
Application Report
SPRAAH9A–September 2007

Motion JPEG Demo on TMS320DM6446
Zhengting He...

ABSTRACT
This application report describes how to build a motion JPEG demo running on Texas
Instruments DM6446 processor leveraging the JPEG codec combo and XDC tools
provided with the DM6446 DVEVM/DVSDK package. The demo is derived from the
motion JPEG demo running on the TI DM642 processor. Some tips on how to migrate
legacy code from TI DSP only based platform such as DM642 to the new
system-on-chip (SoC) platform such as DM6446 are provided.

Other than the JPEG codec combo, all other software source is provided along with this
report to expedite the development cycle for users.

This application report contains project code that can be downloaded from this link:
http://www-s.ti.com/sc/techlit/sprc343a.gz

Contents
Trademarks.. 2

1 Demo Description... 2
2 Demo Package Contents .. 5
3 Migrating from DM642 to DM6446 ... 7
4 How to Run .. 9
5 How to Re-Compile ... 12
6 References... 15

List of Figures

1 Motion JPEG Demo on DM6446 ... 2
2 Dataflow of Motion JPEG Demo on DM6446 ... 3
3 Software Architecture of Motion JPEG Demo on DM6446.................................... 4
4 Dataflow of Motion JPEG Demo on DM642 .. 7
5 Software Architecture of Motion JPEG Demo on DM642 7

List of Tables

1 Contents in mjpegdemo/app .. 5
2 Contents in mjpegdemo/simpleweb .. 5
3 Contents in mjpegdemo/simpleweb_pal ... 5
4 Contents in mjpegdemo/cfgquality ... 5
5 Contents in mjpegdemo/cfgquality_pal .. 6
6 Contents in mjpegdemo/javaapplet .. 6
7 Contents in mjpegdemo/javaapplet_pal ... 6
8 Contents in mjpegdemo/dsp .. 6
9 Contents in mjpegdemo/config.. 6

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 1
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/sprc343a.gz
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

Trademarks

1 Demo Description

1.1 Introduction

DaVinci EVM Board

DaVinci
DM6446

Ethernet Cables
Serial Cable

CCDC
Camera

Router

D
A

C
O

u
t

S
V

H
S

O
u

t

U
S

B

S
V

H
S

In

V
id

e
o

In

A
u

d
io

In

H
P

O
u

t

A
u

d
io

O
u

t

S
P

D
IF

O
p

ti
c

a
l

S
P

D
IF

A
n

a
lo

g

E
N

E
T

U
A

R
T

+
5

V

Demo Description

eXpressDSP is a trademark of Texas Instruments.

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries.

Windows is a trademark of Microsoft Corporation in the United States and/or other countries.

Internet Explorer is a registered trademark of Microsoft Corporation in the United States and/or other
countries.

Figure 1 shows a diagram of the motion JPEG demo running the DM6446 DVEVM board.

Figure 1. Motion JPEG Demo on DM6446

The CCDC camera is connected to the video in port on the DM6446 DVEVM board. The DM6446
processor captures the video signal from the video in port, compresses it by exercising the JPEG codec
combo at 30 fps and writes the output JPEG image files to the Linux® file system on the DM6446 DMEVM
board.

2 Motion JPEG Demo on TMS320DM6446 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

1.2 Dataflow

DaVinci EVM Board

DaVinci DM6446

Video In
CCDC

Camera

/tmp

Hard Disk File System

Vport
Driver

Application
Program

JPEG
Codec

ARM

DSP

HTTP
Server

In
p

u
t

B
u

ff
e
r

D
D

R
2

O
u

tp
u

t
B

u
ff

e
r

Demo Description

A serial connection needs to be established between the PC and the DM6446 DVEVM board. You are
able to control the DM6446 processor, boot the board, type command, etc., using a Windows™ terminal
program which communicates to the DM6446 processor via this link. The recommended Windows terminal
program is hyperterminal which is pre-installed with Windows XP

An IP connection is also established between the Windows PC and the DM6446 DVEVM board using the
network router. You are able to retrieve and display the encoded JPEG image files on the DVEVM board
via the Internet Explorer® (IE) by accessing the specific common gateway interface (CGI) program running
on the board. When the CGI program is accessed, it transfers the html contents and some JAVA byte
code to the Windows operating system. The html contents give the brief description to this demo. The
JAVA byte code decodes the JPEG image files at 30 fps and displays them in the IE window.

The quality of the JPEG images can also be dynamically configured by typing a number in the range [1,
100] in the post form of the IE window, as shown at the end of Figure 1. Number “1” makes the JPEG
codec to encode the video at the lowest quality and highest compression ratio. Number “100” makes it to
encode the video at highest quality and lowest compression ratio.

Figure 2. Dataflow of Motion JPEG Demo on DM6446

Figure 2 shows the demo dataflow. The input video signal is captured from the camera via the video input
port and stored into the input buffer located in the DDR2 memory by the video port driver running on the
ARM core of the DM6446 processor. The application program on ARM delivers the input data to the JPEG
codec running on the DSP core. The JPEG codec encodes the input raw image and saves the
compressed JPEG image to the output buffer located in the DDR2 memory. After that, the application
program saves the output data to the /tmp directory which is a RAM disk mounted in the Linux file system.
Storing the output images to the RAM disk allows fast access and improves system performance.

When you request to access the compressed JPEG images, the HTTP server running on the ARM core
handles the request and transmits the data in the RAM disk (/tmp) via the IP link. When you request to
change the image quality, the HTTP server writes the quality index to a specific file. The application
program polls this file once every second to notify the JPEG codec to change the quality.

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

1.3 Software Architecture

ARM Application Program JPEG Codec

Codec Stub

Core Engine Runtime

Core Engine APIs VISA APIs

Core Engine Runtime

Codec Skeleton

VISA SPIs

Codec Engine

ARM Driver DSP Driver

DSP Link

Apache
HTTP
Server

CMEM Driver

Vport Driver

EMAC Driver

Network
Stack

Linux Application SW

Linux Kernel + Driver DSP/BIOS + Driver

DSP Application SW

Demo Description

Figure 3. Software Architecture of Motion JPEG Demo on DM6446

Figure 3 shows the software architecture of the demo. The HTTP server running on ARM calls the Linux
network stack to handle the HTTP requests. The network stack calls the EMAC driver to handle data
sending/receiving. The HTTP server is in the Linux application (user) space and the EMAC driver is in the
Linux kernel space. Several layers of the Linux network stack are in the application space while others are
in kernel space.

The application program on ARM is in the Linux application space. It calls the video port driver to receive
the input data. Once the video port driver is initialized, it allocates a buffer which can hold up to 3 D1
frames in the kernel space. Because of the virtual memory scheme, the Linux application cannot directly
see the kernel memory addresses. Therefore, the application needs to make a mmap() call to access the
input data in the buffer.

The video port driver allocates the kernel buffer in the physical address space that it can be shared by the
DSP. When the ARM application notifies the DSP to encode a video frame, it does not need to copy the
data to the DSP address space. Driver CMEM manages the shared memory between ARM and DSP.
When the video port driver allocates the input buffer, it asks for CMEM to handle it. Similarly, when the
ARM application allocates the output buffer shared by the DSP, it is also handled by CMEM driver.

From the ARM application point of view, asking DSP to encode a frame or change the video encoding
quality is just a simple VISA API call. But there are a lot of tasks going on underneath the API.

• Once a VISA API is issued, pointers to any shared buffer between ARM and DSP need to be
translated so that DSP program can recognize it. API arguments do not reside in the shared memory
between ARM and DSP so they need to be marshaled before being copied to DSP memory. These
tasks are handled by the Codec Engine on the ARM side. The image class stub handles these tasks
that exercises the JPEG encoder as an image codec, specifically for this demo.

• The DSP link driver handle data copy between ARM and DSP. It has a Linux driver as the ARM portion
and the DSP/BIOS driver as the DSP portion.

• Once the API arguments and buffer pointers reach DSP, appropriate codec API needs to be called or a
DSP/BIOS task needs to be activated. To encode a new frame, cache also needs to be invalidated
which forces the DSP core to read the new input data from external memory. These tasks are handled
by the Codec Engine on the DSP side, specifically the image class codec skeleton.

Motion JPEG Demo on TMS320DM64464 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

2 Demo Package Contents

Demo Package Contents

The motion JPEG demo package for DM6446 is compressed as an SPRC343.gz file. Untaring the
package creates a folder called mjpegdemo in which there are 9 sub-folders: app, cfgquality,
cfgquality_pal, simpleweb, simpleweb_pal, config, dsp, javaapplet and javaapplet_pal.

Table 1. Contents in mjpegdemo/app

File(s) Description

app.c, app.h, main_native.c, smain.h These are the source files of the ARM application program. The behavior is summarized as
follows:

1. Initialize the video port driver either for NTSC or PAL format depending on the provided
runtime argument.

2. Initialize codec engine and allocate all required memories.
3. Get the input image from the video port and notify the JPEG codec on DSP to encode it.
4. Write the output to the Linux file system as a JPEG file. The program is allowed to write

up to 30 files in sequence (named from image1.jpg to image30.jpg) for NTSC format, or
25 files in sequence (image1.jpg to image25.jpg). Because the video is encoded at 30
fps for NTSC format or 25 fps for PAL format, the Linux file system buffers 1 second
output data.

5. If 1 second of frames have been encoded since last time checking the quality index file,
check the file again and re-configure the encoding quality. The name of the quality index
file is Qfile.

makefile, package.bld, These files are used for building the application code using XDC tools which are installed
package.mak, package.xdc, with the DM6446 DVEVM/DVSDK package.
remote.cfg

app.cgi This is the ARM application binary code.

Table 2. Contents in mjpegdemo/simpleweb

File(s) Description

main.c This is the CGI source code to print out the HTML contents to the client for the NTSC format
support once the client accesses it using Internet Explorer.

makefile This file is used for building the CGI code.

simplearm.cgi This is the CGI binary code.

Table 3. Contents in mjpegdemo/simpleweb_pal

File(s) Description

main.c This is the CGI source code to print out the HTML contents to the client for the PAL format
support once the client accesses it using Internet Explorer.

makefile This file is used for building the CGI code.

simplearm_pal.cgi This is the CGI binary code.

Table 4. Contents in mjpegdemo/cfgquality

File(s) Description

cfgquality.c This is the CGI source code to change the encoding quality for the NTSC format support
once the client accesses it using Internet Explorer. It validates the input from the client,
writes the valid quality index to Qfile, and prints out the html contents to the client.

makefile This file is used for building the CGI code.

cfgquality.cgi This is the CGI binary code.

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

Demo Package Contents

Table 5. Contents in mjpegdemo/cfgquality_pal

File(s) Description

cfgquality.c This is the CGI source code to change the encoding quality for the PAL format support once
the client accesses it using Internet Explorer. It validates the input from the client, writes the
valid quality index to Qfile, and prints out the html contents to the client.

makefile This file is used for building the CGI code.

cfgquality_pal.cgi This is the CGI binary code.

Table 6. Contents in mjpegdemo/javaapplet

File(s) Description

easyCam.java This is the JAVA applet source code to decode the JPEG image in NTSC format and render
in client’s IE window.

easyCam.class, easyCam$1.class These files are JAVA byte code built from easyCam.java. When client accesses
simplearm.cgi, the printed html contents also notifies the IE to download and execute these
byte code.

Table 7. Contents in mjpegdemo/javaapplet_pal

File(s) Description

easyCam_pal.java This is the JAVA applet source code to decode the JPEG image in PAL format and render in
client’s IE window.

easyCam_pal.class, These files are JAVA byte code built from easyCam_pal.java. When client accesses
easyCam_pal$1.class simplearm_pal.cgi, the printed html contents also notifies the IE to download and execute

these byte code.

Table 8. Contents in mjpegdemo/dsp

File(s) Description

jpegencdecCombo.x64P This is the DSP binary image which includes JPEG encoder, JPEG decoder, codec engine
DSP portion, and the DSP link driver DSP portion. When the ARM application program tries
to initialize the codec engine, it loads this image to DSP memory and lets DSP execute.

Folder jpegenc This folder contains all the additional files necessary to build ARM application program to
access JPEG encoder using XDC tools.

Folder jpegdec This folder contains all the additional files necessary to build ARM application program to
access JPEG decoder using XDC tools.

Table 9. Contents in mjpegdemo/config

File(s) Description

RunInTmp This script sets the environment to allow the ARM application program for NTSC format
support to write output files to RAM disk (/tmp) while the HTTP server accesses them.

RunInTmp_pal This script sets the environment to allow the ARM application program for PAL format
support to write output files to RAM disk (/tmp) while the HTTP server accesses them.

cmemk.ko, dsplinkk.ko, cmemk.ko and dsplinkk.ko are the CMEM and DSP link driver module, respectively. They
loadmodules.sh need to be loaded to Linux kernel by executing script loadmodules.sh before running the

application program.

httpd.conf This is the configuration file to change the default setting of Apache HTTP server to support
this demo. You can use this file to replace the default configuration file.

tibug.jpg This is the TI logo image which is printed out as part of the html contents showing in client’s
IE window.

uImageC30 This is the Linux kernel image. In case some clients do not have the latest kernel image on
their DM6446 DVEVM board, this image can be used to boot the kernel and run the demo.

Qf This is a backup quality index file.

Motion JPEG Demo on TMS320DM64466 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

3 Migrating from DM642 to DM6446

3.1 Motion JPEG Demo on DM642

DM542 EVM Board

DM642

Video
In

CCDC
Camera

Vport Driver

JPEG Codec

HTTP Server

S
D

R
A

M

In
p

u
t

B
u

ff
e

r
O

u
tp

u
t

B
u

ff
e

r

JPEG Codec

Vport DriverEMAC Driver

DSP/BIOS + Driver

DSP Application SW

HTTP Server

NDK

Input Task

Migrating from DM642 to DM6446

This motion JPEG demo is derived from the motion JPEG demo running on TI DM642 processor. Using
the motion JPEG demo, this section shows some tips on migrating legacy application code from DM642 to
DM6446.

Figure 4 is the dataflow diagram of the motion JPEG demo running on DM642 which is a DSP only
environment. The input video signal is captured from the camera via the video input port and stored to the
input buffer located in the SDRAM by the video port driver. The JPEG codec task reads the input frame
directly, encodes it and saves the compressed JPEG image to the output buffer located in the SDRAM.
There is also a DSP version HTTP server running. When you request to access the compressed JPEG
images, the HTTP server handles the request and transmits the data in the output buffer via the IP link.
When you request to change the image quality, the HTTP server writes the new quality index number to
the SDRAM. When the JPEG codec starts to encode the next frame, it is able to read the updated
number.

Figure 4. Dataflow of Motion JPEG Demo on DM642

Figure 5. Software Architecture of Motion JPEG Demo on DM642

Figure 5 shows the software architecture of DM642 version demo. The HTTP server handles the HTTP
requests and is implemented based on the Network Development Kit (NDK). The NDK is a TI library that
emulates the behavior of Berkeley socket (BSD). NDK calls the EMAC driver to handle data
sending/receiving.

The input task calls the video port driver to receive the input data. When a new frame is received, it
notifies the JPEG codec to encode it.

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

3.2 DM642 Demo vs. DM6446 Demo

3.3 Porting DM642 Demo to DM6446 Platform

3.3.1 Using the DM6446 Linux Video Port Driver

3.3.2 Using the Apache HTTP Server on DM6446

3.3.3 Make JPEG Codec section 4XDM Compliant

Migrating from DM642 to DM6446

The pros of the DM642 version over the DM6446 version are:

• For the DM642 version demo, the video port driver runs on DSP. Because TI DSP does not
differentiate application space and kernel space, this application can access the input buffer directly.

• For DM6446 version demo, the ARM application needs to deliver the frame to DSP and wait for it to
finish encoding. The sequence involves address translation, argument copying, and cache invalidation
by the Codec Engine, and data transfer by DSP link, as described in Section 3.1. For the DM642
version, activating the JPEG codec task to encode a frame when a new frame is captured is simply a
DSP/BIOS semaphore post operation.

• For the DM642 version demo, an HTTP server is implemented based on NDK. The server task can
retrieve the output images from the output buffer directly without saving it as a separate file as in the
DM6446 version.

The cons of the DM642 version are:

• The HTTP server needs to be implemented by the user. For new TI DSP users, getting familiar with
NDK and creating an HTTP server extends the development cycle, and may even be error prone.
While for the DM6446 version, mature open source software such as apache http server, tiny http
server, etc. can be deployed directly.

• Video port driver and HTTP server execute on DSP and compete for MIPS with the JPEG codec. For
the DM6446 version, offloading these two tasks to the ARM core leaves room for DSP to do more
complicated multimedia processing.

To port the DM642 version motion JPEG demo to DM6446 platform, the main tasks are as follows:

• Using the Linux video port driver running on DM6446 ARM core
• Using the Linux Apache HTTP server running on DM6446 ARM core
• Making the JPEG codec to be XDM compliant

The APIs of the DM6446 video front end port driver are in compliance to second generation of video for
Linux standard (V4L2) and different from the APIs of the DM642 video port driver. But the new APIs are
also easy to use. To access the video data which is in the kernel space, the application needs to call the
Linux API mmap(). The source code app.c shows the example on how to call the DM6446 video port
driver.

The developer needs to use the Linux Apache HTTP server running on DM6446 ARM core instead of
programming his/her own server to handle HTTP requests. Because the Apache server has been ported
to DM6446 and provided with DM6446 DVEVM/DVSDK as a default option, the main work is to configure
the Apache server to support running the demo cgi programs. The configuration step is shown in
Section 4.

The legacy JPEG codec running on DM642 is compliant to TI eXpressDSP™ Algorithm Interface Standard
(xDAIS). Algorithm compliant to xDAIS requests memory usage through xDAIS interface so that different
algorithms can be easily integrated together without worrying about corrupting each other’s memory.

8 Motion JPEG Demo on TMS320DM6446 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

4 How to Run

4.1 Necessary Hardware and Software

4.2 Configuration Steps Before Running the Demo

How to Run

From the application developer’s perspective, the Codec Engine provides a set of xDM APIs that can be
used to instantiate and run xDAIS algorithms. xDM stands for the eXpressDSP Algorithm Interface
Standard for Digital Media and can be considered compliant with and a super set of xDAIS. Additionally, it
implements two additional APIs to support multimedia codecs: process and control. The process API
triggers the codec algorithm to process the input data. The control API has a broad range of usage such
as inquires the codec status, dynamically configure the codec, etc. For the motion JPEG demo on
DM6446, process is called to encode a raw video frame to a JPEG file, and control is called to
dynamically change the encoding quality.

The xDM interfaces divide codec algorithms into four classes: video, image, speech, and audio (VISA).
For each class, one set of APIs and data structures (struct in C language) are provided. The class specific
data structures typically define the parameters which are common for this class of codec at the beginning
of the structure. xDM defines an “extended” parameter in almost each structure to allow users to add their
own special parameters there. xDM also allows users to create a codec which does not belong to a VISA
class. When any extended parameters are added in data structure, or a completely new codec class is
created, the developer needs to use the same methodology to create his/her own codec stub and skeleton
to allow the application program to access the codec.

For details on the Codec Engine, please refer to [3] Codec Engine Application Developer User’s Guide
(SPRUE67).

To convert the DM642 version JPEG codec to be XDM compliant, the main work are as follows.

• Implement the process and control call.
• Make the codec recognize the image class data structures of xDM. Because this JPEG codec does not

have any special parameters to be added, the existing image class stub/skeleton can be used.

• DM6446 DVEVM board
• Windows PC with Internet Explorer installed
• CCD camera (NTSC or PAL resolution) connected to the DM6446 board
• Network router connecting Windows PC and DM6446 DVEVM board
• JAVA runtime environment (JRE) pre-installed on your Windows PC. If you do not have JRE

pre-installed, please download and install it from http://www.java.com/en/download/manual.jsp.
• Serial cable connecting your Windows PC and DM6446 board
• Terminal program on Windows PC, i.e., hyperterminal

This section shows the preparation steps before running the demo. They only need to be done once.

