

Migrating From TMS320DM35x to TMS320DM36x Devices

Manoj Bohra

ABSTRACT

For purposes of comparison, this application report describes the key features of the TMS320DM36x (DM36x) and the TMS320DM35x (DM35x) digital media processors.

Contents

1	Introduction	2
2	Differences Between DM36x and DM35x	2
3	Peripheral Differences [H D]	3
4	Power Supply Differences [H]	8
5	Device Identification [H]	8
6	Package and Pins [H, D]	8
7	PLL/CPU Clock [H]	9
8	Reset and Boot [H, D]	9
9	References	10

List of Figures

List of Tables

1	Peripheral Differences	3
2	VPFE Differences for DM36x and DM35x	5
3	VPBE Differences for DM36x and DM35x	7
4	Power Supplies for DM36x	8
5	JTAG (BSDL) ID for DM36x	8
6	Package Differences Between DM36x and DM35x	9
7	Description of Available Bootmodes on DM36x and DM35x	9

1

Introduction

1 Introduction

Some of the device features presented in this document are not necessarily available to every customers or not supported by TI. An NDA might be required to get access to some detailed information

Migration issues from the DM35x to the DM36x are indicated with the following symbols. These symbols are included at the beginning of each section.

- **S** Means software modification is required.
- **H** Means hardware modification is required.
- **D** Means the DM35x and DM36x devices are different (usually due to added features or enhancements on the DM36x device) but no modification is necessary for migration (i.e., different but compatible).

DM35x:

Throughout the rest of this document, DM35x refers to DM350 and DM355. Unless otherwise noted, the information contained in the DM35x data manuals (see Section 9) should be considered Production Data defined as follows:

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

DM36x:

Unless otherwise noted the information contained in the DM36x data sheet (see Section 9) should be considered Production Data defined as follows:

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

2 Differences Between DM36x and DM35x

2.1 System

- 13mm × 13mm device package
- Clock speeds (refer to the device-specific data manual for details)
 - DM35x:
 - External clock input or crystal (24 or 36 MHz)
 - ARM: 135, 216 and 270 MHz
 - ARM and co-processors clocks synchronized
 - DM36x:
 - External clock input or crystal (19.2 MHz, 24 MHz, 27 MHz or 36 MHz)
 - ARM: 216, 270 & 300 MHz. DM368 also supports 432 MHz
 - ARM and co-processors clocks independent

2.2 ARM

- On-chip 297 MHz ARM926EJ-S 32 bit RISC microprocessor
- Increased on-chip ROM to 16 Kbytes

All trademarks are the property of their respective owners.

2.3 Co-Processors

The DM35x and DM36x devices have a Motion and still JPEG coprocessor (MJCP). The DM36x also has a HD Video and Imaging coprocessor. Those coprocessors allow low power, low MIPS codecs with the flexibility to select the right video codec for most applications. The independent coprocessors (HDVICP and MJCP) offload all compression and decompression needs from the main ARM core, leaving room for the application and user interface. TI provides free codecs optimized for those accelerators.

- 243 MHz programmable 2 × 4MAC SIMD image processing engine (iMX) for programmable image processing, with 8-way parallel motion estimation accelerator
- 121 MHz sequencer, a 16-bit microprocessor optimized for synchronization and control of coprocessor and DMA. Sequencer is equipped with 4 Kbytes of program and 1 Kbytes of data memory
- 20 KBytes (5x4 Kbytes) of shared image processing buffer for iMX, sequencer, compression engine and DMA to collaborate.
- · Significantly enhanced co-processor subsystem for image and video processing
- Hardwired video accelerator for H.264 and WMV-9/VC-1, including ARM968
- There is an over-drive mode that achieves >300 MHz on the ARM968
- Added noise filter hardware module in order to reduce/remove noise in images

2.4 Video Processing Subsystem (VPSS)

- Significantly enhanced hardware image processing and resizing capabilities via video processing front end (VPFE)
- Updated on-screen display (OSD) and VENC
- VPFE and video processing back end (VPBE) digital I/O's operate at 3.3 V or 1.8 V
- Three channels digital analog converter (DAC)

3 Peripheral Differences [H D]

Table 1 shows the peripheral differences between the DM36x and the DM35x devices.

Peripheral	DM36x	DM35x
Microprocessor Unit (MPU)	ARM926EJS_Z8	ARM926EJS_Z8
MPU L1 Cache	16 KBytes I Cache, 8 KBytes D Cache	16 KBytes I Cache, 8 KBytes D Cache
MPU ROM	16 KBytes	8 Kbytes
MPU TCM	32 KBytes	32 Kbytes
VPFE	Yes	Yes
VPBE	Yes	Yes
Power Management and Real-Time-Clock Sub-System (PRTCSS)	Yes	No
Low Core Voltage Mode	Yes	No
Direct Memory Access (DMA)	EDMA3.0	EDMA3.0
External Memory Interface (EMI)	DDR2-16b, 216 MHz clock overdrive mode up to 243 MHz mDDR: 16b, 168 MHz	DDR2-16b, 171 MHz clock overdrive mode up to 216 MHz mDDR: 16b, 133 MHz
Multimedia Card(MMC)/Secure Digital(SD)(SDIO)	2x	2x
AEMIF 16 bit	1x	1x
Multi-Channel Buffered Serial Port (McBSP)	1x	2x
Universal Asynchronous Receiver/Transmitter (UART)	2x	3x
Serial Peripheral Interface (SPI)	5x	Зх
Inter-Integrated Circuit (I2C)	1x	1x
Analog-to-Digital Converter (ADC)	Yes - 6 channel	No

Table 1. Peripheral Differences

Table 1.1 enpheral Differences (continued)				
Peripheral	DM36x	DM35x		
Key Scan	Yes – 4x4/5x3 Marix	No		
Voice Codecs	1x	No		
Coprocessor	1x	1x		
Timers	8x32-bit timer + 1xWDT	6x32-bit timer + 1xWDT		
Universal Host Port Interface (UHPI)	1x	No		
Ethernet Media Access Controller (EMAC)	1x	No		
HD-VICP	1x	No		
Real Time Out (RTO)	4x	4x		
Pulse Width Modulator (PWM)	4x	4x		
Universal Serial Bus (USB)	1x	1x		
Power Management and Real-Time-Clock Sub-System (PRTCSS)	Yes - 1x	No		

Table 1. Peripheral Differences (continued)

3.1 Ethernet MAC (EMAC) [H]

The EMAC module has been added to the DM36x device and is used to move data between the DM36x device and another host connected to the same network, in compliance with the Ethernet protocol. It provides 100/10 Mbps operation using the MII operation in full duplex and half duplex mode.

The EMAC controls the flow of packet data from the system to the PHY. The management data input/output (MDIO) module controls PHY configuration and status monitoring.

The EMAC module is multiplexed with general-purpose input/output (GPIO) peripherals.

In addition, the DM36x can boot over the EMAC subsystem. For more details, see Section 8 of this document.

3.2 External Memory Interface (EMI) [H]

3.2.1 System Memory

The DM36x utilizes standard DDR2-mDDR as its main system memory. The DDR2 memory controller interface can be clocked up to 243 MHz, yielding a data frequency of 486 MHz. The interface bus is 16-bits wide, providing a theoretical data rate of 972 MBps. There is also a second memory interface that allows connectivity to both synchronous and asynchronous interfaces.

For more information regarding tolerances that must be adhered to in order to assure correct DDR2 operation, see *Implementing DDR2/mDDR PCB Layout on the TMS320 DMSoC* (SPRAAR3).

3.2.2 Secondary Memory [D]

The DM36x provides a secondary external memory interface (EMIFA) which can be operated either synchronously or asynchronously, allowing connectivity to various devices such as NOR flash, FGPAs, CPLDs, or other such devices. The interface is 16-bits wide and can be clocked up to 60 MHz, providing a theoretical throughput of 120 MBps.

The secondary interface is used for booting NOR/NAND Flash. For more details, see Section 8 of this document.

3.3 Universal Host Port Interface (UHPI) [H]

A universal host port interface peripheral has been added to the DM36x device. The HPI module used in the DM36x device is similar to the HPI module in the TMS320DM6467 system-on-chip (SoC). The HPI can be used for general-purpose communications and control in various applications. On the DM36x device, this peripheral is multiplexed with the EMIF peripheral and uses 16-bit EMIF data bus in multiplexed address/data mode only.

It is possible to boot the DM36x over the UHPI peripheral. For more details, see Section 8 of this document.

3.4 Video Processing Front-End (VPFE) [H]

The video processing front-end (VPFE) contains interface to CCD/CMOS sensors (ISIF), and provides parameterizable image processing for still capture, video capture, and live preview. Various resolutions of image resizing is done in hardware for digital zoom and image/video capture at speeds of up to 100Mpix/sec.

Table 2 compares the features of the VPFE for DM36x and DM35x.

Feature	DM35x	DM36x
CCDC	CCDC includes:	
	Data formatter on input to handle VGA movie mode sensors	CCDC function has been moved to ISIF module
	Modified control interface for VGA movie mode to make processing more extensible	
	Operation at up to 75/100 MHz with external clock	
	Supports up to 14-bit AFE	
	Fault pixel correction from internal table	
	Lens shading correction and color space conversion functions	
	DM355 CCDC is the same as the DM350 CCDC	
Resizer	Resizer functionality is part of IPIPE	Upsampling has equivalent processing of std bi-cubic interpolation
		Supports upsampling on the fly
		Maximum output width of 2176 pixels for image-A and 1088 for image-B
		Resizing of either YUV422/YUV420 packed data (16-bits) or color separate data
		Up/down sampling ratios: 256/N, with N ranging from 32-4096
LDC	Not in DM35x	Radius-to-magnification factor table
		Correct barrel distortion
		Configure center point and horizontal/vertical adjustment
		Multiply mask in 8x8 down sampled format
		8-bit mask
		16-bit data input/ouput
		Support chromatic aberration in Bayer domain
		Support distortion correction in YUYV domain
НЗА	DM350 Hardware 3A:	Similar to DM355
	AE	Support for up to 36 horizontal windows
	AWB	Support for up to 128 vertical windows
	AF (horizontal, green only)	
	Can process data from either CCDC or DDR2	
	Supports up to 192 windows	
	DM355 Hardware 3A:	
	Support for up to 36 horizontal windows	
	Support for up to 128 vertical windows	

Table 2. VPFE Differences for DM36x and DM35x

Feature	DM35x	DM36x
IPIPE	Image Pipe includes:	Similar to DM35x:
	Can process data from either CCDC or DDR2	Resizer function has been moved to Resizer module
	2D noise filter, 2D profiler, 2D edge enhance	Programmable 4x4 CFA interpolation with separate CFA filters depending on directional H/V gradients
	White balance module	Lens shading compensation (each pixel multiplied by 8-bit gain array and right shifted 0-7 bits)
	CFA interpolation	2D prefilter is now called GIC (Green Imbalance Correction)
	RGB2YCbCr conversion	Programmable 4x4 CFA interpolation with separate CFA filters depending on directional H/V gradients
	YUV422 conversion	
	Chroma suppression	
	Histogram (up to 4 areas, 256 bins)	
	Boxcar function	
	Boundary signal calculator	
	Maximum output width of 1280 pixels with simple 2,4,8 pixel averaging added since Resizer is no longer integrated	
	Dark frame capture (to DDR2)	
	Dark frame subtraction (from DDR2)	
	Supports either dark frame subtract or lens shading compensation, but not both simultaneously	
	Programmable gamma correction table (512 entries for each color)	
	Programmable 2D noise filter	
	Programmable 5x5 CFA interpolation with separate CFA filters depending on directional H/V gradients	
HSSI	This feature is supported in DM350	This feature is not supported in DM36x
	The high-speed serial imager interface (HSSI) provides a high-speed, low pin-count serial imager interface into the DM35x.	
	Supports multiple input formats (YUV,RAW)	
	Supports embedded	
	Supports CRC	
	Includes integrated Phy	
	This feature is not supported in DM355	
CFALD	This is used to perform lens distortion correction and CFA multiply mask	This feature has been move to LDC
	Correct barrel distortion	
	Radius-to-magnification factor table	
	Configure center point and horizontal/vertical adjustment	
	Separate lookup table for each color for chromatic aberration	
	Multiply mask in 8x8 down sampled format	
	8-bit mask	
	14-bit data input/ouput	

Feature	DM35x	DM36x
ISIF	Not in DM35x	Supports linearization (16 bit IN to 12 bit OUT)
There is no DM355 ISIF Data form sensors		Data formatter on input to handle VGA movie mode sensors
		Can synchronize on externally provided HD/VD signals
Supports p		Supports progressive and interlaced scan sensors
		Modified control interface for VGA movie mode to make processing more extensible
		Operation at up to 120 MHz with external clock
		Fault pixel correction from internal table for vertical line defects

 Table 2. VPFE Differences for DM36x and DM35x (continued)

3.5 Video Processing Back-End (VPBE) [H]

The DM36x video processing back-end consists of VENC and OSD. The back-end provides OSD capability for graphical user interface (GUI), and interfaces to National Television System Committee (NTSC)/phase alternating line (PAL) video, digital LCD output (can interface with HDMI), or standard CCIR 601/656 output, as well as 720p/1080i analog output (HD DAC).

Table 3 compares the different features of the VPBE for DM36x and DM35x.

Feature	DM35x	DM36x
VENC	Supports analog 480p/576p	Supports 720p/1080i analog HD
	Supports 1 DAC for NTSC/PAL composite video	Supports 3 channel DAC for NTSC/PAL composite video
	Supports 720p (HDTV digital 74.25 MHz) support w/external VPBE clock	
	Supports RGB666 output mode requires GIOs for extra data bits	Supports RGB888 output mode requires GIOs for extra data bits
OSD		Similar to DM35x with the following modifications:
	OSD windows support bitmap, RGB565, GB888, and YUYV	SDRAM interface address width changed from 24 to 27 bit
	Transparent background color in RGB565, GB888, and YUYV window	SDRAM interface data width changed from 32 to 64 bit
	Additional expansion modes	Bitmap blend factor through mode Input buffer size changed according to change in SDRAM data interface width (64-bit width)
		Supports YUV420 format

Table 3. VPBE Differences for DM36x and DM35x

3.6 MJCP

The MJPEG / JPEG co-processor (MJCP) is available on all DM35x and DM36x devices. This hardware accelerator is a dedicated JPEG and MJPEG codec. The free codecs provided by TI for both platforms obfuscate the hardware differences from the programmers.

3.7 HD-Video and Imaging Co-Processor (HD-VICP) [H]

The HD video and imaging co-processor (HD VICP), is new to the DM36x device. The HD VICP is a dedicated multi-standard HD video encode/decode engine used for H.264 and WMV-9/VC-1. HD VICP also includes ARM968.

The DM36x HD-VICP is similar to the HD-VICP in the DM6467 SoC.

3.8 Key Scan [H]

The key scan module is new to the DM36x device. This module supports 4 × 4 or 5 × 3 key scan function.

This module support two scan modes:

- Channel interval mode
- Scan Interval mode

3.9 A/D Convertor (ADC) [H]

The ADC module is new to the DM36x device. The ADC supports the successive approximation type 10-bit A/D converter. In the DM36x device, the ADC module has six analog inputs selected for configurable analog input (from 1 to 6 inputs).

3.10 Voice Codecs [H]

The VOICE CODECs module is new to the DM36x device. The VOICE CODEC module includes the interface module that can access ADC/DAC data with internal first-in-first-out (FIFO) (read FIFO/write FIFO).

3.11 Power Management and Real-Time-Clock Sub-System (PRTCSS) [H]

The power management and real-time-clock sub-system (PRTCSS) is new to the DM36x devices. This block consists of power management and real-time-clock sub-system (PRTCSS) in the DM36x and the PRTC interface (PRTCIF). The PRTCSS is used for calendar applications and to manage the DM36x power supply. It has an independent power supply and can remain ON even while the rest of the DM36x's power supply is turned OFF; therefore, PRTCSS can be operated without supplying power to the whole device. PRTCSS has a real-time-clock, Timers, general-purpose-I/Os and a simple sequencer that can access the PRTCSS peripherals.

4 Power Supply Differences [H]

The core voltage of the DM36x is 1.2 V with \pm 5% tolerance for normal mode and 1.35 V with \pm 5% tolerance for overdrive mode. Table 4 shows the relationship between operating voltages and frequencies. The I/O voltage of the DM36x is 1.8 V and 3.3 V compared to 3.3 V \pm 5% on the DM35x. The DDR peripheral require an additional supply rail (1.8 V \pm 5% tolerance).

			Power Supplies	
Device	Core	I/O	DDR I/O	Maximum Frequency
DM35x	1.3 V ± 5%	3.3 V ± 5%	1.8 V ± 5%	270 MHz
DM36x	1.2 V ± 5% 1.35 V ± 5%	1.8 V ± 5% and 3.3 V ± 5%	1.8 V ± 5%	270 MHz 432 MHz

Table 4. Power Supplies for DM36x

5 Device Identification [H]

The DM36x device is a new product. The JTAG (BSDL) ID and Silicon revision ID are different than the DM35x device. Table 5 identifies the JTAG (BSDL) ID differences between the DM35x and the DM36x.

