MAJOR REVISION HISTORY:

<table>
<thead>
<tr>
<th>PCB REV.</th>
<th>SCH. REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.6</td>
<td>Initial Draft</td>
<td>03-FEB-2012</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>Release for Alpha Boards</td>
<td>20-MAR-2012</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
<td>Release for Beta Boards</td>
<td>26-JUL-2012</td>
</tr>
<tr>
<td>2.9</td>
<td></td>
<td>Redundant pull-up and termination NU on EMU_TCK</td>
<td>28-NOV-2013</td>
</tr>
</tbody>
</table>

I2C ADDRESS TABLE:

<table>
<thead>
<tr>
<th>REF DES</th>
<th>DESCRIPTION</th>
<th>7 BIT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM1</td>
<td>DSP EEPROM</td>
<td>0x50, 0x51</td>
</tr>
<tr>
<td>U264</td>
<td>ETHERNET EEPROM</td>
<td>0x50</td>
</tr>
</tbody>
</table>

PCB MECHANICAL DETAILS:

1. PCB SIZE: 7.11" x 2.89" x 0.063"
2. PCB MATERIAL: FR4_IT168G
3. NUMBER OF LAYERS: 12
4. IMPEDANCE CONTROL: YES

NOTES, UNLESS OTHERWISE SPECIFIED:

1. RESISTANCE VALUES ARE IN OHMS.
2. CAPACITANCE VALUES ARE IN MICROFARADS.
3. PARTS NOT INSTALLED ARE INDICATED WITH "NU".
4. SIGNAL NET NAMES WITH "#" SUFFIX, ARE ACTIVE LOW SIGNALS.
SCHEMATIC PAGE DESCRIPTION:

01 : COVER PAGE
02 : TABLE OF CONTENTS
03 : SYSTEM BLOCK DIAGRAM
04 : PLACEMENT
05 : POWER CONSUMPTION
06 : POWER SEQUENCE
07 : POWER DISTRIBUTION
08 : CLOCK DIAGRAM
09 : FPGA INTERFACE CONTROL
10 : MANAGEMENT MAP
11 : AMC CONNECTOR
12 : MMC, HYPERLINK COMM
13 : DSP - SERDES PORTS
14 : DSP - DDR3
15 : DDR3 & ECC
16 : DSP - EMIF & JTAG
17 : DSP - MISC
18 : DSP - CLOCK & SMART REFLEX
19 : CLOCK GENERATION
20 : USB - JTAG
21 : GIGABIT ETHERNET
22 : FPGA - POWER, RESET CTRL, McBSP
23 : FPGA - BOOT MODE & SMART REFLEX
24 : DSP - POWER 1
25 : DSP - POWER 2
26 : SMART REFLEX & CORE VOLT
27 : POWER SUPPLY 1
28 : POWER SUPPLY 2
29 : REVISION HISTORY
Power Consumption

<table>
<thead>
<tr>
<th>Components Part No.</th>
<th>Description</th>
<th>Quantity Per Board</th>
<th>Current Consumed by corresponding device on power supply (mA)</th>
<th>Total Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.75V</td>
<td>1.00V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CVDD</td>
<td>CVDD1</td>
</tr>
<tr>
<td>TMS320C6657</td>
<td>CPU</td>
<td>1</td>
<td>2500.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>XC5206A-FFG256C</td>
<td>FPGA</td>
<td>1</td>
<td>125.0</td>
<td></td>
</tr>
<tr>
<td>MT41JU1024M16HA-12S</td>
<td>DDR3 SDRAM</td>
<td>2</td>
<td>50.0</td>
<td>52.0</td>
</tr>
<tr>
<td>MT41JU1024M16HA-12S</td>
<td>DDR3 ECC</td>
<td>0</td>
<td>50.0</td>
<td>525.0</td>
</tr>
<tr>
<td>NAND128M128SA14E</td>
<td>NAND Flash (64/8MB)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT25128B</td>
<td>SPI EEPROM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT2232H</td>
<td>USB to JTAG converter</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08E1112</td>
<td>Ethernet</td>
<td>1</td>
<td>320.0</td>
<td></td>
</tr>
<tr>
<td>M57436</td>
<td>MMC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C05520065</td>
<td>Clock Generator</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XDS60b2</td>
<td>XDS60b2 Mezzanine</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc</td>
<td></td>
<td>1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total Current on individual power supply (mA)</td>
<td></td>
<td></td>
<td>100.00</td>
<td>2500.0</td>
</tr>
<tr>
<td>5% margin added over design (mA)</td>
<td></td>
<td></td>
<td>105.00</td>
<td>2625.0</td>
</tr>
<tr>
<td>Power Consumption in (mW)</td>
<td></td>
<td></td>
<td>18.75</td>
<td>2625.0</td>
</tr>
</tbody>
</table>

Vin

- 3.3V: TPS73701 – 3.3V Aux to 2.5V regulation 372.65 mA
- 3.3V: TPS73701 – 3.3V Aux to 1.8V Aux regulation 330.75 mA
- 3.3V: TPS73701 – 3.3V Aux to 1.8VCC regulation 148.84 mA
- 3.3V: TPS73701 – 3.3V Aux to 1.2V regulation 490.61 mA
- 1.5V: TPS51200 – 1.5V to 0.5V regulation 110.25 mA

Voltage Regulator

- 12V: UCD7242 – 12V to 1V CVDD voltage 243.06 mA
- 12V: UCD7242 – 12V to CVDD1 voltage 97.22 mA
- 12V: TPS54520 – 12V to 1.5V 219.48 mA
- 12V: TPS54520 – 12V to 3.3V AUX 946.70 mA
- 12V: TPS54525 – 12V to 5V 328.13 mA

Total Current at 12V 1.83A
Total Current @ 3.3V AMC 0.65A
Total Power Consumption 22.18W
C6657 Design:

1) CVDD1 should ramp at the same time or shortly following CVDD. Although simultaneous ramping is permitted, CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage.

2) DVD15 supply is ramped up following DVDD18. Although ramping DVDD18 and DVDD15 simultaneously is permitted, DVDD15 must never exceed DVDD18.

3) There is no specific power-up nor power-down sequence defined for FPGA.

4) FPGA is first to come up and it generates ENABLE signal for all power supplies using PGGOOD signals.
Place all SERDES DC-blocking caps on top layer adjacent to the DSP's RX pins so that there are no additional vias.
DDR3 INTERFACE

Notes:
- Place these resistors at the end of the trace.
- 20 mil trace width

DDR3 Slew-Rate Settings (DDRSRATE[1:0]):
- 00 Fastest
- 01 Fast
- 10 Slow
- 11 Slowest
DDR3 MEMORY INTERFACE

- Data bits can be swapped within the byte lane to ease routing.
- Address/Command/Control/Clock routing must be fly-by in byte order ECC, 0, 1, 2, 3.

Supported Memories (96 FBGA) :

<table>
<thead>
<tr>
<th>Mfg</th>
<th>512MB (256MB x 2)</th>
<th>1024MB (512MB x 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron</td>
<td>MT41J128M16HA-125</td>
<td>MT41J256M16RE-125</td>
</tr>
</tbody>
</table>

DDR3 ECC INTERFACE

Supported ECC Chip (96 FBGA) :

<table>
<thead>
<tr>
<th>Mfg</th>
<th>256MB</th>
<th>512MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron</td>
<td>MT41J128M16HA-125</td>
<td>MT41J256M16RE-125</td>
</tr>
</tbody>
</table>
DSP CLOCK

All blocking capacitors to be placed near DSP to keep connecting routes short and minimize vias.

PCI CLOCK MUX

SMART REFLEX
Switch for JTAG emulation
EXT_EMU_DET = 0 --> External / Mezzanine Emulator
EXT_EMU_DET = 1 --> On board emulation

Switch for JTAG emulation
FT2232HL_RESET# = 0 --> AMC
FT2232HL_RESET# = 1 --> Mini USB
If both fiber (SGMII) and copper (1000BASE-X) cables are connected, the preferred media will be selected based on value of register 16_2.11:10. If it is:
- 00: Link with 1st media to establish link
- 01: Prefer fiber media
- 10: Prefer copper media

For EMI

Activity No Activity Activity No Activity Activity No Activity
Status 0 (Green) BLINK SOLID ON BLINK SOLID ON OFF OFF
Status 1 (Orange) OFF OFF BLINK SOLID ON BLINK SOLID ON

Pin to Configuration Bit Mapping

<table>
<thead>
<tr>
<th>PIN</th>
<th>BIT[1]</th>
<th>BIT[0]</th>
<th>VALUE</th>
<th>POL_RST</th>
<th>RESET=0</th>
<th>RESET=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG0</td>
<td>PHYADR[1]</td>
<td>PHYADR[0]</td>
<td>VDD0</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIG3</td>
<td>SEL_WMI</td>
<td>SEL_VTT</td>
<td>VSS</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIG4</td>
<td>EEPROM[1]</td>
<td>EEPROM[0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIG5</td>
<td>MODE[1]</td>
<td>MODE[0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pin Value Connection Interpretation

<table>
<thead>
<tr>
<th>PIN</th>
<th>VALUE</th>
<th>CONNECTION</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG0</td>
<td>00</td>
<td>VSS</td>
<td>PHY Address[1:0] is 00</td>
</tr>
<tr>
<td>CONFIG1</td>
<td>10</td>
<td>STATUS[0]</td>
<td>PHY Address[3:2] is 10</td>
</tr>
<tr>
<td>CONFIG2</td>
<td>01</td>
<td>STATUS[1]</td>
<td>SGMII_CLK not supplied; PHY Address[4] is 1</td>
</tr>
<tr>
<td>CONFIG3</td>
<td>00</td>
<td>VSS</td>
<td>MDC/MDIO mode; S_VTT & F_VTT int supplied</td>
</tr>
<tr>
<td>CONFIG4</td>
<td>01</td>
<td>STATUS[1]</td>
<td>Start reading from address 0</td>
</tr>
<tr>
<td>CONFIG5</td>
<td>10</td>
<td>STATUS[0]</td>
<td>SGMII MAC Int to Auto Media select (Cu/SGMII)</td>
</tr>
</tbody>
</table>
3.3V_AUX to 1.2V Generation

\[\text{Vout} = \frac{R1+R2}{R2} \times 1.204 \]
\[= \frac{10k+10k}{10k} \times 1.204 \]
\[= 1.204\text{V} \]

1.2V @ 0.6A

3.3V_AUX to 1.8V_AUX Generation

\[\text{Vout} = \frac{R1+R2}{R2} \times 1.804 \]
\[= \frac{28k+56.2k}{56.2k} \times 1.804 \]
\[= 1.804\text{V} \]

1.8V_AUX @ 0.31A

3.3V_AUX to 2.5V Generation

\[\text{Vout} = \frac{R1+R2}{R2} \times 2.50 \]
\[= \frac{39.2k+36.5k}{36.5k} \times 2.50 \]
\[= 2.50\text{V} \]

2.5V @ 0.35A

3.3V_AUX to 1.8V Generation

\[\text{Vout} = \frac{R1+R2}{R2} \times 1.804 \]
\[= \frac{28k+56.2k}{56.2k} \times 1.804 \]
\[= 1.804\text{V} \]

1.8V @ 0.14A

3.3V_AUX to 0.75V Generation

\[\text{Vout} = \frac{R1+R2}{R2} \times 0.75 \]
\[= \frac{28k+56.2k}{56.2k} \times 0.75 \]
\[= 0.75\text{V} \]

0.75V @ 0.16A

1.8V Supervisor Circuit

\[\text{Vth} = 1.67\text{V} \]

20 mil trace width
TMDSEVM6657 - REVISION HISTORY

<table>
<thead>
<tr>
<th>PCB REV</th>
<th>SCH. REV</th>
<th>CHANGE DESCRIPTION</th>
<th>DATE</th>
<th>AUTHOR</th>
</tr>
</thead>
</table>
| 1.0 | 0.6 | - CLK3 removed
- Series Termination removed from GPIO0 to GPIO13 lines | 3-FEB-2012 | eInfochips |
| 1.1 | 0.6 | - D9 and D10 part changed with one with higher current capacity.
- R134 changed to 1K from 4.7K.
- NU resistors R433 and R434 changed to 10K and 1.2K resp. They are to be mounted.
- R12 and R17 replaced by 100nF caps C1225 and C1226.
- R70 and R71 mounting status changed from NU to populated.
- U6 (DDR3 ECC chip) made NU.
- DDR3 Clock frequency from Clock Gen changed to 50 MHz (software change only). | 20-MAR-2012 | eInfochips |
| 2.0 | 0.1 | - Clock buffer U1132 removed. 2 OR gates (U268, U269) and the corresponding circuitry to buffer EMU_TCK added.
- 4 Test Points for Gnd added.
- ETH_SCK net renamed to ETH_SDA.
- SIGDET unconnected with LOS; its directly pulled high. R145 and R146 removed
- SYS_PG_D1 LED changed to Yellow colour from Green. | 02-APR-2012 | eInfochips |
| | 0.2 | - 10 nF capacitors (C457 and C460) added on VCC12 input rail of U34.
- Capacitors on CVDD rail optimized from two 220uF, two 100uF and four 47uF to two 100uF and two 47uF.
- Capacitors on VCC10 rail optimized from one 220uF, three 47uF and one 10uF to two 47uF and one 10uF.
- An additional 22uF cap (C549) added on VCC12 input for U29. C426 changed from 10nF to 100nF.
- R183 changed to 1K from 4.7K.
- SIGDET connected to VCC2V5 using R146.
- R1273 changed to 4.7K from 10K. | 02-MAY-2012 | eInfochips |
| | 0.3 | - L15 and L16 changed to 2.3uH and 1.2uH respectively
- R251 and R373 changed to 22.1K.
- C549 moved before B158 on 12V plane
- C2325 changed from 100nF to 10uF.
- R2203 made NU and R1226 to be mounted. | 07-MAY-2012 | eInfochips |
| | 0.4 | - NOR Flash density label corrected to 32 Mb from 16MB. | 20-JUL-2012 | eInfochips |
| | 0.5 | - DISCLAIMER Changed | 26-JUL-2012 | eInfochips |
| | 0.6 | - Asthetical Change
Name swap between LVDS and HCSL on page 18 | 06-DEC-2012 | eInfochips |
| | 0.7 | - Asthetical Change
Note for DDR3 Slew-Rate setting corrected on page 14 | 29-JAN-2013 | eInfochips |
| | 0.8 | - RB2 and RB3 changed to 10K
- R85 and R957 made NU | 22-FEB-2013 | eInfochips |
| | 0.9 | - The Resistors R896, R67 and capacitor C555 are redundant components on EMU_TCK and can be NU from design.
- Pull-up resistor R1119 on EMU_TCK change from 10K to 4.7K. | 28-NOV-2013 | eInfochips |
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.