ABSTRACT
This document demonstrates the ability of the CC3220 to provide a full system solution for audio-video streaming applications.

Contents
1 Introduction ... 2
2 Hardware Setup .. 3
3 Running the Setup ... 10

List of Figures
1 System Block Diagram ... 2
2 CC3220 LaunchPad ... 4
3 Omnivision OV788 Reference Board .. 5
4 Cable Twist .. 6
5 OV788 Adapter Booster Pack Connection .. 7
6 CC3220 LaunchPad Setup .. 8
7 RS232 Debug Board Setup .. 9
8 Uniflash File System .. 10
9 Starting Provisioning ... 11
10 Successful Provisioning ... 12
11 Camera IP Address ... 12
12 mDNS Device Discovery ... 12
13 IP Address from mDNS .. 13
14 Open Network Stream ... 14
15 Enter Network URL .. 14
16 Open Network Stream ... 15
17 Enter Network URL .. 16
18 Choose Stream ... 17
19 Enter Network URL .. 18
20 Final Setup .. 19

List of Tables
1 Key System Specifications .. 2

Trademarks
SimpleLink is a trademark of Texas Instruments.
iOS is a trademark of Apple.
Android is a trademark of Google LLC.
Wi-Fi is a registered trademark of Wi-Fi Alliance.
All other trademarks are the property of their respective owners.
1 Introduction

1.1 System Description

This software reference combines TI wireless technology with OmniVision A/V technology to enable live streaming of audio and video data over Wi-Fi®. This is an integrated solution demonstrating the ability of the CC3220 to provide a full system solution for audio-video streaming applications.

1.2 System Block Diagram

Figure 1. System Block Diagram

1.3 System Operation

On boot-up, the CC3220 application initializes the OV788 by loading its firmware and sending commands to configure the settings of the device. In parallel, the CC3220 begins connecting to an access point. After the AP connection, the CC3220 then opens an RTSP server on the local network, and waits for RTSP clients, such as media player applications, to connect and request live streams.

The CC3220 does not buffer video or audio data, but rather sends them out immediately over the network when received by the OV788. Thus, any latency seen in the video stream is mostly due to buffering on the part of the streaming client application. In a dedicated use case, this could be reduced by the system developer by using a custom application instead of using open source.

1.4 Key System Specifications

Table 1. Key System Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATION</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming quality</td>
<td>Video</td>
<td>720p, 30 fps, 2 Mbps</td>
</tr>
<tr>
<td></td>
<td>Audio</td>
<td>PCM, 16 bps, 11025 Hz</td>
</tr>
<tr>
<td>Application protocols</td>
<td>RTP/RTSP</td>
<td></td>
</tr>
<tr>
<td>Supported Wi-Fi networks</td>
<td>802.11 b/g/n</td>
<td></td>
</tr>
</tbody>
</table>
2 Hardware Setup

The following pieces of hardware are required:

- CC3220S-LAUNCHXL or CC3220SF-LAUNCHXL
- BOOSTXL-OV788ADAPT
- Omnivision OV788 reference board V3
- 802.11 b/g/n Wi-Fi Access Point

2.1 CC3220 Launchpad Setup

Set up the jumpers on the CC3220 LaunchPad as shown in Figure 2.
Figure 2. CC3220 LaunchPad
2.2 Omnivision OV788 Reference Board

The OV788 reference board V3 contains an OV788 and connectors for a sensor and optics board. The sensor board to be mounted should contain an OV9732, because the firmware loaded to the OV788 by the CC3220 (dsif_slave_9732.bin) is specific to this sensor. Mount the sensor on the board as shown in Figure 3.

Some ECOs may need to be performed on the OV788 reference board to ensure the correct boot mode is employed, and that reset lines are connected. Verify the following, and make ECOs if necessary:

- Remove R121
- Remove R30
- Populate R136 with 0 Ω
- Populate R29 with 0 Ω
- Populate R31 with 100 Ω
- Populate R32 with 100 Ω
If the onboard regulator for the 3.6V line does not supply 3.6 V, additional changes must be made. The voltage from the 3.6V regulator can be measured from header J2, pin 12. If the measured voltage is not 3.6 V, make the following changes:

- Change R46 to 200 kΩ
- Change R47 to 40 kΩ

If using the Omnivision PIR and LED board, this enables the OV788 to sample sound from the onboard microphone. The sound is sampled directly by the OV788 for this reference. The audio data is sent to the CC3220 over the SPI interface with the video data. Currently the microphone is the only functional component on this board.

There are some hardware considerations when using this:

- Mount a microphone on MIC2
- To reduce interference and get the best audio quality, twist the cable to the Omnivision reference board tightly, as shown in Figure 4.

Figure 4. Cable Twist
2.3 **BOOSTXL-OV788ADAPT**

The OV788 adapter booster pack is used to connect the CC3220-LAUNCHXL to the OV788 reference board. This board provides voltage-level translation between the Launchpad, which operates at 3.3 V, and the OV788, which operates at 1.85 V. The OV788 reference board is mounted on the camera adapter board using the 12-pin 1.27-mm pitch headers. Connect the boards together as shown in Figure 5.

![Figure 5. OV788 Adapter Booster Pack Connection](image-url)
2.4 Hardware Setup With LaunchPad Only

NOTE: For this setup, a wire must be connected to the 5-V supply on the CC3220 LaunchPad and soldered to TP3 on the OV788 reference board to correctly supply power to it.

The adapter board does not supply 5-V power, as the connectors on the Omnivision board do not have a line for 5 V.

Mount the adapter on the CC3220 LaunchPad, ensuring the VCC and GND pins are aligned, then mount the OV788 board on the adapter, aligning the GND and power pins.

Set up the demo as shown in Figure 6.

![Figure 6. CC3220 LaunchPad Setup](image)
2.5 Hardware Setup With RS232 Debug Board

Omnivision's RS232 debug board is an optional board containing a UART to USB converter, used to get UART debug information from the OV788. Connecting the RS232 debug board supplies 5 V power to the Omnivision reference board. Mount the adapter on the CC3220 LaunchPad, ensuring the VCC and GND pins are aligned, then mount the OV788 board on the adapter, aligning the GND and power pins. For this setup, do not connect a wire for 5-V power from the CC3220 LaunchPad to the OV788 reference board, as doing so may damage the components.

Set up the demo as shown in Figure 7.

For this setup, ensure the ribbon cable orientation is correct. The Omnivision debug port has the following settings:

- Bits per second: 115200
- Data bits: 8
- Parity: None
- Stop bits: 1
- Flow control: None
3 Running the Setup

Prerequisites:
- CC3220 SDK: http://www.ti.com/tool/SIMPLELINK-CC3220-SDK
- Uniflash 4.2 or greater: http://www.ti.com/tool/UNIFLASH
- RTP streaming client application, one of:
 - VLC for Android, Ver. 3.0.0
 - VLC for iOS, Ver. 2.8.7
 - VLC for Windows, Ver. 2.2.8
- Wi-Fi Starter Pro application for iOS/Android

3.1 Programming the CC3220 LaunchPad

For the software to run correctly, the CC3220-LAUNCHXL must be programmed with a firmware binary file for the OV788 and the latest service pack for the CC3220. Directions for programming are:

1. Under File, select Service Pack, and browse to the service pack in the most recent CC3220 SDK: `<CC3220 SDK>\tools\CC3220_tools\servicepack-cc3x20\`
2. Add a new folder named `user`.
3. In the new user folder, add the file `dsif_slave_9732.bin` located in the folder `<CC3220 SDK>\source\third_party\ov788\`. Name this file `ovt_firmware.bin`, as shown in **Figure 8**.

4. To program the CC3220 binary:
 a. Add the file `<CC3220 SDK>\tools\CC3220_tools\certificate-playground\dummy-root-ca-cert`. Note use of "dummy" certificates is for development only.
 b. Select Action, and Select MCU image as the CC3220 binary file located in `<CC3220 SDK>\examples\tos\CC3220S_LAUNCHXL\demos\video_streaming_ov788\freertos\iar\Debug\Exe`.
 c. Use dummy-root-ca-cert as the certification file, and `<CC3220 SDK>\tools\CC3220_tools\certificate-playground\dummy-root-ca-cert-key` as the private key.

Development Mode - Files > User Files

![Uniflash File System](Figure 8. Uniflash File System)
5. Connect the CC3220 LaunchPad to the PC, and press Connect.

6. Press Generate Image , then Program Image.

3.2 Connecting the CC3220-OV788 Setup to the AP

The camera must first be provisioned an access point to enable streaming over a local network. Directions for provisioning are:

1. Connect the CC3220 LaunchPad USB to the PC.
2. (Optional) Open the serial terminal to the COM port for the CC3220. The Omnivision debug port has the following settings:
 - Bits per second: 115200
 - Data bits: 8
 - Parity: None
 - Stop bits: 1
 - Flow control: None

Reset the CC3220 LaunchPad and **Figure 9** shows in the terminal if the CC3220 is not able to connect to an AP after 10 seconds:

![Figure 9. Starting Provisioning](image-url)
3. Start the Wi-Fi starter Pro application, and begin provisioning. See the Wi-Fi starter Pro manual for details. Figure 10 illustrates the result of successful provisioning.

```
[Provisioning] Profile Added: SSID: TI3XTEST
[Provisioning] Profile confirmation: WLAN Connected!
[Provisioning] Profile confirmation: IP Acquired!
[Provisioning] Profile Confirmation Success!
[Provisioning] Stopped: Current Role: STA
WLAN Status: CONNECTED
Connected to SSID: TI3XTEST
Listening for RTSP clients...!
System State: APP_STATE_INIT_DONE_CONNECTED
```

Figure 10. Successful Provisioning

4. If using the serial terminal, reset the board and note the IP address assigned to the camera after it connects to the access point, as shown in Figure 11.

```
*           CC3220-0V788 Video Streaming Application       **
Processing 'INIT_0V788' message
Device started in Station role
[Event] STA connected to AP - BSSID:f8:d1:11:4c:79:f0, SSID:TI3XTEST
Processing 'U_CONFCONFIG SENSOR' message
Processing 'U_SET_FRAME_RATE' message
Processing 'U_SET_BITRATE' message
Processing 'U_SET_ZOOM' message
Processing 'U_SET_MOTION_DETECT' message
Processing 'A_CONFIG_AUDIO' message
UNSTAPP EVENT IP Acquired: IP:192.168.1.102, Gateway=192.168.1.1
Listening for RTSP clients...!
System State: APP_STATE_INIT_DONE_CONNECTED
```

Figure 11. Camera IP Address

5. Alternatively, Bonjour for iOS™ or Bonjour Browser for Android™ can be used to discover the IP address through MDNS device discovery, as shown in Figure 12 and Figure 13.

```
Domains

Browserable Domains

local.

Saving screenshot...

World Wide Web HTML-over-HTTP
.http_tcp.
_nvstream_tcp.

Http TCP

C4BE84E1D832@mysimplelink
```

Figure 12. mDNS Device Discovery
Figure 13. IP Address from mDNS
3.3 Streaming From the Client Application

3.3.1 VLC for Windows

1. Connect the PC to the same access point as the CC3220-OV788 setup.
2. Run VLC and choose Open Network Stream from the Media menu, as shown in Figure 14.

![Figure 14. Open Network Stream](image1)

3. For the Network URL, enter "rtsp://<local IP address>:8554/Video.264" and press Play, as shown in Figure 15.

![Figure 15. Enter Network URL](image2)
3.3.2 VLC for iOS

1. Connect the iOS device to the same access point as the CC3220-OV788 setup.
2. Run VLC, and Choose Open Network Stream, as shown in Figure 16.

![Figure 16. Open Network Stream](image-url)
3. For the Network URL, enter "rtsp://<local IP address>:8554", as shown in Figure 17.

Figure 17. Enter Network URL
3.3.3 VLC for Android

NOTE: Having other audio applications open may prevent the audio from playing.

1. Connect the Android device to the same access point as the CC3220-OV788 setup.
2. Run VLC, and Choose Stream, as shown in Figure 18.

![Figure 18. Choose Stream](image-url)
3. For the Network URL, enter "RTSP://<local IP address>:8554", and press the yellow arrow, as shown in Figure 19.

![Figure 19. Enter Network URL](image)

3.4 Results

The setup should now be streaming H.264 video from the camera setup to the streaming client. Adjust the lens attached to the camera (by twisting) to get the best quality picture. The latency settings in the streaming client can also be adjusted to reduce delay seen in the video stream. This setup serves as a starting point in software and hardware for developing many different types of end equipment which stream video and audio over IP networks.
Figure 20. Final Setup
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated