock Configuration Window

Please consult the specification for the I2C serial EEPROM for your device to determine appropriate
values for PSC, CLKH, CLKL.

6.2.5 SDRAM Configuration

SDRAM configuration is accomplished by clicking the check box labeled “Configure SDRAM”, in the main
GUI window.

Once the “Configure SDRAM” checkbox is selected, a new pop-up window appears, that allows setting
parameters for SDRAM.

25SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Figure 23. SDRAM Configuration Window

The input parameters in the SDRAM configuration window, map to the available fields in the EMIF
configuration registers for SDRAM control, and refresh timing setup. For detailed information regarding
these parameters and an example of how to set these parameters for a particular memory, please refer to
the TMS320C672x DSP External Memory Interface (EMIF) User’s Guide (SPRU711). Please note that
many of the EMIF register fields encode the number of required cycles as “number of cycles – 1”. The
genBootCfg utility automatically subtracts one from the number of cycles specified in the GUI input to
properly encode the register fields. When inputting the number of cycles, please input the number required
and not the value to encode in the register field.

6.2.6 ASYNC Ram Configuration

To configure EMIF control registers for Asynchronous RAM, simply click the check button labeled
“Configure EMIF – ASYNC RAM”, in the genBootCfg main menu window. When this is selected, the
ASYNC Ram configuration window pops-up to allow setup of parameters for configuring EMIF connection.

The input parameters for ASYNC RAM configuration correspond the fields that are described in the EMIF
control registers for Asynchronous memory interface. For detailed descriptions of these fields and their
meaning, please refer to the TMS320C672x External Memory Interface User’s Guide (SPRU711). Please
note that as with the case of SDRAM configuration, many of the control register fields encode cycle timing
requirements as “number of cycles – 1”. The genBootCfg utility will automatically subtract one from those
fields that meet this requirement when encoding the register values. Therefore, when entering cycle
counts, please enter the number of cycles required and not the value expected in the register field.

26 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Figure 24. ASYNC RAM Configuration Menu

6.2.7 Configuring GPIO Pins as Address Pins

The TMS320C672x EMIF supports 12 (TQFP packaging) or 13 (BGA packaging) address pins on the
EMIF to address Parallel Flash memories. This limits the maximum number of elements in the flash which
may be addressed to 8K for BGA package. For applications booting from Parallel Flash that require an
address range beyond this limit, GPIO pins may be used to extend the addressing range. The on-chip
bootloader does not currently support extending the address range using this method. It will copy the first
1024 bytes of code/data from the Parallel Flash and begin executing from location 0x10000004 in internal
memory. It is assumed that this first 1024 bytes will contain code/data to complete boot of the remaining
application code/data. A secondary boot loader is therefore required for any sizeable application that must
boot from Parallel Flash.

A sample secondary bootloader is provided with the bootloader utilities, genBootCfg and genAIS. This
sample code utilizes the pin configuration information generated by genBootCfg to properly set the GPIO
pins to access extended FLASH addresses when loading application code/data to the DSP memory.

To choose GPIO pins to configure as address pins, select the check box from the main genBootCfg
window, “Configure GPIO pins as address pins”. A configuration window for GPIO – to- Address Pin
mapping will pop-up.

27SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Figure 25. GPIO to Address Pin Configuration Window

When the GUI is first invoked, all address pins are shown as “Not Mapped”. To configure a particular pin,
simply click on the pull-down menu that corresponds to the address pin that needs to be mapped. To
choose a GPIO pin, highlight the pin name in the list and then click to select.

28 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Figure 26. Mapping a GPIO Pin Using GPIO Pull Down Menu

29SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

All available GPIO pins are listed. Once a GPIO pin is selected to map to any of the address pins, the
utility will not allow it to be mapped again. Any attempt to select the same pin twice, will result in the
second attempt always showing the address pin as “Not Mapped”.

An alternate approach to defining a GPIO pin for each address pin in an extended range, is to use a
single GPIO pin as a latch. The genBootCfg utility and the example secondary bootloader support this
option as well. To select a single GPIO to use as an address latch, simply click in the check box labeled
“Use Pin #13, as latch for upper address”. (For TQFP package this will read use Pin #12, instead of Pin
#13). When this option is used, the utility will disable all pin mappings except one. Choose the GPIO pin
needed, by highlighting and clicking it in the pull down menu.

Figure 27. Selecting GPIO Pin as Latch

To keep the pin configuration, click OK.

NOTE: The numbering of the pins as given, are in counted in relation to the DSP's EMIF and not
from the perspective of any attached FLASH device. Each application must determine for the
FLASH device used, which address pins must be connected from the FLASH to the given
GPIO of the DSP to create the effective address.

30 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

6.2.8 Output Files

Once all configurations are complete, to save the settings go to the FILE pulldown menu and select SAVE.
The utility will then create two files: “filename.cfg and filenamecfg.c”. The “.cfg” file contains the raw
configuration information.

Example 1. “.cfg “file

##===## ## Boot Configuration File :
Date: Tuesday June 21,2005 11:12:43
##===##
#== # PLL Configuration
#== -pllCfg 0x1 -pllcfgosc
25.000000 -pllcfgcpu 0x0000012C -pllcfgemif 0x00000064 -pllcfgintosc 0x00000000 -pllcfgweight
0x00000003 -pllcfgpllm 0x00000018 -pllcfgdiv0 0x00000000 -pllcfgdiv1 0x00000001 -pllcfgdiv2
0x00000003 -pllcfgdiv3 0x00000005
#== # SDRAM Configuration
#== -sdramCfg 0
#== # ASYNC Ram Configuration
#== -asyncRamCfg 0x1 -asyncRamA1CR
0xBFFFFFFD -asyncRamAWCCR 0x10000080

6.2.8.2 TIBOOT Section and TIBootSetup Symbol

The “*cfg.c” file created by save, places all generated code within a named section called, “.TIBOOT”. The
“TIBootSetup” function defined in the “*cfg.c” file is contained in this section, and is the entry point for all
boot configuration for PLL, EMIF, etc. The genAIS tool looks for this section when –cfgtype “c” option is
chosen. genAIS automatically places code/data for “.TIBOOT” as the very first section to load within the
AIS data stream. Immediately following load of this section, genAIS places an AIS JUMP command with
the address of the “TIBootSetup” function as target. This forces execution of the configuration code.
Normal AIS processing will continue after “TIBootSetup” function has completed and control returns to the
on-chip bootloader.

6.3 genAIS

genAIS is a Perl script that takes an application “.out” file as input and produces an AIS data stream as
output. The utility supports creation of AIS data streams for I2C master/slave, SPI master/slave, and can
also produce “raw” AIS output for application specific use, or a stream that can be used with a sample
secondary boot loader that is included with this applications note. genAIS is a command line script. It can
be invoked within a makefile or other batch mode utility. The script takes an input application “.out” file and
produces an AIS data stream in either ASCII text format, raw binary, or C672x assembly using the
assembler’s “.word” directive. A list of options is given in Table 13.

31SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Table 13. genAIS options

Option Description Values

-ping (optional) Specifies number of words to transmit when User specified decimal number
PINGing device in I2C or SPI slave modes

-cfgtype (optional) Specified whether tool should generate AIS SET ais or c
commands to initialize PLL, EMIF, etc for boot, or ais => SET
should assume cfg was built with application file, command generated
and use AIS JUMP command to execute the c => JUMP to initialization code from cfg.c is
initialization code. generated

default => c

-i (required) Input filename (*.out) No default value, this is a required option

-o (optional) Output filename Default value is:
inputfilename.asm if output type is ASM

or,
inputfilename.ais if output type is ASCII

-cfg (optional for SPI and Configuration Filename name of configuration file created using genBootCfg
I2C bootmodes, required utility (see Section 7 for description)
for tisecboot bootmode)

-crc (optional) Request CRC be generated for section load 0 or 1
verification 0 selects no crc

1 selects crc generation
Default = 1

-otype (optional) Selects output file type asm or ascii
asm -> selects TMS320C672x assembly as output

ascii -> selects ASCII text output

-bootmode (required) Selects boot mode spimaster -> selects SPI master 8/16 bit mode
spislave -> selects SPI slave 8/16 bit mode

i2cmaster -> selects I2C master 8/16 bit mode
i2cslave -> selects I2C slave 8/16 bit mode

tisecboot -> selects use of TI sample secondary
bootloader (see Section 7 for description)

Default -> spislave
raw -> Selects raw AIS data stream

-pf (required for tisecboot Specifies data word size in bits of Parallel Flash 8 -> 8 bit Parallel Flash
mode if memory type is 16 -> 16 bit Parallel Flash

16 bit) Default -> 8

NOTE: This option is only
valid when specifying
tisecboot as
bootmode.

-pkg (optional if default is Specifies device package type bga -> Ball Grid Array [GDH suffix]
acceptable or if -cfg tqfp -> Thin Quad Flatpack [RFP suffix]
option is being used) Default -> bga

NOTE: Specifying this
option is unnecessary
when importing a
configuration file with
-cfg option.

A sample invocation of genAIS for SPI slave mode, generating ASCII output, is:
perl genAIS.pl -I myApplication.out -o myApplication.ais -bootmode spislave

6.3.1 -Bootmode option

The –bootmode option is used to select the correct AIS data stream for the physical boot mode selected
for TMS320C672xx devices. A simple assembly input file, shown in the code below, will be used as the
application source for displaying the AIS generation results for each optional bootmode. An example for
“tisecboot” mode is included in a separate section.

32 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

;======================================= ; Sample Assembly Source File ; a = 6; ; while(1) { ; b
= a + 1; ; c = b + 2; ; } ; ;======================================= .global _a,_b,_c .sect
"myData" _a .word 0xA _b .word 0xB _c .word 0xC .text .global Start Start: MVKL .S1 _a,A3 MVKL
.S1 _c,A5 MVKL .S1 _b,A4 MVKH .S1 _a,A3 || MVK .S2 6,B4 STW .D1T2 B4,*A3 || MVKH .S1 _c,A5 MV
.L2X A3,B5 || MVKH .S1 _b,A4 loop: LDW .D2T2 *B5,B4 NOP 4 ADD .L2 1,B4,B4 STW .D1T2 B4,*A4 NOP 2
LDW .D1T1 *A4,A3 NOP 4 ADD .L1 2,A3,A3 STW .D1T1 A3,*A5 NOP 2 B .S1 loop NOP 5

This example was linked with the following linker MEMORY and SECTIONS directives

/**/ /* Specify the
Memory Configuration */
/**/ MEMORY
{ ROM : origin = 0x00001000 length = 0x000BF000
VEC : origin = 0x10000000 length = 0x00000A00
RAM : origin = 0x10001C00 length = 0x0003E400
SDRAM : origin = 0x80000000 length = 0x08000000
ASYNC2 : origin = 0x90000000 length = 0x00008000
}

/**/
/* Specify the Output Sections */
/**/

SECTIONS
.TIBoot: load = RAM
.text: load = RAM
myData: load = RAM
.stack load = RAM
.cinit load = RAM
.cio load = RAM
.const load = RAM
.data load = RAM
.switch load = RAM
.far load = RAM
.bss load = RAM
.sysmem load = RAM
.pinit load = RAM }

The next example shows the memory addresses for global symbols and sections defined in the example
source.
GLOBAL SYMBOLS: SORTED BY Symbol Address address name -------- ---- 10001c00 ___end__ 10001c00
___edata__ 10001c00 ___data__ 10001c00 end 10001c00 edata 10001c00 ___text__ 10001c00 ___bss__
10001c00 .text 10001c00 .bss 10001c00 .data 10001c00 $bss 10001c00 Start 10001c60 etext 10001c60
_a 10001c60 ___etext__ 10001c64 _b 10001c68 _c ffffffff ___c_args__ ffffffff ___binit__ ffffffff
binit

The same code and linkage are used to illustrate output from each –bootmode option.

6.3.1.1 -bootmode i2cslave/spislave

The AIS data stream is exactly the same for “i2cslave” and “spislave” bootmodes. The data stream for
I2C/SPI slave modes requires the host to send a transmit start word, followed by an AIS, PING_DEVICE
command. The AIS data stream created when using –bootmode spislave or –bootmode i2cslave contains
the transmit start word, and PING_DEVICE command as part of the stream. Please refer to Section 3 for
details of PING_DEVICE command. The number of words transmitted as part of the PING_DEVICE
command is configurable using the genAIS –ping option. The default value is 10.

Using AIS data stream was generated by the following invocation of genAIS tool:
genAis -I docExample.out -o docExample_spiSlave.ascii -bootmode spislave -otype ascii

Table 14. AIS Data Output

AIS Command Data Value in File docExample_spiSlave.ascii

AIS Magic Number 0x41504954

XMT_START Word 0x00005853

PING_DEVICE Command 0x5853590B

Number of data words transmitted for ping 0x0000000A

First data word of ping command 0x00000001

33SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

Table 14. AIS Data Output (continued)

AIS Command Data Value in File docExample_spiSlave.ascii

Second data word of ping command 0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

Last data word of ping command 0x0000000A

ENABLE_CRC Command 0x58535903

SECTION_LOAD Command (.text section) 0x58535901

Section Load Address 0x10001C00

Section size in 8-bit bytes 0x00000060

First 32 bit word of section data 0x018E3028

Second 32 bit word of section data 0x028E3428

0x020E3228

0x01880069

0x0200032A

0x020C0277

0x02880068

0x028C105B

0x02080068

0x021402E6

0x00006000

0x0210205A

0x02100276

0x00002000

0x01900264

0x00006000

0x018C4058

0x01940274

0x00002000

0x0FFFFC90

0x00008000

0x00000000

0x00000000

Last word of section data 0x00000000

REQUEST_CRC Command 0x58535902

Expected CRC value for this section 0xB0EC107D

Offset to last valid AIS command in stream 0xFFFFFF88

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error.

SECTION_LOAD Command (myData section0 0x58535901

Section load address 0x10001C60

34 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Table 14. AIS Data Output (continued)

AIS Command Data Value in File docExample_spiSlave.ascii

Section size in 8bit bytes 0x0000000C

First 32bit word of section data 0x0000000A

0x0000000B

Last 32bit word of section data 0x0000000C

REQUEST_CRC Command 0x58535902

Expected CRC value for this section 0xBBE311D7

Offset to last valid AIS command in stream 0xFFFFFFDC

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error)

JUMP_CLOSE Command 0x58535906

Start address of application code 0x10001C00

NOTE: Please note that although the stream contains the AIS magic number as the first word of the
file, this data is not transmitted by the MASTER. The first data word transmitted by the host
should be the XMT_START instruction, to begin MASTER-to-DSP handshake.

After transmitting the XMT_START word, the host should wait to receive acknowledgment from the DSP.
If the XMT_START is received correctly, the DSP will respond with appropriate RECV_START word. For
I2C/SPI slave modes, this values is 0x5253. After the host receives the RECV_START, then continue
transmission with the PING_DEVICE command and its associated data.

When the DSP receives the PING_DEVICE command, it will read the first data word of the command.
This word tells the DSP how many data words to expect as part of the ping command sequence. The DSP
sends this same data word back to the MASTER in acknowledgment that it has received the
PING_DEVICE command. The MASTER then proceeds to send the remaining data words to complete
PING.

The MASTER device then transmits any valid sequence of AIS commands and data until the
JUMP_CLOSE command is sent.

When the DSP encounters a REQUEST_CRC in the AIS stream, it will send to the MASTER device the
current CRC value it has calculated for the loaded code/data. If this matches the CRC value the MASTER
sends as part of the REQUEST_CRC command, no further action is required, and the DSP wait to
process the next AIS command sent from the MASTER device. However, if the CRC value is in error, the
HOST has the option of terminating the boot process or attempting re-transmission of last command/data.
The second word of the REQUEST_CRC command contains a signed offset that points to the last valid
AIS command previously encountered in the AIS data stream. To retry transmission, the MASTER adjusts
the current data stream pointer by the amount specified in the REQUEST_CRC command. The
repositions the data stream and the MASTER begins transmission of AIS commands/data from this point.

35SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

For example of software that implements the MASTER side of I2C/SPI slave mode using AIS, please see
the example: TMS320C672xxBootUtils\Examples\generic\spiSlave that is included with the .zip file
attached to this application note. The example code was run using 6713DSK as the MASTER device and
the TMS320C672xx present on the PADK as SPI slave. The connections used for SPI communication
were as follows:

Using McBSP1 of TMS320C6713 connected to SPI0 of TMS320C6727, connect following pins:

TMS320C6713 McBSP1 TMS320C6727 SPI0

DR1 → SPI0_SOMI

DX1 → SPI0_SIMO

CLKX1 → SPIO_CLK

FSR1 → SIO0_SCSn

6.3.1.2 -bootmode i2cmaster/spimaster

In this bootmode the TMS320672xx acts as the MASTER SPI device. The AIS data stream is exactly the
same for both i2cmaster and spimaster modes. Table 15 presents the AIS data stream for example.asm,
when i2cmaster bootmode is selected:
genAis -I docExample.out -o docExample_i2cMaster.ascii -bootmode i2cmaster -otype ascii

Table 15. AIS Data Output in file docExample_i2cMaster.ascii

AIS Command Data From file docExample_i2cMaster.ascii

AIS Magic Word 0x41504954

REQUEST_CRC Command 0x58535903

SECTION_LOAD Command (.text section) 0x58535901

Section load address 0x10001C00

Section size in 8bit bytes 0x00000060

First 32bit word of section data 0x018E3028

Second 32 bit word of section data 0x028E3428

0x020E3228

0x01880069

0x0200032A

0x020C0277

0x02880068

0x028C105B

0x02080068

0x021402E6

0x00006000

0x0210205A

0x02100276

0x00002000

0x01900264

0x00006000

0x018C4058

0x01940274

0x00002000

0x0FFFFC90

0x00008000

0x00000000

0x00000000

Last 32 bit word of section data 0x00000000

36 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Bootloader Utilities

Table 15. AIS Data Output in file docExample_i2cMaster.ascii (continued)

AIS Command Data From file docExample_i2cMaster.ascii

REQUEST_CRC Command 0x58535902

Expected CRC value 0xB0EC107D

Offset to last valid AIS command in stream 0xFFFFFF88

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error)

SECTION_LOAD Command 0x58535901

Section load address 0x10001C60

Section size in 8bit bytes 0x0000000C

First 32bit word of section data 0x0000000A

0x0000000B

Last 32bit word of section data 0x0000000C

REQUEST_CRC Command 0x58535902

Expected CRC value 0xBBE311D7

Offset to last valid AIS command in stream 0xFFFFFFDC

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error

JUMP_CLOSE command 0x58535906

Start address of application code 0x10001C00

When the DSP is the MASTER I2C/SPI device, it reads the first word of the AIS stream and expects to
find the AIS magic word. Therefore, this MUST be the first word burned into the EEPROM when DSP is
Master for either I2C or SPI boot modes. If the DSP reads the AIS magic word, it will then begin to
process all subsequent AIS commands/data in the stream, until JUMP_CLOSE command is encountered.
Once JUMP_CLOSE command is processed the DSP branches to the address given in the instruction to
begin execution of application.

If a CRC error is encountered when processing the REQUEST_CRC command, the DSP will adjust the
address pointer to point to last valid AIS command read from EEPROM device to re-try fetch of data. The
DSP currently will try to process a section load twice before aborting the boot process.

6.3.1.3 -bootmode raw

The “raw” bootmode option produces a simple AIS data stream that could be used when implementing a
customized secondary boot loader for EMIFA/FLASH boot or as input to HOST software that implements
UHPI boot. The data stream produced by genAIS tool is same as for I2C/SPI master boot mode.

6.3.2 -cfgtype option

The –cfgtype option is used to select configuration of PLL, EMIF ,etc via AIS SET Commands or to create
a JUMP to compiled code that is linked with the application for that purpose. When using the –cfgtype
“ais” option, the genAIS tool creates entries in the AIS data stream for SET commands that will effect
peripheral configuration. The –cfg option MUST be used in conjunction with option –cfgtype “ais”.

37SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Bootloader Utilities www.ti.com

6.3.2.1 -cfgtype "ais"

This option depends on the input from a “*.cfg” file created by prior invocation of the genBootCfg utility.
Use genBootCfg to create the configuration data necessary to support your board configuration for boot.
Once this has been done, then invoke genAIS utility using –cfg and –cfgtype options to produce the AIS
data stream.

The code below shows a sample “*.cfg” file that has EMIF configuration for ASYNC RAM.
##===## ## Boot Configuration
File : ## ## C:/Lyrtech/PADK/dsp/demos/TMS320C672xxBootUtils/Examples/gener ## ## docExample.cfg
Date: Friday October 21,2005 10: 6: 9
##===##
#== # PLL Configuration
#== -pllCfg 0x0
#== # I2C Clock Configuration
#== -i2cClkCfg 0
#== # SDRAM Configuration
#== -sdramCfg 0
#== # ASYNC Ram Configuration
#== -asyncRamCfg 0x1 -
asyncRamA1CR 0x1DF6EFFD -asyncRamAWCCR 0x10000080

An AIS stream containing the SET commands may be generated with the following example invocation of
genAIS:
genAis -I docExample.out -o docExample_cfgTypeAis.ascii -bootmode spimaster -otype ascii -cfgtype
ais -cfg docExample.cfg

Table 16. AIS Data Stream From File, docExample_cfgTypeAis.ascii

AIS Magic Word 0x41504954

SET Command 0x58535907

Byte address of memory location to modify 0xF0000004

Data value to be written at specified address 0x10000080

Data type - (0x2 → 32bit data) 0x00000002

Number of cycles to wait after data is written 0x00000000

SET Command 0x58535907

Byte address of memory location to modify 0xF0000010

Data value to be written at specified address 0x1DF6EFFD

Data type - (0x2 → 32bit data) 0x00000002

Number of cycles to wait after data is written 0x00000000

ENABLE_CRC Command 0x58535903

SECTION_LOAD Command 0x58535901

Section load address 0x10001C00

Section size in 8bit bytes 0x00000060

First 32bit word of section data 0x018E3028

Second 32bit word of section data 0x028E3428

0x020E3228

0x01880069

0x0200032A

0x020C0277

0x02880068

0x028C105B

0x02080068

0x021402E6

0x00006000

0x0210205A

0x02100276

0x00002000

38 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

Table 16. AIS Data Stream From File, docExample_cfgTypeAis.ascii (continued)

0x01900264

0x00006000

0x018C4058

0x01940274

0x00002000

0x0FFFFC90

0x00008000

0x00000000

0x00000000

Last 32bit word of section data 0x00000000

REQUEST_CRC Command 0x58535902

Expected CRC value for this section 0xB0EC107D

Offset to last valid AIS command in stream 0xFFFFFF88

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error

SECTION_LOAD Command 0x58535901

Section load address 0x10001C60

Section size in 8bit bytes 0x0000000C

First 32bit word of section data 0x0000000A

0x0000000B

Last 32bit word of section data 0x0000000C

REQUEST_CRC Command 0x58535902

Expected CRC value for this section 0xBBE311D7

Offset to last valid AIS command in stream 0xFFFFFFDC

NOTE: This offset is used to reposition
stream to last command if
re-transmission is attempted
due to CRC error.

JUMP_CLOSE Command 0x58535906

Start address of application code 0x10001C00

7 Boot Examples

This applications note contains attached code for several boot examples. The examples cover creation of
secondary bootloader for FLASH/EMIFA boot, generic examples for producing AIS data in a format
compatible with EEPROM programmers, and several examples that were created for use with
TMS320C672xx Performance Audio Development Kit (PADK) available from Lyrtech, Inc. All source code
and data for the examples maybe found in the attachment to this document available at this link:

http://www-s.ti.com/sc/techlit/sprc203.zip.

39SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www-s.ti.com/sc/techlit/sprc203.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

The secondary bootloader is easy to use and simply links with your application code. The resulting
executable file is processed by the genAIS utility. The output of genAIS is then burned into the FLASH
memory. When the C672xx is released from reset, the on-chip bootloader will copy the first 1024 bytes of
the secondary bootloader to memory. The secondary bootloader will then load the rest of it’s own code,
plus the remaining application code. It will then branch to the start of application code for execution. The
secondary bootloader works by processing the application code as an AIS stream. The genAIS utility
converts the combined application + secondary bootloader output file into a specialized AIS stream. The
secondary bootloader code is not converted to AIS. It is burned to flash as raw data. In Parallel FLASH
mode the on-chip bootloader loads the first 1024 bytes of the secondary bootloader which contains the
boot strap code necessary to complete load of secondary boot. The secondary boot loader than
processes the rest of the data in the Parallel FLASH as a modified AIS data stream. This modified AIS
data stream contains the application code and configuration data ,such as PLL and EMIF configurations
required during boot. Three files are provided with this application’s note to implement the secondary
bootloader.

• TISecondaryBoot.h – header file containing C type and constant definitions to bootloader code
• TISecondaryBoot.c/TISecondaryBoot.obj – main source for secondary bootloader.
• TIsecondaryBootLnk.cmd – linker command file to use when linking code for secondary boot.

NOTE: The secondary bootloader assumes GPIO’s are used as either address pins or as a single
GPIO for latch.

AIS was extended to include two new commands to facilitate paging of extended addresses for EMIF
boot:
• PAGE_SWAP_COMMAND – takes a list of GPIO pin configurations needed to access the next page of

memory in the FLASH. This is an atomic command and is the last command on issued on the page to
ensure that the address pins are set correctly to access the first word/byte of the next memory page.
Once this command is complete, the very next fetch from the AIS stream will be to the next page of
FLASH memory.

• LATCH_ADDRESS_COMMAND – takes a GPIO pin configuration needed to effectively latch the address
to enable switch of parallel FLASH memory page. This is also an atomic command which is issued as
the last command in the current memory page. Once execute, AIS commands are fetched beginning
with the first word/byte of the next memory page in FLASH.

When a GPIO is used as a latch, the last word of the LATCH_ADDRESS_COMMAND contains a memory
address to present on the EMIF bus that will latch the specified page of FLASH memory. Currently the
page is specified in the lower 16-bits of the address. Table 17 lists the expected address latch value for
the first six pages of a 16-bit Parallel FLASH.

40 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

genBootCfg

“cfg.c”

Link application code, “cfg.c”, and TISecondaryBoot.obj using
TISecondaryBootLk.com to make single “.out” file

*.out *.cfg

genAIS

Application
Code TISecondaryBoot.obj

.ascii, .asm. or binary AIS data file

www.ti.com Boot Examples

Table 17. Address Range to Page Latch Address Mapping for 16-bit FLASH

EMIF Address Range Corresponding Latch Address

0x90000000-0x90007FFF 0x900000000

0x90008000-0x9000FFFF 0x900000004

0x90010000-0x90017FFF 0x900000008

0x90018000-0x9001FFFF 0x90000000C

0x90020000-0x90027FFF 0x900000010

0x90028000-0x9002FFFF 0x900000014

0x90030000-0x90037FFF 0x900000018

7.1 Building an Application Using an Example Secondary Bootloader

The example secondary bootloader included with this application’s note, is intended for use with Parallel
Flash bootload only. It extends the address range for Parallel FLASH boot, by using GPIO pins as address
pins. The GPIO -> address pin mapping is configurable using the genBootCfg bootloader utility described
earlier in this chapter. GPIO pins from any of UHPI (BGA only), or MCASP0/1, can be mapped as address
pins. Up to 11 pins may be defined. Alternatively, the address range could also be expanded by defining a
single GPIO to act as a latch for the upper address. In this current implementation, the page selection for
latched addresses uses the lower bits of the address presented on the EMIF address bus to specify
memory page. This sample secondary bootloader requires the use of both genBootCfg and genAIS
utilities. Three files are provided with this application’s note to implement the secondary bootloader.

To build and use the example secondary bootloader follow these steps:

1. Invoke genBootCfg utility and configure PLL, and EMIF ASYNC RAM interface as needed for boot. If
extending the address range for Parallel Flash, GPIO pins used for address pin extension must also be
configured.

2. Link the application code, the “cfg.c” file, and TISecondaryBoot.obj using the TISecondaryBootLnk.cmd
file.

3. Invoke genAIS with *.out file from the link in step 2, and setting –bootmode tisecboot., setting Parallel
Flash size to 8 or 16 as appropriate, and including the “.cfg” file from genBootCfg. (i.e. genAIS –I
my.out –cfg my.cfg –o my.ascii –otype ascii –pf 16 –bootmode tisecboot)

4. Burn the resulting data output from genAIS to Flash.

Figure 28. Build Flow

41SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

Figure 28 shows the build flow for the example secondary bootloader.

The output from genAIS is stored in the file as either ascii, assembly, or binary data. The contents of the
output file is a specialized AIS data stream formulated specifically for the needs of the secondary
bootloader. It is NOT a generalized format that can be used for any other boot method. If booting for
SPI/I2C boot, choose the appropriate boot mode. The secondary boot loader extends the AIS languages
to include two new AIS commands. These commands enable page swapping when using GPIO pins as
address pins, or when using a single GPIO pin as an address latch.

The contents of the file should be burned to FLASH beginning at FLASH address 0x00000000.

7.2 Sample Projects using Secondary Bootloader

Two generic examples are included with the software linked with this document, gpioAsAddr and
gpioAsLatch. This example code and corresponding linker command files are in some respects atypical of
a normal application. These are designed specifically to illustrate the capabilities for page swap, so the
code was artificially packed with fill space to force crossing of address page boundaries. The linker
command file has been annotated to indicate which sections are needed for application code, and which
are there simply for the purpose of forcing paging for the example. The example code includes the
following files:

Example code for illustrating use of GPIO pins mapped as address pins to extend the EMIF A address
range can be found in the folder TMS320C672xxBootUtils\generic\gpio.

The example includes the following files:

genBootCfgFile.bat - batch file used to invoke genBootCfg
genAISFile,bat - batch file used to invoke genAIS tool
appMain.c - application main .c file
fill1space.asm - C6000 assembly file, defines first fill section
fill2space.asm - C6000 assembly file, defines second fill section
fill3space.asm - C6000 assembly file, defines third fill section
gpioAsAddr - File folder containing project files
TISecondaryBootLnk.cmd - linker command file
gpioAsAddr.ais - AIS data stream generated by genAIS utility from gpioAsAddr.out file
gpioAsAddrcfg.c - C configuration file generated by genBootCfg utility
gpioAsAddr.cfg - configuration data file generated by genBootCfg utility

The same source for application code is used to illustrate using a GPIO pin as an address latch, to latch
upper bits of the address to extend EMIFA addressing range. The source file for this example can be
found in folder TMS320C672xxBootUtils\generic\latch.

The example includes the following files:

genBootCfgFile.bat - batch file used to invoke genBootCfg
genAISFile,bat - batch file used to invoke genAIS tool
appMain.c - application main .c file
fill1space.asm - C6000 assembly file, defines first fill section
fill2space.asm - C6000 assembly file, defines second fill section
fill3space.asm - C6000 assembly file, defines third fill section
gpioAsLatch - File folder containing project files
TISecondaryBootLnk.cmd - linker command file
gpioAsLatch.ais - AIS data stream generated by genAIS utility from gpioAsAddr.out file
gpioAsLatchcfg.c - C configuration file generated by genBootCfg utility
gpioAsLatch.cfg - configuration data file generated by genBootCfg utility

WARNING
Please note that when building/rebuilding the sources for this
project, that -ml3 option is required for the compile. The code will
not rebuild without this option, since the distance between called
functions exceeds the limit for relative branches.

42 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

7.2.1 Example 1 - GPIO Pins Mapped as Address Pins (gpioAsAddr)

To map GPIO pins as address pins, first invoke the genBootCfg utility to setup the GPIO pin-to-address
pin map. In this example, the UHPI data pins, HD[0-4], have been mapped as address pins and ASYNC
RAM has been configured for 16 bit memory.

Figure 29 shows pin configuration page of genBootCfg utility. Figure 30 shows the ASYNC RAM setup
page in genBootCfg. The resulting configuration file, gpioAsAddr.cfg is displayed in Example 2, and the
accompanying cfg.c file in Example 3.

Figure 29. GPIO Pins

43SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

Figure 30. ASYNC RAM Setup

Example 2. gpioAsAddr.cfg file

##===## ## Boot Configuration File :
C:/Lyrtech/PADK/dsp/demos/TMS320C672xxBootUtils/Examples/gener ## ## gpioAsAddr.cfg ## ## Date:
Wednesday September 7 ,2005 13:22:46 ##
##===##
#== # PLL Configuration
#== -pllCfg 0x1 -pllcfgosc
25.000000 -pllcfgcpu 0x0000012C -pllcfgemif 0x00000064 -pllcfgintosc 0x00000001 -pllcfgweight
0x00000003 -pllcfgpllm 0x00000018 -pllcfgdiv0 0x00000000 -pllcfgdiv1 0x00000001 -pllcfgdiv2
0x00000003 -pllcfgdiv3 0x00000005
#== # I2C Clock Configuration
#== -i2cClkCfg 0
#== # SDRAM Configuration
#== -sdramCfg 0
#== # ASYNC Ram Configuration
#== -asyncRamCfg 0x1 -asyncRamA1CR
0x9E0EE1FD -asyncRamAWCCR 0x10000080
#== # Address Pin Configuration
#== -pinCfg 0x1 -useAddressLatch
0x00000000 -pin0 HD[0] -pin1 HD[1] -pin2 HD[2] -pin3 HD[3] -pin4 HD[4] -pincount 5 -pinEnableReg0
0x4300000C -pinEnableMask0 0x00000080 -pinEnableMaskMode0 0x00000001 -pinDirectionReg0 0x43000010 -
pinDirectionMask0 0x00000001 -pinDirectionMaskMode0 0x00000001 -pinSetReg0 0x43000014 -pinSetMask0
0x00000001 -pinSetMode0 0x00000001 -pinClearReg0 0x43000014 -pinClearMask0 0xFFFFFFFE -pinClearMode0
0x00000002 -pinDisableReg0 0x4300000C -pinDisableMask0 0x00000000 -pinDisableMaskMode0 0x00000002 -
pinGlobalSetupFlag0 0x00000000 -pinEnableReg1 0x4300000C -pinEnableMask1 0x00000080 -
pinEnableMaskMode1 0x00000001 -pinDirectionReg1 0x43000010 -pinDirectionMask1 0x00000002 -
pinDirectionMaskMode1 0x00000001 -pinSetReg1 0x43000014 -pinSetMask1 0x00000002 -pinSetMode1
0x00000001 -pinClearReg1 0x43000014 -pinClearMask1 0xFFFFFFFD -pinClearMode1 0x00000002 -

44 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

Example 2. (continued)
pinDisableReg1 0x4300000C -pinDisableMask1 0x00000000 -pinDisableMaskMode1 0x00000002 -
pinGlobalSetupFlag1 0x00000000 -pinEnableReg2 0x4300000C -pinEnableMask2 0x00000080 -
pinEnableMaskMode2 0x00000001 -pinDirectionReg2 0x43000010 -pinDirectionMask2 0x00000004 -
pinDirectionMaskMode2 0x00000001 -pinSetReg2 0x43000014 -pinSetMask2 0x00000004 -pinSetMode2
0x00000001 -pinClearReg2 0x43000014 -pinClearMask2 0xFFFFFFFB -pinClearMode2 0x00000002 -
pinDisableReg2 0x4300000C -pinDisableMask2 0x00000000 -pinDisableMaskMode2 0x00000002 -
pinGlobalSetupFlag2 0x00000000 -pinEnableReg3 0x4300000C -pinEnableMask3 0x00000080 -
pinEnableMaskMode3 0x00000001 -pinDirectionReg3 0x43000010 -pinDirectionMask3 0x00000008 -
pinDirectionMaskMode3 0x00000001 -pinSetReg3 0x43000014 -pinSetMask3 0x00000008 -pinSetMode3
0x00000001 -pinClearReg3 0x43000014 -pinClearMask3 0xFFFFFFF7 -pinClearMode3 0x00000002 -
pinDisableReg3 0x4300000C -pinDisableMask3 0x00000000 -pinDisableMaskMode3 0x00000002 -
pinGlobalSetupFlag3 0x00000000 -pinEnableReg4 0x4300000C -pinEnableMask4 0x00000080 -
pinEnableMaskMode4 0x00000001 -pinDirectionReg4 0x43000010 -pinDirectionMask4 0x00000010 -
pinDirectionMaskMode4 0x00000001 -pinSetReg4 0x43000014 -pinSetMask4 0x00000010 -pinSetMode4
0x00000001 -pinClearReg4 0x43000014 -pinClearMask4 0xFFFFFFEF -pinClearMode4 0x00000002 -
pinDisableReg4 0x4300000C -pinDisableMask4 0x00000000 -pinDisableMaskMode4 0x00000002 -
pinGlobalSetupFlag4 0x00000000 #==
Address Pin Configuration #== -
pkgType BGA

Example 3. cfg.c file

//===// // Boot Configuration File :
// // C:/Lyrtech/PADK/dsp/demos/TMS320C672xxBootUtils/Examples/gener // // gpioAsAddrcfg.c // //
Date: Wednesday September 7 ,2005 13:22:46 //
//===// #include <TISecondaryBoot.h>
//===// // Function Prototypes //
//===// far void TIBootPllCfg(void);
far void TIBootAsyncRamCfg(void);
//===// // Boot Configuration Setup
Function // // This code along with PLL Configuration, SDRAM Configuration // // ASYC RAM
Configuration, I2C Clock Configuration, will be // // loaded first. A branch will then be executed
after load of // // all boot configuration code to the bootSetup function. // // After the boot setup
has been performed, normal AIS // // processing will continue at that point. //
//===// #pragma
CODE_SECTION(TIBootSetup,".TIBoot") void TIBootSetup(void) { TIBootPllCfg(); TIBootAsyncRamCfg(); }
//===// // PLL Configuration // //
Input Oscillator Frequency: 25.00 // // Cpu Clock Frequency : 300.00 // // Emif Clock Frequency :
100.00 // // PLLM : 24 // // DIV0 : 0 // // DIV1 : 1 // // DIV2 : 3 // // DIV3 : 5 //
//===// #pragma
CODE_SECTION(TIBootPllCfg, ".TIBoot") far void TIBootPllCfg(void) { int I; // configure the PLL // //
Make sure SDRAM is in Self-Refresh mode before setting PLL // // By setting SR bit in EMIF SDCR
register to 1 // *(unsigned char *)TIBOOT_EMIF_SDCR = 0x8; // 1. In PLLCSR, write PLLEN = 0 (bypass
mode) // *(volatile unsigned int *)TIBOOT_PLL_PLLCSR = TIBOOT_PLLDISABLE; // 2. Wait 4 cycles of the
slowest of PLLOUT or reference// clock source (CLKIN or OSCIN) asm(" nop 4"); // 3. In PLLCSR, write
PLLRST = 1 (PLL is reset) *(volatile unsigned int *)TIBOOT_PLL_PLLCSR = TIBOOT_PLLDISABLE |
TIBOOT_PLLRESET; // 4. If necessary, program PLLDIV0 and PLLM // DIV0 - Before PLL(set to/1)
*(volatile unsigned int *)TIBOOT_PLL_PLLDIV0 = TIBOOT_DIVENABLED | 0x00000000; *(volatile unsigned
int *)TIBOOT_PLL_PLLM = 0x00000018; // 5. If necessary, program PLLDIV1-n. Note that you must apply
the GO operation to // change these dividers to new ratios. // DIV1 - After PLL- SYSCLK1 DSP Core //
DIV2 - After PLL- SYSCLK2 PERIPHS (Always twice DIV3) // DIV3 - After PLL- SYSCLK3 EMIF CLOCK
*(volatile unsigned int *)TIBOOT_PLL_PLLDIV1 = TIBOOT_DIVENABLED | 0x00000001; asm(" nop 4"); asm("
nop 4"); *(volatile unsigned int *)TIBOOT_PLL_PLLDIV2 = TIBOOT_DIVENABLED | 0x00000003; asm(" nop
4"); asm(" nop 4"); *(volatile unsigned int *)TIBOOT_PLL_PLLDIV3 = TIBOOT_DIVENABLED | 0x00000005; //
Enable PLL Align control. *(volatile unsigned int *)TIBOOT_PLL_PLLALNCTL = TIBOOT_PLLALN1 |
TIBOOT_PLLALN2 | TIBOOT_PLLALN3; *(volatile unsigned int *)TIBOOT_PLL_PLLCMD = TIBOOT_PLLGOSET; while
(*(volatile unsigned int *)TIBOOT_PLL_PLLSTAT == TIBOOT_PLLGOWAIT){ *(volatile unsigned int
*)TIBOOT_PLL_PLLCMD = TIBOOT_PLLGOCLR; } // 6. Wait for PLL to properly reset // Reset wait time is
125 ns for(I=0; I< 8;++I) {}; // 7. In PLLCSR, write PLLRST = 0 to bring PLL out of reset *(volatile
unsigned int *)TIBOOT_PLL_PLLCSR = TIBOOT_PLLDISABLE | TIBOOT_PLLRESETRELEASE; // 8. Wait for PLL to
lock for(I=0; I< 4787;++I) {}; // 9. In PLLCSR, write PLLEN = 1 to enable PLL mode *(volatile
unsigned int *)TIBOOT_PLL_PLLCSR = TIBOOT_PLLENABLE | TIBOOT_PLLRESETRELEASE; for(I=0; I < 4787; ++I)
{}; // 10. Wait for Lock bit to become 1 while (((*(volatile unsigned int *)TIBOOT_PLL_PLLCSR) &
TIBOOT_PLLLOCKED) == 0) { } // ---- done PLL Programation ---- // take CFG bridge out of reset
*(volatile unsigned int *)TIBOOT_CFGBRIDGE_REGISTER |= 1; asm(" nop 9"); *(volatile unsigned int
*)TIBOOT_CFGBRIDGE_REGISTER &= 0xFFFFFFFE; // Make sure SDRAM exits Self-Refresh Mode // By setting

45SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

(continued)
SR bit in EMIF SDCR register to 0 *(volatile unsigned char *)TIBOOT_EMIF_SDCR = 0x0; }
//===// // ASYNC Ram Configuration //
// Asynchronous 1 Configuration Register: // // register mask: 0x9E0EE1FD // // SS: 1 // // EW: 0 //
// W_SETUP: 7 // // W_STROBE: 32 // // W_HOLD: 7 // // R_SETUP: 7 // // R_STROBE: 0 // // R_HOLD: 7
// // TA: 3 // // ASIZE: 1 // // // // Asynchronous Wait Cycle Configuration Register // // register
mask: 0x10000080 // // WP0: 1 // // MEWC: 128 //
//===
==========// #pragma CODE_SECTION(TIBootAsyncRamCfg,".TIBoot") void TIBootAsyncRamCfg() { *(volatile
unsigned int *)TIBOOT_EMIF_AWCCR = 0x10000080u; *(volatile unsigned int *)TIBOOT_EMIF_A1CR =
0x9E0EE1FDu; }

Once the configuration files have been created, compile and link the configuration files, the secondary
boot loader and your application code together into a single output file (*.out). as is illustrated in the
project below.

Figure 31. Project File

After the project has been built, the resulting ".out" file from the link and the ".cfg" file output from
genBootCfg should be passed into the genAIS utility to transform into a specialized AIS stream. i.e.
genAis -I gpioAsAddr.out -o gpioAsAddr.ais -bootmode tisecboot -pf 16 -otype
ascii -cfg gpioAsAddr.cfg.

The example code included as attachment to this applications note contains a sample batch file which can
be used to create the AIS stream for this project.

46 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

The genAIS utility partitions the initialized code and data sections so that they will fall within page
boundaries. The last Section of each page contains the GPIO pin configuration necessary to properly
address the next page of memory. Figure 32 shows a portion of the AIS stream where the
SWAP_PAGE_COMMAND is used to effect the configuration for transition from page 0
(0x90000000-0x90007ffff) to page 1 (0x90008000-0x0x9000FFFF) of the memory.

0x58535902 ;Flash Address 0x90007FC8 - Check sum Request (last section on this
page that was loaded)

0x4DA63199 ;Flash Address 0x90007FCC - Expected check sum value

0xFFFF9F44 ;Flash Address 0x90007FD0 - Seek offset to retry if current CRC value
does not match expected CRC

0x585359F1 ;Flash Address 0x90007FD4 - Page Swap Command

0x00000003 ;Flash Address 0x90007FD8 - Number of pin configurations

0x4300000C ;Flash Address 0x90007FDC - Configuration for pin enable

0x00000080 ;Flash Address 0x90007FE0

0x00000001 ;Flash Address 0x90007FE4

0x43000010 ;Flash Address 0x90007FE8 - Configuration for pin direction

0x00000001 ;Flash Address 0x90007FEC

0x00000001 ;Flash Address 0x9007FF0

0x43000014 ;Flash Address 0x90007FF4 - Configuration for pin set

0x00000001 ;Flash Address 0x90007FFC

0x58535901 ;Flash Address 0x90008000 - Section Load Command (on next page

0x10009564 ;Flash Address 0x90008004

0x00005F7C ;Flash Address 0x90008008

0x00000000 ;Flash Address 0x9000800C

0x00000000 ;Flash Address 0x90008010

The utility automatically splits section data to fit within a page and will partition sections appropriately to
complete loading on consecutive pages if required. The complete AIS data stream for this example is
included with the code attached to this application note.

The application main appMain.c contains a simple while loop that invokes three functions. The link of the
code was designed such that the main application code is loaded on the last page of the FLASH that is
accessed. If application runs successfully, this ensures that all pages were accessed and all code loaded
correctly.

#pragma CODE_SECTION(main,"apptext")
far unsigned int page0(void);
far unsigned int page1(void);
far unsigned int page2(void);
volatile unsigned int a,b,c;
void main(void){
while(1){
a = page0();
b = page1();
c = page2();
}
}
#pragma CODE_SECTION(page0,"appPage0")
far unsigned int page0(void) {
return 0x11111111;
}
#pragma CODE_SECTION (page1,"appPage1")
far unsigned int page1(void) {
return 0x22222222;
}
#pragma CODE_SECTION(page2,"appPage2")
far unsigned int page2(void) {
return 0x33333333;
}

If all code is loaded properly the DSP will be executing a loop, and variables a,b,c will be 0x11111111,
0x22222222, and 0x33333333 respectively.

47SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

7.2.2 Example 2 -GPIO Pin Used as Address Latch (gpioAsLatch)

This example uses the same code base as the gpioAsAddr example shown in the last section. The only
difference is in the configuration of the GPIO pins in genBootCfg utility. In this example, a single GPIO pin
has been mapped to be used as an address latch. For the purposes of this example MCASP pin AXR[0] is
configured as an address latch.

The resulting configuration file, contains a flag that tells the genAIS utility that an address latch is being
used.

#==
Address Pin Configuration
#==
-pinCfg 0x1
-useAddressLatch 0x00000001
-pin0 AXR0[0]
-pincount 1
-pinEnableReg0 0x44000010
-pinEnableMask0 0x00000001
-pinEnableMaskMode0 0x00000001
-pinDirectionReg0 0x44000014
-pinDirectionMask0 0x00000001
-pinDirectionMaskMode0 0x00000001
-pinSetReg0 0x4400001C
-pinSetMask0 0x00000001
-pinSetMode0 0x00000004
-pinClearReg0 0x44000020
-pinClearMask0 0x00000001
-pinClearMode0 0x00000004
-pinDisableReg0 0x44000010
-pinDisableMask0 0x00000000
-pinDisableMaskMode0 0x00000002
-pinGlobalSetupFlag0 0x00000000

Once configuration is complete, compile and link the application code, the *cfg.c” file, and
TISecondaryBoot.c files to form a single “.out” file as shown below.

After the “.out” file had been built, the “.out” and configuration file “*.cfg” is input to the genAIS utility to
create the AIS stream. This AIS command for transitioning between memory pages is slightly different
than in the previous example. In this instance the USE_ADDRESS_LATCH command is given to cause
transition to the next page. As before, the genAIS utility automatically partitions code/data to fit within page
boundaries, and issues the USE_ADDRESS_LATCH command as the last command on a page to effect
smooth transition to the next page of memory.

0x58535902 ;Flash Address 0x90007FBC - Request CRC from last section

0xAD19BB1C ;Flash Address 0x90007FC0 - Expected CRC value

0xFFFF9F50 ;Flash Address 0x90007FC4 - Offset to last command in case current
CRC does not match expected CRC

0x585359F2 ;Flash Address 0x90007FC8 - USE_LATCH_COMMAND

0x44000010 ;Flash Address 0x90007FCC - Start of configuration for GPIO pin

0x00000001 ;Flash Address 0x90007FD0

0x00000001 ;Flash Address 0x90007FD4

0x44000014 ;Flash Address 0x90007FD8

0x00000001 ;Flash Address 0x90007FDC

0x00000001 ;Flash Address 0x90007FE0

0x4400001C ;Flash Address 0x90007FE4

0x00000001 ;Flash Address 0x90007FE8

0x00000004 ;Flash Address 0x90007FEC

0x44000020 ;Flash Address 0x90007FF0

0x00000001 ;Flash Address 0x90007FF4

0x00000004 ;Flash Address 0x90007FF8

0x90000004 ;Flash Address 0x90007FFc - Address to force on address bus to latch

48 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

The address latch as implemented in the secondary boot loader, asserts the GPIO pin (GPIO goes high),
forces read of latch address, in this case 0x90000004, and then de-asserts the GPIO (GPIO goes low). It
assumes that the lower 16bits of the address are captured to an external address register which will
manage the upper address bits. Complete code for this example, may be found in the files attached to this
applications note.

7.3 Generating AIS Stream for Use with EEPROM Programmer

If several EEPROM devices are being programmed via an EEPROM programmer that requires one of the
standard hexadecimal formats such as Intel MCS-86 or Motorola Exorciser, this may be accomplished by
following steps:

1. Invoke genBootCfg to effect any configuration requirements for boot (i.e. ASYNC/SDRAM
configuration, PLL configuration, etc.)

2. Compile/link application code and “cfg.c” file together into single “.out” (compile/link TISecondaryBoot.c
if using example secondary boot loader)

3. Invoke genAIS tool, using –otype asm as the output type.
4. Assemble and link the output assembly file from genAIS utility.
5. Invoke hex utility “hex6x.exe” with “.out” as input and choose appropriate options to generate the

hexadecimal format required.

A project and set of batch command files to illustrate generation of hexadecimal files can be found in the
folder:
TMS320C672xxBootUtils\Examples\generic\eeprom

In the files attached to the applications note. The project files are the same as for the gpioAsLatch project
discussed in a previous section. There are additional files to assemble and link the .asm file created by
call to genAIS, and then invoke the hex conversion utility to create a formatted hexadecimal file. The
command line shown below invokes genAIS with –otype asm to create the assembly file.
genAis -I gpioAsLatch.out -o gpioAsLatchAis.asm -bootmode tisecboot -pf 16 -otype asm -cfg
gpioAsLatch.cfg

After the AIS output file, gpioAsLatchAis.asm has been created, assemble and link the .asm file. This can
be accomplished with the following command line: cl6x -mv6700 gpioAsLatchAis.asm -z
gpioAsLatchAis.obj -o gpioAsLatchAis.out -m gpioAsLatchAis.map -l TIEmifBootLnk.cmd The linker
command file TIEmifBootLnk.cmd contains a single MEMORY and SECTIONS directive as shown in
Figure 38.

/**/
/* lnk.cmd v#####

*/
/* Copyright) 1996@%%%% Texas Instruments Incorporated */
/* Usage: lnk6x <obj files...> -o <out file> -m <map file> lnk.cmd */
/* cl6x <src files...> -z -o <out file> -m <map file> lnk.cmd */
/* */
/* Description: This file is a sample linker command file that can be */
/* used for linking the assembled output of the genAIS tool */
/* -otype asm command. It places the output AIS stream */
/* in EMIFA address space for EMIF boot. */
/* */
/**/

/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY {
BOOTSRAM: o = 90000000h, l = 10000000h

}
SECTIONS {
.text > BOOTSRAM }

The last step is to invoke the hex conversion utility. In this example, the utility will generate a single output
file in Intel MCS-86 format. Please refer to the TMS320C6000 Assembly Language Tools User’s Guide
(spru186) for details about available hexadecimal formats and full set of options.
hex6x gpioAsLatchAis.out -o gpioAsLatchAis.hex hexCmd.cmd

49SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

The "hexCmd" file contains options to select the format and define The memory map for the
FLASH/EEPROM.

-I /* Specify Intel Format */
-romwidth 16 /* Specify FLASH virtual memory width */
-memwidth 16 /* Specify FLASH physical memory width */
ROMS {
/* Specify starting address and length in bytes for ROM */
ROM0: o = 0x00000000 , l = 0x10000000
}

SECTIONS {
.text : paddr = 0x0000000

}

The first few lines of the resulting hex conversion are shown here. The complete file is included with the
example code attached to this application note.

:20000000000100DF
:200020000000000054F601BC20000000BE2A07BB00EA078807A207BF002A073A00EA0708A3
:20004000042A02BA002A020400EA0288006A024802F602142000000000280192102802003B
:2000600090790214006801880274019020000000542A0208905B0290006A020002F60214CA
:20008000200000000C28023C00E9020800F801800274019020000000105801940265018C4A
:2000A000105A021002E602104000000049A0018C9BFA000C1290300080000000AE2A020047
:2000C000006A020803620010682A0180006A018840000000142A023A00EA020802E6029009
:2000E00060000000805A031402F6031002F40214200000000C2801BC00E801880264020CA2
:2001000060000000205802100274020C200000000C2B023C905801900265018C00EA02087B
:2001200002E602104000000049A0018C9BFA000CF3102FFF80000000002A0212006A02080B
:2001400003620010A62A0180006A01884000000052E601BC600000000362000C8000000060
:20016000005A07BF042801BA00E801880264018C600000000264018C6000000022F401BC8E
:2001800020000000042A02BA00EA028802E6021460000000805A021002F602142000000069
:2001A00022E4023C60000000005A07BD0362000C800000000000000000000000000000008C
:2001C0001F

7.4 Boot Examples for Professional Audio Development Kit (PADK)

The PADK is a professional audio development platform created and distributed by LyrTech, Inc. The next
two examples illustrate boot from FLASH/EMIFA and I2C master modes on this platform. Please unzip the
folder “TMS320C672xxBootUtils” found in the .zip file attached to this document into the LyrTech
installation directory under “installdir\dsp\demos”, where installdir is whatever directory chosen to install
the LyrTech PADK support files. All projects provided with these examples use relative pathnames from
this directory. If installed in the “installdir\dsp\demos” directory they should build and run without
modification.

50 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Boot Examples

7.4.1 FLASH/EMIFA Boot for PADK

The example demonstrating FLASH/EMIFA boot for the PADK also demonstrates how to customize the
secondary bootloader for board requirements. The files for this example are listed below:

flashburn.c - 'C' source file containing code to burn AIS stream to FLASH

main.c - Switches and Led example code provided by LyrTech, Inc.
distributed with the PADK.

genBootCfgFile.bat - batch file that can be used to invoke genBootCfg

genAisFile.bat - batch file for creation of AIS boot stream

TISecondaryBootPADK.cmd - linker command file

TISecondaryBootPADK.c - modified version of secondary bootloader source code.

SwitchesAndLedscfg.c - configuration 'C' source FILE created by call to genBootCfg

SwitchesAndLeds.cfg - configuration file crated by call to genBootCfg

C672xRomPatchV1_00_00.lib - library containing patch for C672x ROM code

applyPatch.obj - object file to apply the patch to ROM code from library source

SwitchesAndLeds.pjt - Code Composer Studio™ project file to build SwitchesAndLeds.out
file

The PADK uses a page register configured within an FPGA to effect paging of the FLASH memory. Since,
the secondary boot loader assumes use of GPIO’s for this purpose, the secondary bootloader had to be
modified to for use with the PADK. The secondary bootloader uses a function,
‘TISecondaryBoot_fetchAis()”, to fetch the next AIS command/data from the AIS stream in FLASH.
Adapting the secondary bootloader simply required replacing this function with a custom version that
properly addressed paging for PADK. In addition the portions of the code that implemented the
USE_ADDRESS_LATCH, and PAGE_SWAP_COMMAND were removed. The following code is the
modified secondary bootloader source.

case JUMP_COMMAND:
{
jump_address = (void (*)())TISecondaryBoot_fetchAis();
(*jump_address)();
TISecondaryBootStatus.lastAisCmd = JUMP_COMMAND;
break;
}
case JUMP_CLOSE_COMMAND:
{
TISecondaryBootStatus.lastAisCmd = JUMP_CLOSE_COMMAND;
jump_address = (void (*)())TISecondaryBoot_fetchAis();
(*jump_address)();
break;
}

default :
{
TISecondaryBoot_abort(TIBOOT_ERR_INVALID_AIS_CMD);
break;
}
}

Additionally, the function TISecondaryBoot_fetchAis is transformed to set the page address register. The
original source simply incremented the pointer to the address in EMIFA memory space, with the
assumption that the PAGE_SWAP_COMMAND or USE_ADDDRESS_LATCH command guaranteed that
the pointer was always within a page boundary. To adjust the algorithm for paging on the PADK, the
address is shifted to get upper bits of the memory address for page register.

#pragma CODE_SECTION(TISecondaryBoot_fetchAis,".TIBootStrap")
unsigned TISecondaryBoot_fetchAis(void) {
// Set Page pointer
unsigned int val = *TISecondaryBootStatus.aisStreamPtr;
++TISecondaryBootStatus.aisStreamPtr;
// Read the data
return val;
}

#pragma CODE_SECTION(TISecondaryBoot_fetchAis,".TIBootStrap")
unsigned TISecondaryBoot_fetchAis(void) {

51SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Boot Examples www.ti.com

unsigned int offset;
// Set Page pointer
offset = (unsigned int)(TISecondaryBootStatus.aisStreamPtr) - ASYNC_CE;
FPGA_REG(5) = offset >> 13;
TISecondaryBootStatus.aisStreamPtr++;
// Read the data
return ((unsigned *)FPGA_FLASH)[(offset & 0x1FFF)/4]; }

The symbols, ASYNC_CE, FLASH_FPGA, and FPGA_REG(5) are define in the PADK.h file found in ‘api’
folder with the software distributed by LyrTech for the PADK. The example uses the code from the
SwitchesAndLeds demo found in the LyrTech installation
folder:installdir\PADK\dsp\demos\SwiteshAndLeds. The main code is unmodified in this
example. The project has been expanded to include the configuration file SwitchesAndLedscfg.c,
created by call to genBootCfg and the source for the modified secondary boot loader code
TISecondaryBootPadk.c. Figure 44 shows the required source files to build the SwitchesAndLeds.out
file.

The essential steps to building the FLASH example are the same as mentioned in previous sections:

1. Use genBootCfg utility to configure PLL, EMIF, etc for boot. For this example, minimum configuration
requires setting EMIF for 16 bit ASYNC RAM interface.

2. Compile application code + configuration ‘C’ source + secondary boot loader source (in this instance
using the PADK specific secondary boot loader).

3. Use genAIS tool to create an AIS stream with the “.out” file created in step 2 as the input file.
4. Program FLASH memory with the code/data in the AIS output from step 3.

The PADK specific secondary boot loader requires a raw AIS data stream without use of
PAGE_SWAP_COMMAND or USE_ADDRESS_LATCH command. To generate a raw AIS stream, invoke
genAIS utility with “-bootmode raw” as appears below:
genAis -I SwitchesAndLeds.out -o SwitchesandLeds.ais -bootmode raw -pf 16 -otype ascii

Once the AIS stream has been created, the data stream should be programmed to FLASH memory. A
small project to program the data to FLASH is included with the files attached to this applications note.
Enclosed in the folder
TMS320C672xxBootUtils\Examples\Padk_examples\flashBoot\flashBurn please find
flashburn.pjt. Open this project in Code Composer Studio, it can then be built and run to program the
FLASH.

When compiled and run the FLASH programming code will generate a message to standard out indicating
the FLASH programming was successful.

After FLASH program is complete, check the boot mode pins on the PADK to make sure that they are
configured for parallel FLASH boot mode. Please refer to the Professional Audio Development Kit
Technical Reference Guide for details. Disconnect the device from Code Composer Studio, or close Code
Composer Studio. Toggle the power switch on the PADK.

At this point, the SwitchesAndLeds example should be loaded and running. Toggle any of the user
switches to see corresponding LEDS light up.

7.4.2 I2C Master Boot for PADK

This example creates an AIS stream for use with I2C Master boot. Even though this example runs on the
PADK, the stream produced is independent of the platform and the same methods used here to create the
AIS stream can be used to generate any stream for I2C Master boot mode for the TMS320C672x devices.
The I2C master boot mode is implemented within the ON-CHIP bootloader in TMS320C672x ROM, so no
other source is required other than the application code and configuration code for PLL, EMIF for boot if
required.

52 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Troubleshooting On-chip BootLoad

This example uses a modified version of the SwitchesAndLeds example code to simply blink a single LED.
The files included with this example are:

blinkLed1.c - C source file for application code

i2cMastercfg.c - configuration 'C' source generated by call to genBootCfg

genBootCfgFile.bat - sample batch file to invoke genBootCfg utility

genAISFile.bat - sample batch file to invoke genAIS utility to create AIS stream for
I2C master boot

padk.cmd - sample linker command file

Although not required, a boot configuration file was created to adjust the I2C clock to enable speed up of
boot process. This was done via invocation of genBootCfg utility and selecting I2C clock configuration.
The resulting configuration was saved to i2cMasterCfg.c. This step is useful for adjusting the clock to meet
the operating requirements for high hold and low hold times of the I2C EEPROM. The linker command file
“padk.cmd” was modified to include load of the “.TIBoot” section. This section is created by the
genBootCfg tool and this is where all boot configuration PLL and EMIF settings required for boot are
placed. The genAIS utility looks for the code/data for this section and places it first in the AIS data stream.
Once this code is loaded, an AIS jump command is issued to branch to this code for execution. The code
runs, changing PLL , EMIF etc to required values for boot. The boot process then continues with parsing
of remaining AIS commands/data.

The project file for this example are shown in Figure 47.

After building the project, the genAIS utility is invoked to produce the AIS stream for I2C Master boot as
shown here:
genAis -I .blinkLed1.out -o blinkLed1.ais -bootmode i2cmaster -otype ascii

The resulting AIS file can then be programmed to the I2C EEPROM. A sample project to write the AIS
stream to the I2C EEPROM deice on the PADK has been provided with this example. The code may be
found in the folder TMS320C672xxBootUtils\Examples\Padk_examples\i2cMaster\progI2c.
Open project file progI2c.pjt in Code Composer Studio.

When this project is compiled and run it will generate a message in the standard output window indicating
that I2C EEPROM was programmed as shown in Figure 49.

Once the I2C EEPROM has been programmed, disconnect the device or close Code Composer Studio.
Check for boot mode pin configuration for I2C master boot. Please refer to the Professional Audio
Development Kit Technical Reference Guide for details. Toggle the power switch on the PADK. The
blinkLed1 code should be loaded and starting to run. It may take a second or so before LED 1 starts
blinking.

8 Troubleshooting On-chip BootLoad

In the event that a problem is encountered during boot, there are some steps that can be taken to help
debug the process. The on-chip bootloader, that runs from the TMS320C672x ROM at device reset, traps
to a specific segment of code and executes an infinite loop when the boot process fails. It writes an error
code to memory location in internal RAM, 0x10000708, that can be used to help determine the cause of
boot failure. Table 18 below lists the possible error codes and brief explanation.

Table 18. On-Chip BootLoader Error Codes

Error Code Explanation

1 Incorrect keyword

2 Transmit sync error

3 CRC error

5 Unsupported bootmode error

53SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

Troubleshooting On-chip BootLoad www.ti.com

The following sections discuss briefly each error code and possible causes.

8.1 Incorrect Key Word

The “incorrect key word” error code is generated during SPI or I2C master boot modes. When in SPI or
I2C master boot mode, the first word read from the serial device MUST be the AIS magic word
"0x41504954". If any other data value is read from the device at this location, the boot loader will abort the
boot process and write the error code into location 0x10000708.

• Check the AIS data stream to make sure the a valid key word is the first data written to the device.
• Check endianness of data. The on-chip bootloader expects data to be received MSB first.
• Check device/board configuration to make sure proper communication exists between SPI/I2C device

and TSM320C672x.

8.2 Transmit Sync Error

A transmit sync error whenever the on-chip bootloader attempts to process the next valid AIS command in
the stream and encounters an invalid command. It expects a valid AIS command starting with 0x585359xx
to be transmitted under following circumstances:

• Immediately after receiving the valid key word for SPI/I2C master modes.
• Immediately after receiving/processing PING device command for SPI/I2C slave modes.
• Immediately after it has completed processing any other valid command that was received in the data

stream and is fetching the next command from the stream.

If any other data is encountered at that point, the bootloader aborts the boot process and writes “Transmit
Sync Error” code to the boot error “register”, 0x10000708. When this error occurs, check the AIS data
stream to make sure that a valid AIS command (see Section 3 for a list of valid AIS commands) is being
transmitted at this point in the data stream.

8.3 CRC Error

A CRC error will occur whenever the expected CRC value received by the on-chip bootloader while
processing a REQUEST_CRC command, does not match the current CRC value calculated by the
bootloader. Please refer to Section 9 and Appendix A for details on generating CRC values compatible
with on-chip bootloader software. When this error is encountered:

• Check the CRC value calculated and transmitted with the Request CRC command to make sure that is
calculated using same method employed by the on-chip bootloader.

• Check communication between SPI/I2C device and TMS320C672x.

8.4 Unsupported BootMode Error

If this error occurs, please check the boot mode pin configuration. Please refer to Table 4 for a list valid
boot pin configurations. One way to determine which boot mode was set, is to open Code Compose
Studio after device reset and check the CFGPIN0 and CFGPIN1 registers to make sure the required mode
was set.

54 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Calculating CRC

9 Calculating CRC

The on-chip bootloader uses a 32bit CRC. Code for calculating the CRC is given in the Appendix A. The
CRC as calculated for the on-chip bootloader requires 3 calls to the BL_updateCrc function. The first call
is made sending the section load address as the data word. The second call uses the section size in bytes
as the data word. The third call sends the actual section data, calculating a CRC across all the data
elements in the section. So the final CRC is a combination of the CRC’s calculated for section address
,section size and section data. A sample set of calls to the function to create the expected CRC value is
shown below:

unsigned int crc;
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;
crc = BL_updateCRC(§ionAddr, 4, 0);
crc = BL_updateCRC(§ionSize, 4, crc);
crc = BL_updateCRC(sectionData, sectionSize, crc);

The last ‘crc’ value calculated, is the value that should be written as the expected CRC for the
REQUEST_CRC command. If calculating a single CRC for the entire application load, simply pass each
successive “crc” value into the subsequent calls to BL_updateCRC.

typedef struct {
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;
} SectionDatObj;
SectionDataObj mySections[10];
unsigned int crc;
crc = 0;
for(i=0;i<10;i++) {
crc = BL_updateCRC(&(mySections[i].sectionAddr), 4, crc);
crc = BL_updateCRC(&(mySections[i].sectionSize), 4, crc);
crc = BL_updateCRC(mySections[i].sectionData, mySections[i].sectionSize, crc);
}

10 Memory Allocation

The on-chip bootloader requires a small amount of on-chip RAM used as local stack/data space during
boot. Internal memory locations 0x10000400 – 0x10000FFF are reserved for use by the on-chip
bootloader during boot process. DO NOT allocate any initialized sections within this memory range when
linking application code. Doing so may cause the boot process to fail. Examples of initialized sections are
compiler generated sections such as .text, .switch, .cinit, which contain code/data that will be loaded
directly into the memory space when application is booted. Uninitialized sections, such as .bss, or .far may
be allocated in this memory space, since these will not be populated until after boot of application code is
complete.

When using any of the ROM’ed applications present in TMS320C672xx Internal ROM, such as DSPBIOS
or DSPLIB, please refer to the TMS320C672xx ROM Data Sheet (SPRS277) for any further memory
allocation constraints that may apply.

11 Determining On-chip BootLoader/ROM Version

The ROM version may be read from on-chip ROM memory location 0x0000000C. The current
ROM/Bootloader revision is 0xC9230C10.

55SPRAA69D–September 2009 Using the TMS320C672x Bootloader
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

#define L1PSAR *(unsigned int *)(0x20000000u)
#define L1PICR *(unsigned int *)(0x20000004u)
#define L1P_INVALIDATE (0x80000000u)
#define CACHE_ENABLE (0x00000040u)
#define CACHE_FREEZE (0x00000060u)
#define CACHE_BYPASS (0x00000080u)
#define CACHE_CONTROL_MASK (0x000000E0u)

// Declare CSR register
extern cregister volatile unsigned int CSR;

// This function Invalidates and Enables Cache
void cache_enable() {

// Invalidate all lines of cache by setting L1P bit
L1PICR = L1PICR | L1P_INVALIDATE;

// Make Sure Cache Invalidate is Complete
while (L1PICR != 0x00000000u){

}

// Enable the Cache
CSR = (CSR & (~CACHE_CONTROL_MASK)) | CACHE_ENABLE;

}

// This function Invalidates and by passes Cache
// forcing all fetches from memory contents.
void cache_bypass() {

// Invalidate all lines of cache by setting L1P bit
L1PICR = L1PICR | L1P_INVALIDATE;

// Make Sure Cache Invalidate is Complete
while (L1PICR != 0x00000000u){

}

// Bypass the Cache
CSR = (CSR & (~CACHE_CONTROL_MASK)) | CACHE_BYPASS;

}

Cache Considerations www.ti.com

12 Cache Considerations

The ROMed bootloader software disables the cache at start of boot process. It does not invalidate nor
enable cache prior to branching to the loaded application code. Therefore, the application must take
responsibility for properly invalidating, and enabling the cache, if cache is used. Figure 32 illustrates how
to invalidate, enable, and bypass cache operation.

Figure 32. Bypass Cache Operation

56 Using the TMS320C672x Bootloader SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

www.ti.com Appendix A

Appendix A Calculating the CRC

The CRC calculated to process the REQUEST_CRC command is based on the following algorithm, where
“data_ptr” points to the first data element in the current section, “section_size” is the size of the section
expressed in 8bit bytes, and “crc” is current crc value.

unsigned int BL_updateCRC(unsigned int *data_ptr, unsigned int section_size, unsigned int crc) {
unsigned int n, crc_poly = 0x04C11DB7; /* CRC - 32 */ unsigned int msb_bit; unsigned int
residue_value; int bits; for(n = 0; n < (section_size>>2); n++) { bits = 32; while(--bits >= 0
) { msb_bit = crc & 0x80000000; crc = (crc << 1) ^ ((*data_ptr >> bits) & 1); if (msb_bit)
crc = crc ^ crc_poly; } data_ptr ++; } switch(section_size & 3) { case 0: break; case 1:
residue_value = (*data_ptr & 0xFF) ; bits = 8; break; case 2: residue_value = (*data_ptr &
0xFFFF) ; bits = 16; break; case 3: residue_value = (*data_ptr & 0xFFFFFF) ; bits = 24; break; }
if(section_size & 3) { while(--bits >= 0) { msb_bit = crc & 0x80000000; crc = (crc << 1) ^ (
(residue_value >> bits) & 1); if (msb_bit) crc = crc ^ crc_poly; } } return(crc); }

57SPRAA69D–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAA69D

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Using the TMS320C672x Bootloader
	1 Introduction
	2 Boot Mode Description
	2.1 HPI Boot
	2.2 Parallel Flash
	2.3 I2C Master
	2.4 I2C Slave
	2.5 SPI Master
	2.6 SPI Slave

	3 Application Image Script
	3.1 SET Command
	3.2 Section Load Command
	3.3 Section Fill Command
	3.4 Jump Command
	3.5 Jump_Close Command
	3.6 CRC Options
	3.6.1 Enable/Disable CRC Commands
	3.6.2 Request CRC Command
	3.6.3 Start-over Command

	4 External Serial EEPROM Boot
	5 External Host Processor Boot
	5.1 AIS Interpreter on the Host
	5.2 Start-Word Synchronization
	5.3 Ping Op-code Synchronization
	5.4 Op-code Synchronization (OS) for Serial Slave Modes

	6 Bootloader Utilities
	6.1 Installing Bootloader Utilities
	6.2 Using genBootCfg
	6.2.1 File Operations
	6.2.2 Selecting Device Package Type
	6.2.3 Configuring the PLL
	6.2.4 I2C Clock Configuration
	6.2.5 SDRAM Configuration
	6.2.6 ASYNC Ram Configuration
	6.2.7 Configuring GPIO Pins as Address Pins
	6.2.8 Output Files
	6.2.8.2 TIBOOT Section and TIBootSetup Symbol

	6.3 genAIS
	6.3.1 -Bootmode option
	6.3.1.1 -bootmode i2cslave/spislave
	6.3.1.2 -bootmode i2cmaster/spimaster
	6.3.1.3 -bootmode raw

	6.3.2 -cfgtype option
	6.3.2.1 -cfgtype "ais"

	7 Boot Examples
	7.1 Building an Application Using an Example Secondary Bootloader
	7.2 Sample Projects using Secondary Bootloader
	7.2.1 Example 1 - GPIO Pins Mapped as Address Pins (gpioAsAddr)
	7.2.2 Example 2 -GPIO Pin Used as Address Latch (gpioAsLatch)

	7.3 Generating AIS Stream for Use with EEPROM Programmer
	7.4 Boot Examples for Professional Audio Development Kit (PADK)
	7.4.1 FLASH/EMIFA Boot for PADK
	7.4.2 I2C Master Boot for PADK

	8 Troubleshooting On-chip BootLoad
	8.1 Incorrect Key Word
	8.2 Transmit Sync Error
	8.3 CRC Error
	8.4 Unsupported BootMode Error

	9 Calculating CRC
	10 Memory Allocation
	11 Determining On-chip BootLoader/ROM Version
	12 Cache Considerations
	Appendix A Calculating the CRC

