
1SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

Application Report
SPRAC34–April 2016

Instructions to Benchmark C55 DSP Library

ABSTRACT
DSP Library (DSPLIB) is a collection of optimized C55x assembly functions that implement a wide variety
of DSP functions. The TMS320C55x DSP Library Programmer’s Reference User's Guide (SPRU422)
provides cycle estimation for the execution of each function in the library. This work enables the user to
measure the performances of a sub-set of the DSPLIB functions executed on real hardware, and with
some additional hardware support to measure the actual power consumption of the DSP device when it
executes any of these functions.

Project collateral and source code discussed in this application report can be downloaded from the
https://git.ti.com/apps/c55x-benchmarks. The C55x DSP library functions can be downloaded from
http://software-dl.ti.com/libs/c55_dsplib/latest/index_FDS.html.

Contents
1 Introduction ... 2
2 Algorithm Flow ... 2
3 Load and Uncompress the Project File ... 3
4 Building the CFFT Project .. 4
5 Build and Run all Other Projects ... 17
6 Power Measurements ... 19
7 Benchmark More Library Functions.. 20
8 References .. 20

List of Figures

1 Algorithm Flow ... 2
2 Directories From Uncompressed apps-c55x-benchmark-master.tar.gz File ... 3
3 New CCS Project .. 4
4 Remove Linker Command File... 5
5 Add Files to cfft1 ... 5
6 Link or Copy Files ... 6
7 Optimized Files to Link to the Project ... 6
8 Optimized Files to Link to the Project ... 7
9 Copy or Link Dialogue Box ... 7
10 Properties for cfft1 ... 8
11 Define a New Resource... 9
12 Adding Include Path.. 10
13 New Target Configuration ... 11
14 Configuring the New Target... 12
15 Target Configuration Dialogue Box .. 13
16 Debug Prospective ... 14
17 Loading the Project Executable .. 15
18 Clock Enable .. 16
19 Clock Icon ... 16

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34
http://www.ti.com/lit/pdf/SPRU422
https://git.ti.com/apps/c55x-benchmarks
http://software-dl.ti.com/libs/c55_dsplib/latest/index_FDS.html

Load Parameters
Including Size of Data, Input Vector and
Expected Result, and 32-bit Number of

Iteration Value

 Enable the Clock Function, Run the
Benchmarked Function and Record the Cycle Count

Compare the Output Results With the
Expected Result Vector and Verify that the

Results are Correct

To Enable Power Measurements, the Code
Executes the Function Iterations Times.

Where Iterations is Very Large Number (32- bit).
This Gives Enough Time to Measure the Average Power

Consumption of Executing the Function

Introduction www.ti.com

2 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

1 Introduction
There is a dedicated Code Composer Studio™ (CCS) project for each benchmarked function, the
hardware that is used is TI EZDSP5535 (a low-cost platform). Each project is based on the DSPLIB unit
test for the corresponding optimized function.

To ensure easy portability of the projects. The code is distributed as source code. This document provides
very detailed step-by-step instructions on how to build and run the various projects. The only requirements
to build and run the projects are Code Composer Studio (CCSv6), library source code and the
compressed file that contains the project sources, as well as the EZDSP5535 EVM.

The following is a list of the functions that are part of this benchmark project:
• Complex values FFT (two cases): software only and using of the FFT accelerator
• Real values FIR (two versions): a regular version and a faster version with some limitations
• Real values Convolution
• Real Values Auto-Correlation
• Two Cases of the Real Value maximum function: finding the maximum value only and finding the

maximum value and its index
• Two Cases of the Real Value delay LMS filter: regular one and faster one with some limitations

Adding additional functions for benchmarking is a simple straightforward procedure.

1.1 System Requirements
• TMS320C5535 eZdsp USB kit
• CCS v6 or newer needs to be installed on the Windows machine (including support for the C55 family)
• Compressed-projects-source file - that is a file with the compressed source
• C55x DSPLIB optimized routines loaded from https://git.ti.com/apps/c55x-benchmarks

2 Algorithm Flow
All benchmark projects share the same algorithm flow. Figure 1 describes the algorithm flow.

Figure 1. Algorithm Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34
https://git.ti.com/apps/c55x-benchmarks

www.ti.com Load and Uncompress the Project File

3SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

3 Load and Uncompress the Project File
Load benchmark code from the TI public git server. From https://git.ti.com/apps/c55x-benchmarks, click on
the master branch at the upper part of the page. At the right side of the page just below Source tree, a
tar.gz file of the release is available to download.

The project can be installed in any directory of the Windows 7 machine. The code was tested only in the
Windows 7 environment. After the user uncompresses the downloaded file, apps-c55x-benchmark-
master.tar.gz, the following directories will be created (see Figure 2).

NOTE: Several tools are available to uncompress tar files (7_zip, tar utility on LINUX emulation,
winzip and others).

Figure 2. Directories From Uncompressed apps-c55x-benchmark-master.tar.gz File

Table 1. Description of the Sub-Directories

ASM_sources Contains sources of all the library optimized functions. The sources of all the optimized functions
must be loaded into this directory.

cfft1 Contains the code and data for all FFT benchmarks, including software only and using the HWAFFT
accelerator

convolve2 Contains the code and data for convolution
correlation Contains the code and data for auto-correlation
Dlmas_fast Contains the code and data for fast delayed least mean square (LMS) filter
Dlma Contains the code and data for standard delayed LMS filter
fir1 Contains the code and data for the regular fir filter
fir2 Contains the code and data for fast fir filter (even number of elements)
include Contains three include file. The path to this directory should be defined in the project properties
maxval Contains the code and data for finding the maximum value in a sequence
maxVec Contains the code and data for finding the maximum value and the index of maximum value in a

sequence

Load the optimized library functions from http://software-dl.ti.com/libs/c55_dsplib/latest/index_FDS.html to
the ASM_sources directory. Follow the directions from SPRC100-C55_DSPLIB-03.00.00.03-Setup.exe on
how to install the DSPLIB library on your computer. After installing the library, go to directory
c55_dsplib_03.00.00.03\55x_src and copy all of the asm files into the ASM_sources directory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34
https://git.ti.com/apps/c55x-benchmarks
http://software-dl.ti.com/libs/c55_dsplib/latest/index_FDS.html

Building the CFFT Project www.ti.com

4 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

4 Building the CFFT Project
The following instructions show how to build and run the CFFT project. As was mentioned Section 1, to
ensure easy porting, the software package contains only source code and auxiliary files (linker command
files).

Assume that the software package is uncompressed into a directory called myDirectory and it looks like
what is shown in Figure 2. Use the following steps to build and run the CFFT project.
1. Start CCS and define a new project.

Make sure that the target is EZDSP5535, the project is empty (no main.c file), and that you are using
the latest TI compiler version available to you, see Figure 3.

Figure 3. New CCS Project

Name the project (cfft1 was chosen in the screenshots, but any name can be used) and click finish.
2. Add files to the project.

Open the project that was just created and delete the linker command file. The source code includes
the linker command file for each project. Click on the c5535.cmd file and delete it.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

5SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Figure 4. Remove Linker Command File

Next, add all of the source files in the cfft1 directory to the project. There are two ways to add files to
the project: copy the files or link the files. For these projects, it is recommended to copy the source
files. The ability to change the project files without affecting the original source files is allowed. To do
so, right clock on the project and choose 'add files'. In the dialogue box, navigate to the cfft1 directory,
select all the files, and click open.

Figure 5. Add Files to cfft1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

6 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

A new dialogue box will open. Choose between linking the files and copying them. 'Copy' is selected in
Figure 6. Click OK.

Figure 6. Link or Copy Files

The test code files were added to the project. The optimized library files that are written in assembly
are needed. If the DSPLIB was already downloaded, the assembly files are in the
c55_dsplib_03.00.00.03\55x_src directory. If not, all assembly routines are part of the project packages
in the ASM_sources directory. Regardless of the location of the original optimized function files, these
files should be linked to the project and not copied. There is no need to modify the optimized assembly
code functions. For the CFFT project, four files (shown in Figure 7 and Figure 8) are needed
(cbrev.asm is the bit reversal function, cfft_scale.asm and cfft_noscale.asm are two fft routines for
executing fft with or without block scaling). Block scaling consumes more cycles, but provides a better
dynamic range and lower truncation errors. The assembly code twiddle.asm contains the twiddle
factors.

Figure 7. Optimized Files to Link to the Project

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

7SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Figure 8. Optimized Files to Link to the Project

Remember that the assembly files should be linked and not copied.

Figure 9. Copy or Link Dialogue Box

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

8 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

3. Set project properties.
It is assumed that CCS v6 was installed to support the C55 family, therefore, a version of the TI code
generation tools for C55 was installed. Right click on the project name and choose properties. In
properties go to Resources → Linked Resources tab. Figure 10 shows what resources are already
linked into the CCS.

Figure 10. Properties for cfft1

Note that SOURCES_BASE from Figure 10 is not set in the Linked Resources tab by default; it must
be added.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

9SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Figure 11 shows how to add the SOURCES_BASE linked resource. Click on new, enter the resource
name “SOURCES_BASE” in the dialogue box. Click on the folder tab and navigate to the directory
where the project was installed “myDirectory”. Figure 11 shows how to add SOURCES_BASE if the
project was installed in the \TI_C55\Benchmark_dsplibC5535 directory.

Figure 11. Define a New Resource

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

10 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Next, a path to the common include files should be added. The common include files are in the sub-
directory include of “myDirectory”. Figure 12 shows how to add the path ${SOURCES_BASE}\include
to the project property.

Figure 12. Adding Include Path

After clicking OK to the new include file and to the property dialogue box, the configuration of the
project is done.

4. Build the CFFT Project.
The CFFT_T.c file enables the ability to define multiple test scenarios by changing #define or #include
values at the top of the file.
NUMBER_OF_ITERATIONS determines how many times the optimized library function executed to
enable stable power measurements. This is a long variable and, thus, can be configured to take a very
long time.
FFT_HARDWARE If the FFT_hardware is set to 1, the Hardware FFT (HWAFFT) accelerator is used.
If the value is zero, the DSP core optimized FFT routine will be used.
A set of include files are used to change the size of FFT and to determine whether block scaling or not
block scaling is used in the FFT calculation. The user should comment on all of the include files except
the one that is chosen based on scale or no scale and the sizes.
1000000 iterations, no hardware FFT accelerator and 256 values complex FFT with scaling were
chosen in the following code:
#define NUMBER_OF_ITERATIONS 1000000l
#define FFT_HARDWARE 1
//#include "t1_SCALE.h"
//#include "t2_SCALE.h" //16
//#include "t3_SCALE.h" //32
//#include "t4_SCALE.h" //64
//#include "t5_SCALE.h" //128
#include "t6_SCALE.h" //256
//#include "t7_SCALE.h" //512
//#include "t8_SCALE.h" //1024
//#include "t2_NOSCALE.h"

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

11SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

//#include "t3_NOSCALE.h"
//#include "t4_NOSCALE.h"
//#include "t5_NOSCALE.h"
//#include "t6_NOSCALE.h"
//#include "t7_NOSCALE.h"
//#include "t8_NOSCALE.h"

After configuring the iteration, the hardware accelerator usage, and the size, right click on the project
and choose build. A correct build is shown below.
'Finished building: C:/TI_C55/Benchmark_dsplibC5535/ASM_sources/twiddle.asm'
' '
'Building target: cfft1.out'
'Invoking: C5500 Linker'
"C:/ti/CCS_6_1_2/ccsv6/tools/compiler/c5500_4.4.1/bin/cl55" -v5515 --memory_model=large -g --
define=c5535 --display_error_number --diag_warning=225 --ptrdiff_size=16 -z -m"cfft1.map" --
stack_size=0x200 --heap_size=0x400 -i"C:/ti/CCS_6_1_2/ccsv6/tools/compiler/c5500_4.4.1/lib" -
i"C:/ti/CCS_6_1_2/ccsv6/tools/compiler/c5500_4.4.1/include" --reread_libs --
display_error_number --warn_sections --xml_link_info="cfft1_linkInfo.xml" --rom_model --
sys_stacksize=0x200 -
o "cfft1.out" "./CFFT_T.obj" "./TEST.obj" "./cbrev.obj" "./cfft_noscale.obj"
"./cfft_scale.obj" "./twiddle.obj" "../fft5535.cmd" -l"libc.a"
<Linking>
'Finished building target: cfft1.out'
' '

**** Build Finished ****

5. Define the platform.
If not already done, the platform must be defined. In the “Target Configuration” tab (which can be set
from the view tab in edit /C prospective of CCS), right click on User Defined and select “New Target
Configuration”. At the dialogue box, provide a name to the new target (for example, EZsdp5535) and
click finish.

Figure 13. New Target Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

12 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Figure 14 shows how to configure the new target. If the system uses the on-board USB emulator, set
the connection to Texas Instruments XDS100v2 USB Debug Probe. Then, set a filter on the platform
with 5535 in its name by typing 5535 in the Board or Device tab (where it says “type filter test”). Select
the EZDSP5535 boards and click save.

Figure 14. Configuring the New Target

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

13SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Verify that the gel file was linked. Click on the Advanced tab (at the bottom of the dialogue box) and
select C55xx as illustrated in Figure 15. Make sure that the initialization script (on the right side of the
screen shot) is set.

Figure 15. Target Configuration Dialogue Box

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

14 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

6. Launch and connect.
In the target configuration dialogue box, select the EZDSP5535 target that was defined. Right click and
select “launch select configuration”. CCS will change to Debug Prospective, see Figure 16.

Figure 16. Debug Prospective

Right click on the emulator name (at the top of the prospective) and select connect. The console will
show the initialization steps:
C55xx: GEL Output:
StartUp()
C55xx: GEL Output:
OnTargetConnect()
C55xx: GEL Output:
OnReset()
C55xx: GEL Output: Reset Peripherals is complete.
C55xx: GEL Output: Configuring PLL (100 MHz).
C55xx: GEL Output: PLL Init Done.
C55xx: GEL Output: Target Connection Complete.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Building the CFFT Project

15SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

7. Load, enable the clock and run.
From the Run tab, select Load → Load Program. In the dialogue box that is opened, select “Browse
project” and navigate to the project name (shown as cfft1 in the screenshots); debug and select the out
file, see Figure 17.

Figure 17. Loading the Project Executable

Select OK and OK. The executable will be loaded into the device and the main function will appear in
the Edit window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Building the CFFT Project www.ti.com

16 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

Next, the clock is enabled. From the Run tab, right click to select Clock → Enable and verify that the
clock icon and the value 0 appear at the bottom of the CCS screen. Figure 18 and Figure 19 show
Clock Enable and the clock icon.

Figure 18. Clock Enable

Figure 19. Clock Icon

There are multiple ways to run the code. From the Run menu, click on the green arrow (at the top of
CCS window) or type F8.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

www.ti.com Build and Run all Other Projects

17SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

For 256 16-bit fix-point complex FFT, if the hardware accelerator is not used
(#define FFT_HARDWARE 0), the printing on the console will be as shown below. Note that the value of
“iteration” determines how long the program runs to completion.
Complex FFT number of elements is 256
fft time (in cycles) 5366
bit reverse time (in cycles) 521
Done with 1000000 iteration

If the hardware accelerator is used (#define FFT_HARDWARE 1), the printing on the console will be as
shown below:
Using bit reversal Number of elements is 256
Bit reversal accelerator time (in cycles) 538

Complex FFT number of elements is 256
fft time (in cycles) 1136

max Error = 3
number of errors 21023

Done with 1000000 iteration

Note that the time consumed by the bit reversal function for 256 complex points is less for the DSP
implementation than the hardware accelerator.

5 Build and Run all Other Projects
The instructions to build and run all other projects are similar to the instructions for the CFFT project
discussed in Section 4. The following is a summary of the steps that are needed and then a short
description of the expected output for each project.
1. Define new project. This follows the instructions in defining the CFFT project (step 1 from Section 4).
2. Delete default linker command and add Project files (step 2 from Section 4). It is important to delete

the default linker command file that comes with the new project definition. All of the test source files
and data must be added to the project directory following step , then the appropriate optimized library
function needs to be linked to the project.

3. Set Project Priorities. Follow CFFT step 3 from Section 4 of the CFFT build exactly.
4. Build the project. Similar to CFFT step 4 from Section 4, define the number of iterations (the value of

iteration) and what include file to un-comment. The include file determines the parameters of the test.
5. Step 5 from Section 4 is already done for the CFFT project.
6. Launch and connect. The same as CFFT step 6.
7. Load, enable the clock, and Run. If the clock is already enabled, no need to enable it again. Load and

run the same as step 7 from Section 4 of CFFT. There is a screenshot of the output for each project.

5.1 FIR2
In this benchmark, the test program is in the fir2_t.c file and the optimized library assembly routine name
is fir2.asm. The linker command file is fir2.cmd.

The include t5_ran.h file was built to have 256 taps filter. However, the result vector is good only up to 32
elements. Using this include file with more than 32 input values (still 256 Taps filter) will not compare with
the result vector. Using any other include file requires changing the definition of nx in the fir2_t.c file.

Building and running the code provides the following printout:
256 tap, 32 values FIR Real 16-bit
fir2 time (in cycles) 4247
Done with 1000 iteration

Changing the nx value to 2 (fir2 must have even number of elements) in the ft2_t.c file provides the
following results:
256 tap, 2 values FIR Real 16-bit
fir2 time (in cycles) 330
Done with 1000 iteration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Build and Run all Other Projects www.ti.com

18 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

5.2 FIR1
FIR1 can process both an even and odd number of output elements; however, it is slower than FIR2. FIR2
can process only even number of elements. This benchmark processes a single output value with 256
taps FIR1 filter and 32 output values with the same filter.

In this benchmark, the test program is in the fir_t.c file and the optimized library assembly routine name is
fir.asm. The linker command file is fir1.cmd.

The include t5_ran.h file was built to have 256 taps filter. However, the result vector is good only up to 32
elements. Using this include file with more than 32 input values (still 256 Taps filter) will not compare with
the result vector. Using any other include file requires changing the definition of nx in the fir_t.c file. The
test program runs the code for 32 output values and a single output value. The following printouts are for
32 output values and a single output value.
number of elements in the vector is is 1 and corefficients 256
FIR1 filter time (in cycles) 310
number of elements in the vector is is 32 and corefficients 256
FIR1 filter time (in cycles) 8309
Done with 1000 iteration

5.3 Convol2
Convol2 is a test project for the convolution function. There are three convolution optimized functions in
the DSPLIB library. Convol2 is the fastest one; convol1.asm and convol.asm can be substituted for
convol2.asm and run on benchmark with one of the other functions.

In this benchmark, the test program is in the conv2_T_ran.c and the optimized library assembly routine
name is convol2.asm. The linker command file is 55xConvolve2.cmd.

The include t4_ran.h file was built to have the sum of 80 elements for each vector of the convolution, and
80 output values. As with FIR2, the result vector is good only up to 80 elements. Using this include file
with more than 80 input values (still 80 Taps convolution) will not compare with the result vector. The test
program runs the code for 80 output values. The following is the printout of executing the test.
80 tap, 80 values convuolution Real 16-bit

Convolv2 time (in cycles) 3285
Done with 1000 iteration

5.4 Auto-Correlation
Correlation is a test project for the auto-correlation function. In this benchmark, the test program is
ARAW_T.c and a c model of the optimized assembly function routine is araw.c. The optimized library
assembly routine name is araw.asm. The linker command file is correlation.cmd.

The include t3_ran.h file was built to have the sum of 80 elements for each output of the auto-correlation,
and 80 output values. As with convolution, the result vector is good only up to 80 elements. The results
are compared to the results of the C model function in the file araw_c.c. The following is the printout of
executing the test.
80 tap, 80 values Auto-Correlation Real 16-bit

time (in cycles) 3456
Done with 1000000 iteration

5.5 Delay LMS Filter
There are two optimized library functions for delay LMS filter: the standard function dlms and the fast
version dlms_fast. Thus, there are two benchmark projects: one for the standard version and one for the
fast version. The faster function has some limitations on the size of the filter and the location of the data in
the device memory. For a detailed description of the requirements, see the TMS320C55x DSP Library
Programmer’s Reference User's Guide (SPRU422).

The test programs are dlms_fast_T.c and dlms_T.c for the fast and the standard versions. The optimized
library assembly routine names are dlms_fast.asm and DLMS.asm for the fast version and the standard
version. The linker command file is dlms.cmd.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34
http://www.ti.com/lit/pdf/SPRU422

www.ti.com Build and Run all Other Projects

19SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

The include t4.h file was built to have filter of 32 coefficients and 64 element input and output values. The
following is a printout from the standard and fast test code when t4.h is included. Note that the cycle’s
advantage of the comparison between the fast vs standard processing depends on the size of the filter
and the data.
standard LMS Delay filter #values 64 #of taps 32 step 327

time (in cycles) 4474
Done with 1000 iteration

fast LMS Delay filter #values 64 #of taps 32 step 327
time (in cycles) 4372

FAIL THE TEST
Done with 1000 iteration

5.6 Vector Max Value – Value Only
Maxval finds the maximum value of a real vector. The test code is MAXVAL_T.c; the linker command is
maxval.cmd.