1. Boot your DM6446 DVEVM board. Put the demo package SPRC343.gz. into a temporary directory on
the hard drive of your DM6446 DVEVM board. In the rest of this section, it is assumed it is in the /opt
directory.

2. Unzip the package by typing tar -xzf SPRC343.gz. You will see the /opt/mjpegdemo folder is created.
There are 9 sub-folders as described previously:

cd /opt

tar -xzf sprc343.gz

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 9
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE67
http://www.java.com/en/download/manual.jsp
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

How to Run

3. Configure the Apache server on your DM6446 board as follows:

a. Create a directory /var/www/html/jpegdemo which is the demo directory on your DM6446 board.

mkdir /var/www/html/jpegdemo

b. Add the following lines in file /etc/apache/httpd.conf on your DM6446 board:

Alias /jpegdemo/ “/var/www/html/jpegdemo” <Directory “/var/www/html/jpegdemo”> Options

+ExecCGI </Directory> AddHandler cgi-script .cgi

Or simply replace the default httpd.conf file with the one provided.

mv /etc/apache/httpd.conf /etc/apache/httpd.conf.bk

cp mjpegdemo/config/httpd.conf /etc/apache/

4. Copy the ARM application binary to the demo directory.

cp app/app.cgi /var/www/html/jpegdemo

5. Copy the JPEG codec combo to the demo directory.

cp dsp/jpegencdecCombo.x64P /var/www/html/jpegdemo

6. Copy the JAVA byte code to the demo directory.

cp javaapplet/*.class /var/www/html/jpegdemo

cp javaapplet_pal/*.class /var/www/html/jpegdemo

7. Copy the CGI program which prints out the html contents to the demo directory.

cp simpleweb/simplearm.cgi /var/www/html/jpegdemo

cp simpleweb_pal/simplearm_pal.cgi /var/www/html/jpegdemo

8. Copy the CGI program which handles encoding quality change to the demo directory.

cp cfgquality/cfgquality.cgi /var/www/html/jpegdemo

cp cfgquality_pal/cfgquality_pal.cgi /var/www/html/jpegdemo

9. Copy the other required files in config sub-folder to the demo directory.

cp config/RunInTmp /var/www/html/jpegdemo

cp config/RunInTmp_pal /var/www/html/jpegdemo

cp config/tibug.jpg /var/www/html/jpegdemo

cp config/Qf /var/www/html/jpegdemo

cp config/loadmodules.sh /var/www/html/jpegdemo

cp config/*.ko /var/www/html/jpegdemo

Motion JPEG Demo on TMS320DM644610 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

4.3 Executing the Demo

4.3.1 Executing the Demo for NTSC Format

4.3.2 Executing the Demo for PAL Format

How to Run

The following are steps to run the demo once you have completed the steps in Section 4.2.

1. Make all the HW connections.

a. Hook the CCD NTSC camera to your DM6446 board.
b. Connect your Windows PC and DM6446 board using the network router.
c. Connect your Windows PC and DM6446 board using a serial cable.

2. Launch the terminal program on your Windows PC and boot your DM6446 board.
3. Switch to the demo directory.

cd /var/www/html/jpegdemo

4. If it is already running, stop the tiny http server on your DM6446 board because it conflicts with the
Apache HTTP server.

killall thttpd

5. Start the Apache server.

httpd

6. Run the script RunInTmp to allow the application program to write output files to the RAM disk (/tmp)
while the Apache HTTP server can still access the files.

./RunInTmp

7. Load the DSP link and CMEM modules to kernel.

./loadmodules.sh

8. Start the application program.

cd /tmp

./app.cgi

9. Launch Internet Explorer on your Windows operating system and access URL
http://[DM6446_board_IP_address]/jpegdemo/simplearm.cgi where DM6446_board_IP_address is the
IP address of your board.

10. You should be able to see the videos playing in your Inernet Explorer window.
11. You can change the video quality by typing number in range [1,100] in the IE Window.

1. 1. Make all the HW connections.

a. Hook the CCD PAL camera to your DM6446 board.
b. Connect to your Windows PC and DM6446 board using the network router.
c. Connect to your Windows PC and DM6446 board using a serial cable.

2. Launch the terminal program on your Windows PC and boot your DM6446 board.

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

5 How to Re-Compile

5.1 Necessary HW and SW

5.2 Configuration Steps Before Re-Compiling the Demo

How to Re-Compile

3. Switch to the demo directory.

cd /var/www/html/jpegdemo

4. If it is already running, stop the tiny http server on your DM6446 board because it conflicts with the
Apache HTTP server.

killall thttpd

5. Start the Apache server.

httpd

6. Run the script RunInTmp_pal to allow the application program to write output files to the RAM disk
(/tmp) while the Apache HTTP server can still access the files.

./RunInTmp_pal

7. Load the DSP link and CMEM modules to kernel.

./loadmodules.sh

8. Start the application program, providing the -PAL argument .

cd /tmp

./app.cgi -PAL

9. Launch Internet Explorer on your Windows operating system and access URL
http://[DM6446_board_IP_address]/jpegdemo/simplearm_pal.cgi where DM6446_board_IP_address is
the IP address of your board.

10. You should be able to see the videos playing in your IE window.
11. You can change the video quality by typing number in range [1,100] in the IE window.

In addition to the HW and SW necessary to run the demo, a Linux development host (or Linux virtual
machine running on VMWare) with latest DM6446 DVEVM/DVSDK package being installed are required
to re-compile the demo code.

1. Install and configure the DVEVM packages by following the steps in the [1] DVEVM Getting Started
Guide (SPRUE66). Make sure that you can write a simple program and compile and run it on the
DM6446 board.

2. Install and configure the DVSDK packages by following the steps in the [2] DVSDK Getting Started
Guide (SPRUEG8). Make sure that you can compile the codec engine examples.

12 Motion JPEG Demo on TMS320DM6446 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE66
http://www-s.ti.com/sc/techlit/SPRUEG8
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

How to Re-Compile

3. Log in as the user to your Linux host. Put SPRC343.gz into a temporary directory (/tmp) and untar it.
You will see the folder /tmp/mjpegdemo is created with 6 sub-folders as described before.

cd /tmp

untar -xzf sprc343.gz

4. Create a folder in [DVEVM_INSTALL_DIR]/[codec_engine_x_xx]/examples/apps/jpegencdec, which is
the demo development directory. [DVEVM_INSTALL_DIR]/[codec_engine_x_xx] is the directory where
the codec engine package for the DVEVM/DVSDK is installed. In the rest of the section, it will be
referred to as /home/user/dvevm_1_10/codec_engine_1_02/.

mkdir /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec

5. Switch to the development directory.

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec

6. Copy everything in app subfolder here

cp /tmp/mjpegdemo/app/* .

7. Copy folder javaapplet and javaapplet_pal here.

cp –r /tmp/mjpegdemo/javaapplet/ .

cp –r /tmp/mjpegdemo/javaapplet_pal .

8. Copy folder simpleweb and simpleweb_pal here.

cp –r /tmp/mjpegdemo/simpleweb/ .

cp –r /tmp/mjpegdemo/simpleweb_pal .

9. Copy folder cfgquality and cfgquality_pal here.

cp –r /tmp/mjpegdemo/cfgquality/ .

cp –r /tmp/mjpegdemo/cfgquality_pal .

Note: if your codec server directory already contains the jpeg encoder and decoder package,
skip step 10 and 11.

10. Copy the XDM package for the JPEG encoder to the codec server directory. Your codec server
directory is /home/user/dvevm_1_10/codec_servers_1_00. Type the following command in one line.

cp –r /tmp/mjpegdemo/dsp/jpegenc

/home/user/dvevm_1_10/codec_servers_1_00/packages/ti/sdo/codecs

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

5.3 Re-Compile the Demo

5.3.1 Re-Compile the ARM Application Code

5.3.2 Re-Compile the CGI Code

5.3.3 Re-Compile the JAVA Applet Code

How to Re-Compile

11. Copy the XDM package for JPEG decoder to the codec server directory. Type the following command
in one line.

cp –r /tmp/mjpegdemo/dsp/jpegdec

/home/user/dvevm_1_10/codec_servers_1_00/packages/ti/sdo/codecs”

• To compile the code, type the following:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec

gmake

mv app_remote.x470MV app.cgi

The last step is necessary because the script RunInTmp assumes that the name of ARM application
binary is app.cgi. To run this binary, it is necessary to transfer it to directory /var/www/html/jpegdemo” on
your DM6446 board.

• Type the following to compile the code for NTSC format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/simpleweb

make

The output code is simplearm.cgi. To run the generated binary, it is necessary to transfer it to the
directory /var/www/html/jpegdemo” on your DM6446 board.

• Type the following to compile the code for PAL format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/simpleweb_pal

make

The output code is simplearm_pal.cgi. To run the generated binary, it is necessary to transfer it to the
directory /var/www/html/jpegdemo” on your DM6446 board.

• Type the following to compile the JAVA source code for NTSC format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/javaapplet

javac easyCam.java

The output JAVA byte code are easyCam.class and easyCam$1.class. To run the generated JAVA
code, it is necessary to transfer them to directory /var/www/html/jpegdemo” on your DM6446 board.

• Type the following to compile the JAVA source code for PAL format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/javaapplet_pal

javac easyCam_pal.java

Motion JPEG Demo on TMS320DM644614 SPRAAH9A–September 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

www.ti.com

5.3.4 Re-Compile the Quality Configuration Code

6 References

References

The output JAVA byte code are easyCam_pal.class and easyCam_pal$1.class. To run the generated
JAVA code, it is necessary to transfer them to directory /var/www/html/jpegdemo” on your DM6446
board.

• Type the following to compile the code for NTSC format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/cfgquality

make

The output code is cfgquality.cgi”. To run the generated binary, it is necessary to transfer it to directory
/var/www/html/jpegdemo” on your DM6446 board.

• Type the following to compile the code for PAL format support:

cd /home/user/dvevm_1_10/codec_engine_1_02/examples/apps/jpegencdec/cfgquality_pal

make

The output code is cfgquality_pal.cgi. To run the generated binary, it is necessary to transfer it to
directory /var/www/html/jpegdemo” on your DM6446 board.

1. DVEVM Getting Started Guide (SPRUE66)
2. DVSDK Getting Started Guide (SPRUEG8).
3. Codec Engine Application Developer User’s Guide (SPRUE67).

SPRAAH9A–September 2007 Motion JPEG Demo on TMS320DM6446 15
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE66
http://www-s.ti.com/sc/techlit/SPRUEG8
http://www-s.ti.com/sc/techlit/SPRUE67
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAH9A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Trademarks
	1 Demo Description
	1.1 Introduction
	1.2 Dataflow
	1.3 Software Architecture

	2 Demo Package Contents
	3 Migrating from DM642 to DM6446
	3.1 Motion JPEG Demo on DM642
	3.2 DM642 Demo vs. DM6446 Demo
	3.3 Porting DM642 Demo to DM6446 Platform
	3.3.1 Using the DM6446 Linux Video Port Driver
	3.3.2 Using the Apache HTTP Server on DM6446
	3.3.3 Make JPEG Codec section 4XDM Compliant

	4 How to Run
	4.1 Necessary Hardware and Software
	4.2 Configuration Steps Before Running the Demo
	4.3 Executing the Demo
	4.3.1 Executing the Demo for NTSC Format
	4.3.2 Executing the Demo for PAL Format

	5 How to Re-Compile
	5.1 Necessary HW and SW
	5.2 Configuration Steps Before Re-Compiling the Demo
	5.3 Re-Compile the Demo
	5.3.1 Re-Compile the ARM Application Code
	5.3.2 Re-Compile the CGI Code
	5.3.3 Re-Compile the JAVA Applet Code
	5.3.4 Re-Compile the Quality Configuration Code

	6 References

