
Application Note
CC13xx IQ Samples

ABSTRACT

This application report describes an IQ dump patch for the CC13xx SimpleLink™ Sub-1 GHz ultra-low power 
wireless microcontroller (MCU).

Project collateral and source code mentioned in this document can be downloaded from the following link:
http://www.ti.com/lit/zip/swra571. The smartrf_settings.c file is for the CC1310, but similar files can be made for 
the other CC13x0 and CC13x2 devices, following the steps explained in Section 2.1.1 and Section 2.1.2.
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1 Introduction
CC13xx SimpleLink™ Sub-1 GHz ultralow power wireless microcontroller (MCU) is centered around an ARM® 

Cortex®-M3 (CC13x0) or ARM Cortex-M4F (CC13x2) series processor that handles the application and an 
autonomous RF Core that handles all the low-level radio control and processing needed to transfer digital bits 
over the air. Normally the customers use the CM3/CM4F to implement their application/high level protocols 
on top of the physical layer, but it is also possible to use it to implement other novel or legacy physical layer 
modulation schemes. In order to do so, the CM3/CM4F requires access to the raw IQ samples in RX mode. With 
the default genfsk/prop PHY, IQ samples are not available outside RF Core and a dedicated patch is needed to 
automatically copy IQ samples to a partial read RX entry. This application note describes how to get access to 
these IQ samples using the IQ dump patch.
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2 IQ Dump Patch
The IQ Dump patch (rf_patch_mce_iqdump.h) can run in two different modes; IQFifoBlind and IQFifoSync. 
IQFifoBlind mode starts copying IQ samples immediately while IQFifoSync mode starts copying IQ samples after 
a sync word has been detected. The mode of operation is selected by the MCE_RFE override (see Table 2-2). 
For both modes, IQ samples are copied through the RF Core’s internal FIFO to one or more partial read RX 
entries in the system RAM. The application simply waits for an RX_ENTRY_DONE interrupt saying that a partial 
read entry is full.

The IQ sample rate is fixed to 4 times oversampling and the IQ sample size is 12 bits. This means that each IQ 
pair will occupy 3 bytes in RAM in the format shown in Table 2-1. The format is signed meaning that MSB is the 
sign bit (two’s complement format).

Table 2-1. Format of IQ Samples Stored in RAM
Byte Bit Definition

0 I7 I6 I5 I4 I3 I2 I1 I0
1 Q3 Q2 Q1 Q0 I11 I10 I9 I8
2 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4

The patch has a built-in test pattern where the IQ samples are replaced with two counter values. The I-sample 
is replaced with an increasing counter value and the Q-sample is replaced with a decreasing counter value. The 
test pattern is enabled by the following register override:

HW_REG_OVERRIDE(0x52B4, 0x070D) // CC13x0
HW_REG_OVERRIDE(0x5328, 0x070D) // CC13x2

2.1 Recommended Operating Limits
When using the IQ Dump patch in RX the data rate is limited upwards to 12.5 kbps for CC13x0 and 25 
kbps for CC13x2. In TX, the patch can be used within the same operating limits as the genfsk/prop PHY. The 
50-kbps settings from SmartRF™ Studio [1] should be used as a starting point. The associated zip file contains 
a smartrf_settings.c file (for CC1310) that has the complete override list and API settings to be used with the 
patch.

2.1.1 Register Overrides

The MCE_RFE override 1needs to be modified when running the IQ Dump patch. Table 2-2 shows how this 
should be done. In addition, there is one other override necessary to add when running the patch.

Table 2-2. Overrides and Mode of Operation
Override Description

MCE_RFE_OVERRIDE(1,0,2,1,0,0) // CC13x0
MCE_RFE_OVERRIDE(1,0,2,0,4,0) // CC13x2 Setting the mode of operation to IQFifoBlind

MCE_RFE_OVERRIDE(1,0,3,1,0,0) // CC13x0
MCE_RFE_OVERRIDE(1,0,3,0,4,0) // CC13x2 Setting the mode of operation to IQFifoSync

(uint32_t)0x001082C3 Set to avoid internal FIFO overflow

HW_REG_OVERRIDE(0x52B4, 0x070D) (optional) // CC13x0
HW_REG_OVERRIDE(0x5328, 0x070D) (optional) // CC13x2

Enable built-in test pattern. Should only be included when 
testing the patch. For more details, see Section 3 (optional).

1 Only one MCE_RFE can be present in the override list.
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In addition you need to include the patch and update the TI_RTOS RF Mode Object:

CC13x0:

#include DeviceFamily_constructPath(rf_patches/rf_patch_cpe_genfsk.h)
#include DeviceFamily_constructPath(rf_patches/rf_patch_mce_iqdump.h)
#include DeviceFamily_constructPath(rf_patches/rf_patch_rfe_genfsk.h)
#include "smartrf_settings.h"
// TI-RTOS RF Mode Object
RF_Mode RF_prop =
{
    .rfMode = RF_MODE_PROPRIETARY_SUB_1,
    .cpePatchFxn = &rf_patch_cpe_genfsk,
    .mcePatchFxn = &rf_patch_mce_iqdump,
    .rfePatchFxn = &rf_patch_rfe_genfsk,
};

CC13x2:

#include DeviceFamily_constructPath(rf_patches/rf_patch_cpe_prop.h)
#include DeviceFamily_constructPath(rf_patches/rf_patch_mce_iqdump.h)
#include "smartrf_settings.h"
// TI-RTOS RF Mode Object
RF_Mode RF_prop =
{
    .rfMode = RF_MODE_AUTO,
    .cpePatchFxn = &rf_patch_cpe_prop,
    .mcePatchFxn = &rf_patch_mce_iqdump,
    .rfePatchFxn = 0,
};

2.1.2 API Configuration

When using the patch some changes have to be done to the API exported from SmartRF Studio. 
formatConf.bMsbFirst in CMD_PROP_RADIO_DIV_SETUP must be set to 0 to allow for LSB to be transmitted 
first and maxPktLen in CMD_PROP_RX must be set to 0 for unlimited packet length. The RX bandwidth should 
be set to 39/38.9 kHz (CC13x0/CC13x2), and a good starting point for the deviation is to set it to half the data 
rate (see Table 2-3).

Table 2-3. API Modifications
API Field Value Comment
RF_cmdPropRadioDivSetup.formatConf.bMsbFirst 0 Least significant bit transmitted first

RF_cmdPropRx.maxPktLen 0 Unlimited length

RF_cmdPropRadioDivSetup.modulation.deviation 0x19 6.25 kHz

RF_cmdPropRadioDivSetup.rxBw 0x20
0x4D

39 kHz (CC13x0)
38.9 kHz (CC13x2)

RF_cmdPropRadioDivSetup.symbolRate.rateWord 0x2000 12.5 kbps

3 Building a Software Example
To test the RF performance of the patch, see the rfPacketRX example available when downloading [2] or [3].

The smartrf_settings.c file must be replaced with the one from the zip file that can be downloaded from the 
following link: http://www.ti.com/lit/zip/swra571. The following modifications must be done to rfPacketRX.c to be 
able to test the patch:

1. Define how many IQ sample pairs you want.

#define NUMBER_OF_SAMPLE_PAIRS 300

Setting NUMBER_OF_SAMPLE_PAIRS to 300 means that each data entry used must have room for 300 x 3 
bytes.

www.ti.com IQ Dump Patch

SWRA571B – AUGUST 2017 – REVISED AUGUST 2020
Submit Document Feedback

CC13xx IQ Samples 3

Copyright © 2022 Texas Instruments Incorporated

http://www.ti.com/lit/zip/swra571
https://www.ti.com
https://www.ti.com/lit/pdf/SWRA571
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRA571B&partnum=


2. Configure two partial read buffers for the received data. Make sure that the buffers are 4 byte aligned.

#define PARTIAL_RX_ENTRY_HEADER_SIZE 12

#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_ALIGN (rxDataEntryBuf1, 4);
static uint8_t rxDataEntryBuf1[PARTIAL_RX_ENTRY_HEADER_SIZE + 
                              (NUMBER_OF_SAMPLE_PAIRS * 3)];
#pragma DATA_ALIGN (rxDataEntryBuf2, 4);
static uint8_t rxDataEntryBuf2[PARTIAL_RX_ENTRY_HEADER_SIZE + 
                              (NUMBER_OF_SAMPLE_PAIRS * 3)];
#endif
rfc_dataEntryPartial_t* partialReadEntry1 = (rfc_dataEntryPartial_t*)&rxDataEntryBuf1;
rfc_dataEntryPartial_t* partialReadEntry2 = (rfc_dataEntryPartial_t*)&rxDataEntryBuf2;
rfc_dataEntryPartial_t* currentReadEntry = (rfc_dataEntryPartial_t*)&rxDataEntryBuf1;

void *mainThread(void *arg0)
{
    RF_Params rfParams;
    RF_Params_init(&rfParams);
    partialReadEntry1->length = (NUMBER_OF_SAMPLE_PAIRS * 3) + 4;
    partialReadEntry1->config.type = DATA_ENTRY_TYPE_PARTIAL;
    partialReadEntry1->status = DATA_ENTRY_PENDING;

    partialReadEntry2->length = (NUMBER_OF_SAMPLE_PAIRS * 3) + 4;
    partialReadEntry2->config.type = DATA_ENTRY_TYPE_PARTIAL;
    partialReadEntry2->status = DATA_ENTRY_PENDING;

    partialReadEntry1->pNextEntry = (uint8_t*)partialReadEntry2;
    partialReadEntry2->pNextEntry = (uint8_t*)partialReadEntry1;

    dataQueue.pCurrEntry = (uint8_t*)partialReadEntry1;
    dataQueue.pLastEntry = NULL;

3. Remove RFQueue_defineQueue and the modifications of RF_cmdPropRX, except for the 
RF_cmdPropRx.pQueue.

// if( RFQueue_defineQueue(&dataQueue,
//                        rxDataEntryBuffer,
//                        sizeof(rxDataEntryBuffer),
//                        NUM_DATA_ENTRIES,
//                        MAX_LENGTH + NUM_APPENDED_BYTES))
//{
//    /* Failed to allocate space for all data entries */
//    while(1);
//}

RF_cmdPropRx.pQueue = &dataQueue;
/* Discard ignored packets from Rx queue */
    // RF_cmdPropRx.rxConf.bAutoFlushIgnored = 1;
    /* Discard packets with CRC error from Rx queue */
    // RF_cmdPropRx.rxConf.bAutoFlushCrcErr = 1;
    /* Implement packet length filtering to avoid PROP_ERROR_RXBUF */
    // RF_cmdPropRx.maxPktLen = MAX_LENGTH;
    // RF_cmdPropRx.pktConf.bRepeatOk = 1;
    // RF_cmdPropRx.pktConf.bRepeatNok = 1;
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4. Implement handling of the IQ samples in the callback. In the callback the samples should simply be read 
from the data entries to make the data entries available for new samples. The processing of the IQ samples 
should be done outside the callback. It is not the scope of this application report to show how this can be 
done. The code below simply shows how to get access to the samples and how to handle the queue.

void callback(RF_Handle h, RF_CmdHandle ch, RF_EventMask e)
{
    if (e & RF_EventRxEntryDone)
    {
        // Toggle pin to indicate RX
        PIN_setOutputValue(pinHandle,
                           Board_PIN_LED2,!PIN_getOutputValue(Board_PIN_LED2));
        // Get a pointer to the first IQ sample byte
        packetDataPointer = &currentReadEntry->rxData;
        //---------------------------------------------------------------------------
        // Implement code for handling the IQ data
        //    .
        //    .
        //    .
        //    .
        //---------------------------------------------------------------------------
        currentReadEntry->status = DATA_ENTRY_PENDING;
        currentReadEntry = (rfc_dataEntryPartial_t*)currentReadEntry->pNextEntry;
    }
}
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4 Testing the Patch Using the Built-In Test Pattern
To test that the data entries are set up correctly and that the patch is working you can enable the built-in test 
pattern (see Table 2-2) and declare two arrays (iSamples and qSamples) that can hold the “received” I and Q 
samples.

#define NUMBER_OF_BUFFERS 5
static uint16_t iSamples[NUMBER_OF_SAMPLE_PAIRS*NUMBER_OF_BUFFERS];
static uint16_t qSamples[NUMBER_OF_SAMPLE_PAIRS*NUMBER_OF_BUFFERS];

For test purposes, set NUMBER_OF_SAMPLE_PAIRS to a low number2 to easier be able to go through the 
array to see that everything is OK.

#define NUMBER_OF_SAMPLE_PAIRS 8

In the callback, where code for handling the samples should be implemented, the following code was added:

static uint16_t index = 0;
void callback(RF_Handle h, RF_CmdHandle ch, RF_EventMask e)
{
    if (e & RF_EventRxEntryDone)
    {
        // Toggle pin to indicate RX
        PIN_setOutputValue(ledPinHandle,
                           Board_PIN_LED2,!PIN_getOutputValue(Board_PIN_LED2));
        // Get a pointer to the first IQ sample byte
        packetDataPointer = &currentReadEntry->rxData;
        //---------------------------------------------------------------------------
        // Implement code for handling the IQ data
        // In this example, I and Q data are simply copied into two separate array
        {
            uint16_t i;
            // IQ Sample Handling
            for (i = index; i < (NUMBER_OF_SAMPLE_PAIRS + index); i++)
            {
                iSamples[i] = (((*(packetDataPointer + 1)) << 8) |
                                (*packetDataPointer)) & 0x0FFF;
                qSamples[i] = (((*(packetDataPointer + 2)) << 8) |
                                (*(packetDataPointer + 1))) >> 4;
                packetDataPointer += 3;
            }
        }
        index += NUMBER_OF_SAMPLE_PAIRS;
        if (index == (NUMBER_OF_SAMPLE_PAIRS*NUMBER_OF_BUFFERS))
        {
            index = 0;
        }
        //---------------------------------------------------------------------------
        currentReadEntry->status = DATA_ENTRY_PENDING;
        currentReadEntry = (rfc_dataEntryPartial_t*)currentReadEntry->pNextEntry;
    }
}

2 In this example, NUMBER_OF_SAMPLE_PAIRS cannot be set lower than 8, as this will make the data entry overflow 
(RF_cmdPropRx.status = PROP_ERROR_RXOVF)
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Figure 4-1 shows the five buffers with eight IQ sample pairs in each stored in an iSamples and qSamples array, 
each holding 40 samples (NUMBER_OF_BUFFERS · NUMBER_OF_SAMPLE_PAIRS).

Figure 4-1. Built-In Test Pattern Stored as I and Q Samples
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