The include t8.h and t8_original.h files have the same values in different order. This is done to
demonstrate that the cycle consumption does not depend on the maximum order. Both include files have
100 elements. The following is the printout of executing the test.
number of elements in the vector is is 100
max value time (in cycles) 77
Done with 100 iteration

5.7 Vector Max Value – Value and Index
Maxvec finds the maximum value and the index of the maximum value of a real vector. The test code is
Maxvec_T.c and the linker command is maxvec.cmd.

The include t8.h file has 100 elements. The following is the printout of executing the test:
number of elements in the vector is is 100
max (index and value) time (in cycles) 322
Done with 1000 iteration

6 Power Measurements
Power measurements require special hardware settings and the ability to run the measured function for a
long period of time. At the end of each benchmark project, the measured library function runs multiple
times. The number of times that the measured function runs is defined by a 32-bit long variable iteration.
The value can be set to a small value (for example, 1000 during debug session) and converted to a long
value (for example, 10,000,000 for power measurements). The maximum iteration value is 0x7fffffff =
approximately 2147 million iterations (for 100 MHZ system) and a function that consumes 200 cycles will
last more than an hour.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34

Benchmark More Library Functions www.ti.com

20 SPRAC34–April 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Instructions to Benchmark C55 DSP Library

7 Benchmark More Library Functions
All test code and data files are based on the DSPLIB library unit test. Each library function has its own unit
test. Do the following to port a unit test to a benchmark project:
1. Go to the directory where the C55x DSPLIB library was loaded using the information in Section 3.
2. Copy the data files, source code files and the linker command file from the Library Examples directory

to a new directory.
3. Modify the test code as follows:

(a) Add #include <time.h> to the list of include files.
(b) Add #define NUMBER_OF_ITERATIONS. For debug time, get a small value. For power

measurement time, the value should be large.
(c) Add a set of variables for the number of elements and other variables that are associated with the

test (number of taps, and so forth). Add a long iteration1 counter and a set of clock_t type time
measurements (clock_t t1,t2, t11,t22 ,total1_t ,total2_t,diff).

(d) Measure the overhead that is associated with the time measurements as seen in the following:
t1 = clock() ;
t2 = clock() ;
diff = t2 - t1 ; /// overhead of calling

(e) t1 = clock() ; t2 = clock() ; diff = t2 - t1 ; /// overhead of calling
(f) Calculate the time consumed by the library routine by adding the following code (replace

libraryRoutineFunction with the real function that is benchmarked and list the real parameters).
t1 = clock () ;
LibraryRoutineFunction ();
t2 = clock ();

total1_t = (double) (t2 - t1-diff) ;
Printf ("Function Parameters are %d %d %d %d \n" , list,of,parameters) ;
printf(" time (in cycles) %ld \n", total1_t) ;

(g) Add the iteration part to run the library routine for a long time (replace the library function with the
real function call and parameter and list the real parameters)
for (iterations1 = 0; iterations1 < NUMBER_OF_ITERATIONS;iterations1++)

{
libraryFunction(parameter list);

}
printf("Done with %ld iteration \n",iterations1);

(h) Repeat the steps from Section 5.

8 References
TMS320C55x DSP Library Programmer’s Reference User's Guide (SPRU422)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC34
http://www.ti.com/lit/pdf/SPRU422

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Instructions to Benchmark C55 DSP Library
	1 Introduction
	1.1 System Requirements

	2 Algorithm Flow
	3 Load and Uncompress the Project File
	4 Building the CFFT Project
	5 Build and Run all Other Projects
	5.1 FIR2
	5.2 FIR1
	5.3 Convol2
	5.4 Auto-Correlation
	5.5 Delay LMS Filter
	5.6 Vector Max Value – Value Only
	5.7 Vector Max Value – Value and Index

	6 Power Measurements
	7 Benchmark More Library Functions
	8 References

	Important Notice