Table 5. JTAG (BSDL) ID for DM36x

	JTAG (BSDL) ID				
Device	Memory Address	Variant	Part Number	Manufacturer	LSB
DM36x	0x01C40028	0000	1011 1000 0011 1110	000 0001 0111	1
DM35x	0x01C4 0028	0000	1011 011100111 011	000 0000 1111	1

6 Package and Pins [H, D]

The DM36x and the DM35x devices use different mechanical packages, therefore, the physical dimensions and pinout of the packages are also different. Table 6 lists the variations between the DM36x and the DM35x devices.

8

		-				
	Package Characteristics					
Device	Size (mm)	Pitch (mm)	No. of Pins	Package Designator		
DM36x	13x13 mm	0.65 mm	338	ZCE		
DM350	12x12 mm 13x13 mm	0.5 mm 0.65mm	329	ZWK		
DM355	13x13 mm	0.65mm	337	ZCE		

Table 6. Package Differences Between DM36x and DM35x

7 PLL/CPU Clock [H]

The phase-locked loop (PLL) on the DM36x device is different from the one used on the DM35x. The DM36x incorporates two on-chip PLLs: one for device clock generation (including video encoder clock) and one for DDR and VPSS clock generation. The device also makes use of the PLL and reset controller module for controlling the PLLs and in generating the system clocks required by various modules.

In DM35x, clocks are derived by one crystal (24 MHz (typical) or 36 MHz), whereas, in DM36x, the system clock may be driven from either an external clock (CLKIN) or a crystal (MXI/MXO). Alternatively, a fundamental frequency crystal can be used which drives the on-chip oscillator to produce the internal clock OSCIN. On DM36x, these sources are merged onto a single pin (MXI). The nominal frequency of either the external crystal or oscillator is 19.2/24/27/36 MHz.

The DM36x PLL multiply modes are programmed through register accesses. The DM36x has more flexibility with clocks to modules from the PLL by using variable dividers in DM36x instead of fixed in DM35x.

8 Reset and Boot [H, D]

The reset controller for the DM36x has several enhancements that allow the application to control peripherals on an individual basis. Once the ARM comes out of Master Reset, the individual peripherals must be enabled through the reset controller.

The DM36x has additional bootmodes that are not available on the DM35x. Table 7 lists the available bootmodes and their associated description.

For more information regarding reset and boot mode, see *TMS320DM365 DMSoC DMP ARM Subsystem Reference Guide* (SPRUFG5).

Device					
DM35x	DM36x	Boot Type	Description		
Х	Х	Emulation			
	Х	UHPI	This mode allows booting the device over the universal Host port interface.		
Х	Х	AEMIF	This mode allows booting over the asynchronous interface. ARM pulls data from a memory device such as a NOR flash.		
Х	Х	NAND	This mode starts downloading code from an NAND memory.		
	Х	SPI	This mode starts downloading code from an SPI EEPROM on CS0. The code must be stored in an AIS format.		
х	Х	UART	This mode must be booted using a 24-MHz clock for UART boot type. This forces the baud rate to 115200. The UART sends a BOOTME request to the UART peripheral and waits for a response along with code from a host processor		
X X MMCSD This mode starts downloading code f		MMCSD	This mode starts downloading code from an MMC/SD Controller MMCSD0.		
	Х	USB	This mode must be booted using a 24-MHz clock.		
	Х	EMAC	This mode allows booting over the Ethernet. The Ethernet port starts out by sending a BOOTP request. Once acknowledged by a BOOTP server, the ARM can be booted.		

Table 7. Description of Available Bootmodes on DM36x and DM35x

9

References

9 References

- TMS320DM365 Digital Media System-on-Chip (DMSoC) Data Manual (SPRS457
- TMS320DM355 Digital Media System-on-Chip (DMSoC) Data Manual (SPRS463)
- Implementing DDR2/mDDR PCB Layout on the TMS320 DMSoC (SPRAAR3)
- TMS320DM365 DMSoC DMP ARM Subsystem Reference Guide (SPRUFG5)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated