MSP430 LaunchPad Pin Connections

- **+3V3**
- **+5V**
- **GND**
- **P6.5/A5/CB5**
- **P3.4/UCA0RXD/UCA0SOMI**
- **GND**
- **P6.0/A0/CB0**
- **P3.3/UCA0TXD/UCA0SIMO**
- **P6.1/A1/CB1**
- **P6.2/A2/CB2**
- **P6.3/A3/CB3**
- **P6.4/A4/CB4**
- **P1.6/TA1CLK/CBOUT**
- **P6.6/A6/CB6**
- **P3.2/UCB0CLK/UCA0STE**
- **P2.7/UCA0CLK/UCB0STE**
- **P7.0/A12/CB8**
- **P4.2/PM_UCB1SCL/PM_UCB1SOMI**
- **P3.6/TB0.6**
- **P4.1/PM_UCB1SDA/PM_UCB1SIMO**
- **P3.5/TB0.5**

MSP-EXP430F5529 LaunchPad

- **U1A**
- **P2.5/TA2.2**
- **GND**
- **P2.4/TA2.1**
- **P1.5/TA0.4**
- **P2.0/TA1.1**
- **P2.2/SMCLK/TA2CLK**
- **P1.4/TA0.3**
- **P7.4/TB0.2**
- **RST/NMI/SBWTDIO**
- **P3.0/UCB0SIMO/UCB0SDA**
- **P3.1/UCB0SOMI/UCB0SCL**
- **P1.3/TA0.2**
- **P1.2/TA0.1**

BCM Driver Reference Design

- **Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not warrant that this design will meet the specification, will be suitable for your application or for any particular purpose, or is applicable to any implementation. Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should independently verify and test your design or implementation to confirm the system functionality for your application.**
Low Side Driver

Channels: 1-5

Low side loads 1 to 5
Load: Lamps (1300mA)
Device max. output: 500mA out on J1-J3, 1A on J4, J5

Load: Lamps (1300mA)
High Side Driver

Channels: 2-5

Load: Window actuator + Windshield wiper actuator (4x 250mA relay)

Device max. output: 1A each channel, 3.75A max total
High Side Driver

Channel 5

R14 - 5.83kOhm for 300mA sensing range
R15 - Current limit set for 300mA
R12/13 - MSP430 compatible analog output

High side load 5
Load: HVAC blower (1x 250mA relay)
Device max. output: 3.21A

Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not guarantee that this design will meet the specifications set forth herein. It is the responsibility of the end user to determine the suitability of this design for any particular purpose. Texas Instruments and/or its licensors do not warrant that the design is production-worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.
High Side/Low Side Driver

HS Channels: 6-7
LS Channels: 6-7

- **Load:** Door lock actuator (2x 250mA relay)
- **Device max. output:**
 - 2x 650mA
 - 4x 540mA
 - 2x 1200mA (parallel mode)

- **Jumper J12 & J17 for parallel mode, leave open for normal operation**

- **Mode Set = 0; Device in RETRY mode (OCP flag clears after 200ms)**
- **10k resistor in series with MODE_SEL, select parallel mode**

Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors disclaim any responsibility for any modification or alteration on the subject design, whether practiced or not. This information is provided "as is" and without warranty of any kind. You should independently evaluate and test your design implementation to confirm the system functionality for your application.

Contact:
- http://www.ti.com/support

Assembly Variant:
- [No Variations]
High Side Pre-FET Driver

Channel 1

Pre-FET high side load 1
Load: Seat heater
Typ: 3.5A @ 12V
Max: 4.5A @ 20V

LM9061M

LM9061_ON

12V

GND

C13 - Delay timer set to 55ms
0.1µF

J18

ED555/2DS

GND

Q1

SQ4470EY-T1-GE3
60V, 16A

R20

6A

1.00k

R21

15.4k

R23

TP2

Typ: 3.5A @ 12V
Max: 4.5A @ 20V

1.13k

R22

R22 - OCP threshold set to 5.5A
Texas Instruments and/or its licensors do not warrant that this design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein.

High Side Pre-FET Driver

Channels: 2-5

Pre-FET high side loads 2 to 5.

Min. Safe loads Typ. 3.5A @ 12V each

Max. 4.5A @ 20V each

Engineer:

Contact:

File:

Assembly Variant:

Project Title:

Designed for:

Number:

Sheet:

Mod. Date:

Size:

© Texas Instruments
LED Driver

Channels: 1-3
Car Battery
12V typical
9-20V typical continuous range
40V load dump transients
You should delete the nylon screws/standoffs and/or the bumpers as needed for your design (or substitute other parts from Hardware.IntLib). Bumpers are cheaper, but provide less clearance.

Deleting anything else from this page may result in your EVM submission being rejected (until you add them back).

Update the Label Text in the Label Table as needed for each Assembly Variant.

You can delete this note too.

Label Table

<table>
<thead>
<tr>
<th>Variant</th>
<th>Label Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>ChangeMe!</td>
</tr>
<tr>
<td>002</td>
<td>ChangeMe!</td>
</tr>
</tbody>
</table>

Assembly Note

ZZ2

These assemblies are ESD sensitive. ESD precautions shall be observed.

ZZ3

These assemblies must be clean and free from flux and all contaminants. Use of no-clean flux is not acceptable.

ZZ4

These assemblies must comply with workmanship standards IPC-A-610 Class 2, unless otherwise specified.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated