
SPRAAS0D– March 2011
Submit Documentation Feedback

Using the TMS320DM646x DMSoC Bootloader 1

© 2011, Texas Instruments Incorporated

Application Report
SPRAAS0D– March 2011

Device Applications

Using the TMS320DM646x DMSoC Bootloader

ABSTRACT

This document describes the functionality of the TMS320DM6467 Digital Media System-on-Chip (DMSoC)
ARM ROM bootloader (RBL) software. The ARM ROM bootloader resides in the ROM of the device
beginning at address 0x00008000. The RBL implements methods for booting in the listed modes and uses
boot configuration pins to determine boot mode. If an improper boot mode is chosen, or an error is
detected during boot from a slave device, the RBL communicates this through the universal asynchronous
receiver/transmitter (UART), as the default boot device.
When booting in master mode, the RBL reads boot information from the slave device, as and when
required. When booting in slave mode, the RBL depends on the master device to feed boot information,
as and when required. Please note that for all boot modes, the RBL disables the watchdog timer for the
duration of boot. All applications MUST avoid configuring the watchdog timer during the boot process.
• HPI
• PCI
• EMIFA Direct Boot
• NAND
• I2C (master)
• SPI (master)
• UART
Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/SPRAAS0.

Contents
1 Boot Mode Description ... 3
2 Memory Map .. 4
3 Boot Modes .. 4
4 References... 19
Appendix A AIS Use Cases for I2C and SPI Master-Boot Modes ... 20

List of Figures
1 RBL Memory Map .. 4
2 HPI-Boot Sequence ... 5
3 Memory Map .. 6
4 PCI-Boot Sequence ... 6
5 Memory Map .. 6
6 PCI With I2C-Boot Sequence .. 7
7 Memory Map .. 8
8 NAND-Boot Sequence ... 9
9 Boot Parameters .. 10
10 Boot Parameter Search ... 10
11 Example ... 11
12 NAND Flash Connection .. 12
13 SAMSUNG K9F1208X0C Read Operation .. 13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D
http://www.ti.com/lit/zip/SPRAAS0

© 2011, Texas Instruments Incorporated

www.ti.com

14 STMicro NAND512W3A2C Read Operation... 14
15 UART-Boot Sequence ... 15
16 I2C-Boot Sequence ... 17
17 SPI-Boot Sequence ... 18
18 SPI Connection .. 19

 List of Tables

1 Boot Mode Description ... 3
2 PCI Base Address .. 7
3 I2C EEPROM Memory Layout for PCI Configuration Parameters ... 8
4 Support Device ID List .. 11
5 Value for the Handshake Sequence .. 16
6 I2C EEPROM Specification .. 17
7 Example I2C Boot Image... 17
8 Example Boot Image.. 19

2 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Mode Description www.ti.com

1 Boot Mode Description
The TMS320DM6467 DMSoC has BTMODE and PCIEN pins for boot configuration (see Table 1). The
RBL reads these pins and branches to the appropriate code to implement the selected boot.

Table 1. Boot Mode Description

0100

1

1

0111

1

1100

1

Basically, the PCIEN state does not affect the bootmode. The bootmode does not use EMIFA/PCI such as
emulation boot. However, the PCI_RST is multiplexed with EM_A22/ATA_H2/GP13. It may not tie high,
especially the EM_A22/ATA_H2, which is output when you use the EMIFA/ATA. In this situation, if you set
PCIEN = 1, the PCI_RST is not driven high; the TMS320DM6467 DMSoC is in reset state. As a result, the
TMS320DM6467 DMSoC can not boot. It is recommended to set PCIEN = 0 when you do not use PCI.

Code Composer Studio is a trademark of Texas Instruments.
Windows is a trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners.

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 3
Submit Documentation Feedback

 Hardware
BTMODE[3:0] PCIEN ARM-Boot Mode Boot Notes

0000 0 or 1 Emulation Boot ROM

0001 0 or 1 Reserved ROM Default to UART0 Boot
 0 HPI Boot 16-Bit ROM

0010 1 PCI Boot Without ROM
 Auto-Initialization

0 HPI Boot 32-Bit ROM
0011 1 PCI Boot With ROM

 Auto-Initialization
0 EMIFA Direct Boot EMIFA

1 Error ROM Default to UART0 Boot
0

0101 Reserved ROM Default to UART0 Boot

0
0

0110 I2C Boot

1

ROM

TMS320DM6467 DMSoC is the I2C master

0 NAND Flash Boot ROM

1 Error ROM Default to UART0 Boot
0

1000 UART0 Boot ROM

1001 0 or 1 Reserved ROM

1010 0
1011 1 Reserved

1101

ROM

Default to UART0 Boot

1110 0 or 1 SPI Boot ROM TMS320DM6467 DMSoC is the SPI master
0

1111 Reserved ROM Default to UART0 Boot

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Memory Map www.ti.com

1.1 Terms and Abbreviations

AEMIF Asynchronous External Memory Interface
AIS Application Image Script
BL Boot Loader (referring to the bootloader in this text)
Bootloader SW/Code for TMS320DM6467 DMSoC ROM Bootloader
DSP Digital Signal Processor
EEPROM Electrically Erasable Programmable Read-Only Memory
GPIO eneral-Purpose Input/Output
HINT Host Interrupt
HPI Host Port Interface
I2C Inter-Integrated Circuit
PCI Peripheral Component Interconnect
RBL ROM Boot Loader
ROM Read-Only Memory
SPI Serial Peripheral Interface
UBL User Boot Loader

2 Memory Map
Place the UBL in the range of 0x00000020 to 0x000074FF, as shown in Figure 1. 0x00000000 to
0x0000001F and 0x00007500 to 0x00007FFF are reserved for the ROM bootloader. ARM internal
memory in the TMS320DM6467 DMSoC is physically the same for both ITCM and DTCM. This restriction
is also applied for the DTCM area. (The address offset to the top of DTCM start address is 0x00010000).

0x00000000

0x00000020

0x00007500

0x00007FFF

Figure 1. RBL Memory Map

3 Boot Modes
This section discusses various boot modes.

3.1 Emulation-Boot Mode

In this boot mode, the RBL executes the infinity loop. The debugger, such as Code Controller Studio, is
responsible for performing any code download and controlling the device.

3.2 HPI Boot 16/32-Bit Mode

In HPI boot 16/32-bit mode, the RBL performs the sequence shown in Figure 2:

4 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

Reserved for RBL

UBL Area
(29,920 Bytes)

Resrved for RBL

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

Power On

Run the RBL

UART-Boot Mode

External Host Sets UBL
Signature in Address

0x10017E84

UART-Boot Mode

Run the UBL

Device Sent Ready
to External Host

External Host Sent ACK

to Device

External Host Downloads
the UBL

External Host
Sets Information

for the UBL

External Host
Makes Trigger

to Run the UBL

Figure 2. HPI-Boot Sequence

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 5
Submit Documentation Feedback

No
ACK

is Received
During Specific

Period
?

Yes

Wait Interrupt From
External Host for ACK

No
Is

the UBL
Signature

Good
?

Yes

External Host Sets the
Boot Complete Bit

External Host Sets UBL
Entry Point in Address

0x10017E80

Wait While External Host
Copies the User Boot

Loader to IRAM

Assert HINT for Ready
Signal to External Host

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

The RBL signals to the Host that the TMS320DM6467 DMSoC is ready via the HINT signal. The RBL
waits 50 seconds for the HINT to ACK. There is no timeout once the RBL drops into a polling loop for the
external Host to complete the code download. The boot complete (BC) bit is located at bit 0 of the Boot
Status Register (BOOTSTAT). The BOOTSTAT register is located at 0x01C40010. The entry point must
be specified in terms of the ARM Instruction TCM area and should be in the range of 0x000000020–
0x000074FF. The external Host should download the UBL between 0x10010020 and 0x10017500, as
shown in Figure 3.

0x10010020

0x10017500

0x10017E80

0x10017E84

Figure 3. Memory Map

3.3 PCI-Boot Mode
In PCI-boot mode, the RBL performs the sequence shown in Figure 4:

External Host Configures the
PCI Interface and

Downloads the UBL

External Host

Sets the Information
for the UBL

External Host
Makes Trigger to

Run the UBL

Figure 4. PCI-Boot Sequence

The boot complete (BC) bit is located at bit 0 of the BOOTSTAT register. The BOOTSTAT register is
located at 0x01C40010. The entry point must be specified in terms of the ARM Instruction TCM area and
should be in the range of 0x00000020–0x000074FF. The external Host should download the UBL
between 0x10010020 and 0x10017500, as shown in Figure 5.

0x10010020

0x10017500

0x10017E80
Figure 5. Memory Map

6 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011

Submit Documentation Feedback

Entry Point

Power On

Run the RBL

Wake Up PCI
Interface

External Host Sets Boot
Complete Bit

External Host Sets UBL
Entry Point in Address

0x10017E80

Wait While External Host
Copies the User Boot

Loader to IRAM

Boot Signature (0xA1ACED00)

Entry Point

UBL Area
(29,920 Bytes)

Run the RBL

UBL Area
(29,920 Bytes)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

The PCI module provides full visibility for a PCI host into the DM6467 DMSoC memory through six sets of
PCI Slave Base Address Translation Registers (PCIBAR0TRL-PCIBAR5TRL) and PCI Base Address
Mask Registers (PCIBAR0MSK-PCIBAR5MSK). The ARM can use any of these sets of registers to map
any memory region or memory-mapped registers (MMRs) to the PCI memory-map. These registers can
be configured by software at any time. The default values of these registers provide the mapping shown in
Table 2.

Table 2. PCI Base Address

Base Address Window Size Memory Space
0 32KB (1) ARM Internal Memory
1 16KB DDR2 Control Registers
2 4MB Chip-Level MMRs
3 128KB GEM L2 RAM
4 8MB DDR2 Memory
5 8MB DDR2 Memory

(1) The RBL changes Window Size for Base Address 0. The PCIIF IP’s default value of Window Size for Base Address 0 is 16KB.

3.4 PCI Boot With Auto-Initialization Mode
In PCI boot with auto-initialization mode, the RBL performs the sequence shown in Figure 6:

External Host Configures
the PCI Interface and
Downloads the UBL

External Host
Sets Information

for the UBL

External Host Makes

Trigger to Run the UBL

Figure 6. PCI With I2C-Boot Sequence

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 7
Submit Documentation Feedback

Power On

Run the RBL

Run the RBL

Yes Error
During Parameter

Read
?

No

Wake Up PCI
Interface

Wait While External Host
Copies the User Boot

Loader to IRAM

Read the Configuration
Parameter for PCI I/F

from I2C EEPROM

UART-Boot Mode

External Host Sets Boot
Complete Bit

External Host Sets UBL
Entry Point in Address

0x10017E80

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

The boot complete (BC) bit is located at bit 0 of the BOOTSTAT register. The BOOTSTAT register is
located at 0x01C40010. The entry point must be specified in terms of the ARM Instruction TCM area and
should be in the range of 0x00000020–0x000074FF. The external Host should download the UBL
between 0x10010020 and 0x10017500, as shown in Figure 7.

0x10010020

0x10017500

0x10017E80
Figure 7. Memory Map

3.4.1 I2C EEPROM Memory Layout for PCI Configuration Parameters
The RBL requires big-endian format for the data stored in the I2C EEPROM. Byte addresses 0x400
through 0x41B of the I2C EEPROM are reserved for auto-initialization of PCI configuration registers. The
remaining locations are not used for auto-initialization and can be used for storing other data. Table 3
summarizes the I2C EEPROM memory layout, as required for PCI auto-initialization.

Table 3. I2C EEPROM Memory Layout for PCI Configuration Parameters

Byte Address Contents

0x400 Vender ID [15:8]
0x401 Vender ID [7:0]
0x402 Device ID [15:8]
0x403 Device ID [7:0]
0x404 Class code [7:0]
0x405 Revision ID [7:0]
0x406 Class code [23:16]
0x407 Class code [15:8]
0x408 Subsystem vender ID [15:8]
0x409 Subsystem vender ID [7:0]
0x40A Subsystem ID [15:8]
0x40B Subsystem ID [7:0]
0x40C Max_Latency
0x40D Min_Grant
0x40E-0x418 Reserved(use 00h)
0x419 Checksum [15:8]
0x41A Checksum [7:0]

3.5 EMIFA-Boot Mode

Normally, the asynchronous EMIF (EMIFA) boot is automatically handled without the RBL.
If the EMIFA boot is selected, the boot controller in the system module drives the ARM926’s INITRAM
input low. This causes the ARM to attempt an instruction fetch over its BIU from address 0x00000000. The
Boot Branch Injector logic, within the ARM_SS, intercepts this fetch and injects a Branch to 0x02000000
instruction into the pipeline. Once outside the ARM_SS, chip-level ARM Instruction Address Modification
logic inserts a 1 on bit 30 of the VBUSP address bus to modify the access to address 0x42000000, which
is the start of the EMIFA CS2 memory region.
Code within the EMIFA memory should execute a branch to the actual EMIFA address, and then disable
the Instruction Address Modification logic by clearing the ADDRMOD bit in the ARM Boot Configuration
Register (ARMBOOT) of the System Module.
Example code for branch to the actual EMIFA address is as shown below:

8 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011

Submit Documentation Feedback

Entry Point

UBL Area
(29,920 Bytes)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

MOV R1, #0x42000000 ADD R1, R1, #0x10 MOV PC, R1 MOV R0, R0

3.6 NAND-Boot Mode

The outline of operations followed in the NAND mode is depicted in Figure 8.
The NAND-boot mode assumes the NAND is located on the EM_CS2 interface, whose bus width at reset
is controlled by the CS2BW pin. The RBL reads the state of the CS2BW pin to determine which bus width
it will use when reading data from the NAND.
The Device ID is read from the NAND device; any necessary access information, such as the block and
page sizes, etc., are obtained from the device information table in the RBL. Then, the RBL searches for
the UBL descriptor in page 0 of the block, after the CIS/IDI block (block 1). A specific command sent to
the NAND device retrieves the device ID and information about the device from the table in the RBL.
If a valid UBL, as determined by reading a proper UBL signature, is not found here, the next block is
searched. This search continues for up to five blocks. The provision for additional searching is made in
case the first few consecutive blocks are marked as bad, i.e., they have errors. Feedback from customers
indicates that searching five blocks is sufficient to handle the errors found in virtually all NAND devices. If
no valid UBL signature is found in the search, the RBL reverts to the UART-boot mode.
The RBL copies the UBL into ARM internal RAM, starting at 0x0000:0020. Note that the actual copy is
made of the lower 30KB of the TCM Data area: 0x0020–0x74FF.
The NAND RBL uses the hardware error detection capability and checksums embedded within the NAND
to determine if a read error occurs when reading the UBL. If a read error occurs, the UBL immediately
halts the copy from NAND, and the RBL continues to search the block following that block in which the
magic number was found for another instance of a magic number. When a magic number is found, the
process is repeated. Using this retry process, the magic number and UBL can be duplicated up to five
times, giving significant redundancy and error resilience to NAND read errors.

ROM Bootloader (RBL)

Figure 8. NAND-Boot Sequence

3.6.1 UBL Descriptor
Parameters to be stored about the UBL in the block after the CIS/IDI block. All parameters are 32-bit
value:

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 9
Submit Documentation Feedback

Power On

Run User Bootloader

Jump to User Bootloader
Entry Point in IRAM

Copy the User Bootloader
from NAND Flash to IRAM

Run the ROM Bootloader
in ROM

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

Figure 9. Boot Parameters

 Start Searching at
Block 1, Page 0

If no Magic Number Found, or
NAND Read Error Detected.

If no Magic Number Found, or
NAND Read Error Detected.

If no Magic Number Found, or
NAND Read Error Detected.

If no Magic Number Found, or
NAND Read Error Detected.

Go to UART0 Boot

Figure 10. Boot Parameter Search

10 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

Boot Signature (0xA1ACED00)

UBL Entry Point (4 Bytes)

Code Size (Pages) (4 Bytes)

UBL Starting Block # (4 Bytes)

UBL Starting Page # (4 Bytes)

Block 0 Page 0 CIS/IDI
 1

2

...

N

Block 1 Page 0

 1

2

...

N

Block 2 Page 0

 1

2

...

N

Block 3 Page 0

 1

2

...

N

Block 4 Page 0

 1

2

...

N

Block 5 Page 0

 1

2

...

N

Block N Page 0

 1

2

...

N

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

UBL Definition

Page 0 Addr 32-Bits

0 UBL Boot Signature 0xA1ACED00
4 Entry Point Addr of UBL 0x00000020
8 Number of Pages in UBL 0x00000013

12 Starting Block # of UBL 0x00000001
16 Starting Page # of UBL 0x00000002

ROM Bootloader Copies
UBL into IRAM

Then Transfers Control to UBL
Entry Point

I TCM DTCM
IVT 0x00000000 0x00010000

IRAM
for UBL

0x00000020 0x00010020

0x000174FF

0x000074FF

Figure 11. Example

3.6.2 NAND Device IDs Supported
The list of NAND IDs and characteristics supported by the RBL is given in Table 4.

Table 4. Support Device ID List

Device ID

Number of Pages Per
Block

Bytes Per Page
(including extra data)

Block Shift Value (for
address)

Number of Address
Cycles

0x39 16 512+16 12 3
0x6B 16 512+16 12 3
0xE3 16 512+16 12 3
0xE5 16 512+16 12 3
0xE6 16 512+16 12 3
0x33 32 512+16 13 3
0x35 32 512+16 13 3
0x73 32 512+16 13 3
0x75 32 512+16 13 3
0x36 32 512+16 13 4

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 11
Submit Documentation Feedback

Block 0 Page 0 CIS/IDI
 1

2

...

N

Block 1 Page 0 UBL Definition
 1

2 UBL Page 1
3 UBL Page 2
4 UBL Page 3
5 UBL Page 4
6 UBL Page 5
7 UBL Page 6
8 UBL Page 7
9 UBL Page 8

10 UBL Page 9
11 UBL Page 10
12 UBL Page 11
13 UBL Page 12
14 UBL Page 13
15 UBL Page 14

Block 2 Page 0 UBL Page 15
 1 UBL Page 16

2 UBL Page 17
3 UBL Page 18
4 UBL Page 19
5

6

7

8

9

10

11

12

13

14

15

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

Table 4. Support Device ID List (continued)

Device ID

Number of Pages Per
Block

Bytes Per Page
(including extra data)

Block Shift Value (for
address)

Number of Address
Cycles

0x46 32 512+16 13 4
0x56 32 512+16 13 4
0x71 32 512+16 13 4
0x74 32 512+16 13 4
0x76 32 512+16 13 4
0x79 32 512+16 13 4
0xA1 64 2048+64 22 4
0xB1 64 2048+64 22 4
0xC1 64 2048+64 22 4
0xF1 64 2048+64 22 4
0xAA 64 2048+64 22 5
0xAC 64 2048+64 22 5
0xDA 64 2048+64 22 5
0xDC 64 2048+64 22 5

3.6.3 NAND Flash Connection

The NAND Flash should connect at the CS2 space, and for work with ATA. The RBL uses EM_A16/17 for
ALE/CLE as shown in Figure 12.

Device NAND EEPROM

EM_A16/ALE

ALE

EM_A17/CLE CLE

EM_D IO

EM_CS2

CS

EM_WE WE

EM_OE OE

EM_WAIT2 R/B

Figure 12. NAND Flash Connection

NOTE: The TMS320DM6467 DMSoC does not support NAND Flashes that require the chip select
to stay low during the tR time for a read.

3.6.4 Limitation of NAND Flash Device Selection for NAND Boot

The RBL has the following limitations in selecting the NAND Flash device for NAND boot.
• TMS320DM6467 doesn’t support non-CE don’t-care NAND Flash devices.
• Limitation of driving BUSY signal only at tR time for read
The NAND Flash should meet the above two limitations to use it as a boot device. If the NAND Flash is
not used as a boot device, then any type of NAND Flash can be used with GPIO control of the CE to
overcome the above limitations.

12 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

CE

RE

3.6.4.1 TMS320DM6467 Doesn't Support Non-CE Don't-Care NAND Flash Devices
According to the TMS320DM646x DMSoC Asynchronous External Memory Interface (EMIF) User's Guide
(SPRUEQ7), the DM6467 AEMIF does not support NAND Flash devices that require the chip select signal
to remain low during the tR time for a read (non-CE don't-care mode).
On the other hand, non-CE don’t-care type NAND Flash devices exist in the DM6467 boot supported
NAND Flash device ID list (Table 4). This is because some non-CE don’t-care NAND Flash devices and
CE don’t-care Flash devices have the same device ID. For example, both SAMSUNG K9F1208U0C and
STMicro NAND512W3A2C have the same device ID (0x76). The K9F1208U0C requires the chip select
signal to remain low during tR time for a read (non-CE don’t-care), but NAND512W3A2C does not.
Also note that the same NAND Flash device with different package types behave differently. For example,
the SAMSUNG K9F1208U has two types of package: TSOP and FBGA. The TSOP package requires the
chip select signal to remain low (non-CE don’t-care) during the tR time for a read, but the FBGA package
does not. This means that the device supports K9F1208U of FBGA package type.
Before choosing a NAND Flash as a boot device, look at the Device Operation Section of the
device-specific data sheet to see if it requires the chip select signal to remain low during the tR time for a
read or not. Figure 13 is a read operation of the K9F1208X0C Flash device and is from its datasheet. For
K9F1208X0C-P, CE must be held low during tR. Figure 14 is for STMicro NAND512W3A2C and the E
(chip select signal) during tR time is don’t care. DM6467 supports NAND512W3A2C, but not
K9F128X0C-P.

CLE

 On K9F1206XDC-P
CE must be held low during tR

CE don’t care

ALE

Start Add (4 Cycle)

I/Ox

Figure 13. SAMSUNG K9F1208X0C Read Operation

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 13
Submit Documentation Feedback

tR
R/B

WE

00h Data Output (sequential)

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRUEQ7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

CL

W

AL

Figure 14. STMicro NAND512W3A2C Read Operation

3.6.4.2 Limitation of Driving BUSY Signal Only at tR Time for a Read
The RBL requires that the NAND Flash does not drive the BUSY signal expect at tR time for a read. See
the NAND Flash device-specific data sheet before using it as a NAND boot device to make sure that it
meets this limitation.
The NAND Flash device, that does not require CE to remain low during the tR time for read, also meets
this requirement. If you want to use a non-CE don’t-care Flash device by adding a glue logic to fake the
CE signal to stay low during the tR time for a read, then its also needed to fake the BUSY signal if that
NAND Flash drives the BUSY signal expect at tR time.

3.6.4.3 NAND Boot Advisories

After selecting the proper NAND Flash, make sure that the following advisories are met for NAND boot to
work properly:
• Write Protect Should be Enabled for NAND Flash Boot
• EM_WAIT[5:3] Signals Should Not Toggle During NAND Boot
For more details on these advisories, see the TMS320DM6467 Digital Media System-on-Chip (DMSoC)
Silicon Revisions 1.1 and 1.0 Silicon Errata (SPRZ251).

14 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

E

R
tBLBH1 (read)

RB
00h/01h/50h

I/O Address Input Data Output (sequentially)

Command Code Busy

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRZ251
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

Host
Serial Utility

Program

ROM
Bootloader

(RBL)

3.7 UART0-Boot Mode
This section discusses the UART-boot mode.

3.7.1 UART Setting for External Host

The TMS320DM6467 DMSoC UART-boot mode uses the following settings:
Speed: 115.2Kbps,
Bit length: 8-bit,
Parity: Non-Parity,
Stop: One Stop Bit

3.7.2 UART0 Boot Process

Figure 15 shows how the RBL implements the serial boot process. After initialization, there are three main
receive sequences: ACK, 1KB CRC32 table, and UBL. For each receive sequence, the time-out check in
RBL is not shown for simplicity. If during the sequence, the timeout value is reached, the serial-boot mode
restarts from the beginning which sends out the BOOTME message. The error checking behavior for the
UART receive mode is the same. For each byte received, if there’s an error, the RBL restarts from the
beginning.

RBL sends BOOTME, then
waits for ACK sequence while polling

timer interrupt flag for timeout.

RBL checks for valid ACK sequence.
If valid, sends BEGIN to start receiving

CRC-32 table.

RBL calculates Checksum8,
If good Checksum8,

sends DONE and starts receiving UBL.
If bad Checksum8,

sends CORRUPT and
returns to BOOTME state.

RBL calculates Checksum8,

If good Checksum8,
sends DONE and starts receiving UBL.

If bad Checksum8,
sends CORRUPT and

returns to BOOTME state.

Host waits for BOOTME.

Host sends ACK sequence,
waits for BEGIN sequence
to start transmit.

Host sends the CRC-32 lookup
table, which is of length 1KB.
The Checksum8 value is 0.

Host sends UBL.

Host utility can interact with you
to quit, reverts to waiting for
BOOTME or performs further
handshake with UBL.

Figure 15. UART-Boot Sequence

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 15
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

3.7.3 UART0 Bootloader Data Sequence
The UART0 bootloader data sequences consist of handshake messages, the UBL header, and the UBL
payload itself. The message uses a fixed 8-byte ASCII string; also included is the null string terminator.
Short messages have leading spaces besides the null.
Table 5 lists the values for the handshake sequences and the header for the UBL.

Table 5. Value for the Handshake Sequence

Sequence Value Usage
BOOTME ^BOOTME/0 Notify host utility serial boot mode begins. This is an 8-byte ASCII

value. ^ is a space
ACK ^^^^ACK/0

UBL 8-Byte Checksum For host utility to respond within time-out period by sending a
UBL 4-Byte Count 28-byte header to prepare for reception of UBL. The checksum is a
UBO 4-Byte ARM

Physical Start Address
TBD 4-Byte Zeros

32-bit checksum. Note that the start address is where the RBL
jumps to after the downloading process (i.e., UBL entry point).

BEGIN ^^BEGIN/0 RBL signals host utility to begin transmission of UBL.
DONE ^^^DONE/0 RBL signals host utility that data was received OK and the transfer

can be terminated.
BAD ADDR BADADDR/0 Bad start address received.

BAD COUNT ^BADCNT/0 Bad count received.
CORRUPT CORRUPT/0 RBL signals host utility that there is an error with the transmission.

Normally, the host utility should ask you to reset the board.
UBL variable The format for the UBL is the same as NAND boot.

3.7.4 UBL Image Generation

The CRC32 checksum value is calculated for the UBL data and passed by the Host serial utility. The
polynomial used for CRC32 is:
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0.
The CRC32 results in a 32-bit value (4bytes), through which the host serial utility transmits eight
characters (bytes); this is shown in the following example.
For a given UBL data, let the calculated checksum (CRC32) value be 0xffaa10a1. Then, instead of the
host utility transmitting ascii(0xff) ascii(0xaa) ascii(0x10) ascii(0xa1), it will transmit ffaa10a1. The RBL will
appropriately interpret the eight characters (bytes).
ARM code generation tools can generate the UBL, but the final format is expected in binary memory
image format with no headers, etc.
The starting address of the UBL is at 0x0020, and you can use between 0x0020 and 0x74ff.

16 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

3.8 I2C Master Boot Mode
The I2C-boot mode requires use of Application Image Script (AIS) as the primary data format for loading
code/data. For more detailed information regarding AIS, see Using the TMS320C642x Bootloader
(SPRAAK5).

Figure 16. I2C-Boot Sequence

The I2C bootloader only supports the following AIS commands:
• Section Load
• JUMP_CLOSE Command
• Enable CRC
• Disable CRC
• Request CRC
The I2C bootloader assumes I2C EEPROM specification shown in Table 6.

Table 6. I2C EEPROM Specification

Slave Address 0x50
Clock Frequency that EEPROM supported 90 kHz

Table 7. Example I2C Boot Image

 Address Data Comment
0 0x00000002 Dummy
4 0x41504954 Magic Number
8 0x58535903 Enable CRC
C 0x58535901 Section Load
10 0x0000200C Section Start Address
14 0x00000008 Section Length
18 0x4700A000 Data
1C 0xEAFFFFFE Data
20 0x58535902 Request CRC
24 0xD1AE239C CRC Value
28 0xFFFFFFE0 Offset Address
2C 0x58535901 Section Load
30 0x00002000 Section Start Address

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 17
Submit Documentation Feedback

Power On

Run the RBL

UART-Boot Mode

Run the UBL

Yes
Error

Happen
During Read

?

No

Read the Boot Image
that Followed the AIS

Format from I2C
EEPROM

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRAAK5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

Boot Modes www.ti.com

Table 7. Example I2C Boot Image (continued)

Address Data Comment
34 0x0000000C Section Length
38 0x0000000A Data
3C 0x0000000B Data
40 0x0000000C Data
44 0x58535902 Request CRC
48 0x6B4ABA9D CRC Value
4C 0xFFFFFFDC Offset Address
50 0x58535906 Jump_Close
54 0x0000200C Jump Address

The I2C boot mode supports 7-bit peripheral device address and 16-bit data word address.

3.9 SPI Master Boot
Like the I2C-boot mode, the SPI-boot mode also uses the Application Image Script (AIS) as the primary
data format for loading code/data.

Figure 17. SPI-Boot Sequence

The SPI bootloader only supports the following AIS commands:
• Section Load
• JUMP_CLOSE Command
• Enable CRC
• Disable CRC
• Request CRC
The SPI bootloader communicates with the SPI EEPROM using the following information:
• SPI_CLK, SPI_SIMO, SPI_SOMI, SPI_CS0
• The SPI bootloader does not use SPI_EN.
• The SPI bootloader drives SPI_CLK at 990 kHz.
• The SPI bootloader uses only 16-bit address support.

18 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

Power On

Run the RBL

UART-Boot Mode

Run the UBL

Yes
Error

Happen
During Read

?

No

Read the Boot Image
that Followed the AIS

Format from SPI
EEPROM

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

References www.ti.com

Device SPI EEPROM

SPI_SIMO

SO

SPI_SOMI SIN

SPI_CLK CLK

SPI_CS0

CS

Figure 18. SPI Connection

 Table 8. Example Boot Image
Address Data Comment

0 0x05040302 Dummy
4h 0x41504954 Magic Number
8h 0x58535903 Enable CRC
Ch 0x58535901 Section Load
10h 0x0000200C Section Start Address
14h 0x00000004 Section Length
18h 0xEAFFFFFE Data
1Ch 0x58535906 Jump_Close
20h 0x0000200C Jump Address

4 References

• TMS320DM646x DMSoC Asynchronous External Memory Interface (EMIF) User's Guide (SPRUEQ7)
• TMS320DM6467 Digital Media System-on-Chip (DMSoC) Silicon Revisions 1.1 and 1.0 Silicon Errata

(SPRZ251).
• Using the TMS320C642x Bootloader (SPRAAK5)

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 19
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRUEQ7
http://www.ti.com/lit/pdf/SPRZ251
http://www.ti.com/lit/pdf/SPRAAK5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

www.ti.com

Appendix A AIS Use Cases for I2C and SPI Master-Boot Modes

A.1 AIS Generation Environment
In order to generate an AIS script, you are required to make use of a Perl program and an accompanying
executable supplied by TI.
If you need to generate an AIS script on your system for the first time, you are required to have the Perl
program installed. The following are recommended steps for ensuring a correct AIS generation
environment.
1. Download and install the Perl program.
2. Make sure the following Perl directories exist within the path variable of the operating system (O/S).

(a) Perl\site\bin
(b) Perl\bin

3. Add the Perl program extension, pl, to the PATHEXT variable. This is optional and only required if
invoking the Perl program without the pl extension.

4. Reboot your system.
5. Required TI utilities (you can place these utilities anywhere where the directory exists, within the path

statement)
(a) genAPI.pl
(b) ofd6x.exe

A.1.1 I2C and SPI Command Line Entries for Generating AIS File

The following steps demonstrate how to generate an AIS script for the I2C EEPROM.
1. Generate the application (boot) code.

(a) The internal ARM memory map reserved for the user application is between 0x00000020 to
0x00007500.

(b) If you have an application that requires larger memory, then you are required to complete the boot
in two steps. The first step allows the RBL to boot the UBL. The second step enables the
necessary UBL resource and boots the actual application similar to the RBL.

NOTE: The RBL does not enable any peripheral, other than the one used for the selected boot
option; it is the responsibility of the application code to eventually configure the device
appropriately. This requires the user application to fit within the ARM internal RAM
memory since other resources, including DDR, are not enabled.

2. Generate the AIS script for the I2C peripheral in ASCII format.
(a) The following generates an AIS image script for the I2C peripheral in ASCII format. The I2C writer

should take an input file in .txt format and burn the output onto the I2C EEPROM.
genAIS.pl –I inputUserFile.out -o outputFile.ais -otype ascii -bootmode i2cmaster -addrsz 16

20 Using the TMS320DM646x DMSoC Bootloader SPRAAS0D– March 2011
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

© 2011, Texas Instruments Incorporated

www.ti.com AIS Generation Environment

3. Generate the AIS script for the SPI peripheral in binary format.
(a) The following generates an AIS image script for the SPI peripheral in binary format. The SPI writer

should take an input file in binary format and burn the output onto the SPI EEPROM.
genAIS.pl –I inputUserFile.out -o outputFile.ais -otype bin -bootmode spimaster -addrsz 16

NOTE: The I2C and SPI writer tools are Code Composer Studio™ executables (.out files), available
as part of the DM6467 Digital Video Software Development Kit (DVSDK) software release at
www.ti.com\dvevmupdates. You need Code Composer Studio (version 3.3 or later) and a
compatible JTAG emulator to perform this bootloader programming operation. Use the
instructions in the TMS320DM6467 DVEVM Getting Started Guide (SPRUF88) once the
DVSDK is installed. The I2C and SPI writers, in the form of CCS *.out files, can be found
under the folder PSP_0x_xx_xx_xxx/bin/dm646x. To program the I2C or SPI bootloader, you
need to copy the i2c_eeprom_writer.out or spi_eeprom_writer.out file to a Windows™ PC
where Code Composer Studio is installed. For detailed instructions on how to perform these
steps using Code Composer Studio, see the DM646x_Linux_PSP_UserGuide.pdf under the
docs subfolder.

SPRAAS0D– March 2011 Using the TMS320DM646x DMSoC Bootloader 21
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAS0D

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Boot Mode Description
	Table 1. Boot Mode Description

	2 Memory Map
	Figure 1. RBL Memory Map

	3 Boot Modes
	3.2 HPI Boot 16/32-Bit Mode
	Figure 2. HPI-Boot Sequence
	Figure 3. Memory Map
	Figure 4. PCI-Boot Sequence
	Figure 5. Memory Map
	Table 2. PCI Base Address

	3.4 PCI Boot With Auto-Initialization Mode
	Figure 6. PCI With I2C-Boot Sequence
	Figure 7. Memory Map
	Table 3. I2C EEPROM Memory Layout for PCI Configuration Parameters

	3.5 EMIFA-Boot Mode
	3.6 NAND-Boot Mode
	Figure 8. NAND-Boot Sequence
	Figure 9. Boot Parameters
	Figure 10. Boot Parameter Search
	Figure 11. Example
	Table 4. Support Device ID List
	Table 4. Support Device ID List (continued)
	Figure 12. NAND Flash Connection
	3.6.4 Limitation of NAND Flash Device Selection for NAND Boot
	3.6.4.1 TMS320DM6467 Doesn't Support Non-CE Don't-Care NAND Flash Devices

	Figure 13. SAMSUNG K9F1208X0C Read Operation
	Figure 14. STMicro NAND512W3A2C Read Operation
	3.6.4.2 Limitation of Driving BUSY Signal Only at tR Time for a Read
	3.6.4.3 NAND Boot Advisories

	3.7 UART0-Boot Mode
	3.7.1 UART Setting for External Host
	3.7.2 UART0 Boot Process
	Figure 15. UART-Boot Sequence
	3.7.3 UART0 Bootloader Data Sequence
	Table 5. Value for the Handshake Sequence
	3.7.4 UBL Image Generation

	3.8 I2C Master Boot Mode
	Figure 16. I2C-Boot Sequence
	Table 6. I2C EEPROM Specification
	Table 7. Example I2C Boot Image (continued)

	3.9 SPI Master Boot
	Figure 17. SPI-Boot Sequence
	Figure 18. SPI Connection

	Appendix A AIS Use Cases for I2C and SPI Master-Boot Modes
	A.1 AIS Generation Environment
	A.1.1 I2C and SPI Command Line Entries for Generating AIS File

