xWR1642BOOST-ODS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>SHEET NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PROC049B_COVERSHEET</td>
</tr>
<tr>
<td>2</td>
<td>PROC049B_DUT</td>
</tr>
<tr>
<td>3</td>
<td>PROC049B_Decoupling caps</td>
</tr>
<tr>
<td>4</td>
<td>PROC049B_LDO_01 (1.8V Output)</td>
</tr>
<tr>
<td>5</td>
<td>PROC049B_LDO_02 (1.3V Output)</td>
</tr>
<tr>
<td>6</td>
<td>PROC049B_VPP_Supply</td>
</tr>
<tr>
<td>7</td>
<td>PROC049B_Pwr_RST_LEDs</td>
</tr>
<tr>
<td>8</td>
<td>PROC049B_PMIC</td>
</tr>
<tr>
<td>9</td>
<td>PROC049B_QSPI flash section</td>
</tr>
<tr>
<td>10</td>
<td>PROC049B_LPConnector</td>
</tr>
<tr>
<td>11</td>
<td>PROC049B_HD Connector</td>
</tr>
<tr>
<td>12</td>
<td>PROC049B_XDS110 Interface_1A</td>
</tr>
<tr>
<td>13</td>
<td>PROC049B_XDS110 Interface_1B</td>
</tr>
<tr>
<td>14</td>
<td>PROC049B_CAN Interface</td>
</tr>
<tr>
<td>15</td>
<td>PROC049B_SOP selection</td>
</tr>
<tr>
<td>16</td>
<td>PROC049B_Tempsensor</td>
</tr>
<tr>
<td>17</td>
<td>PROC049B_Hardware</td>
</tr>
</tbody>
</table>

Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>ECN #</th>
<th>Approved Date</th>
<th>Approved by</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>22/01/2018</td>
<td>Vivek Dham</td>
<td>Added switch control to move between SPI and CAN interface.</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>22/01/2018</td>
<td>Vivek Dham</td>
<td>Enabled by default the 5V supply from the 60pin HD connector.</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>22/01/2018</td>
<td>Vivek Dham</td>
<td>Enabled by default the SPI and CAN signal connection to J1 connector.</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>22/01/2018</td>
<td>Vivek Dham</td>
<td>Serial falt detection updated to M35012052/F2N0.</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>22/01/2018</td>
<td>Vivek Dham</td>
<td>Added series resistors on I2C lines.</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>13/02/2018</td>
<td>Vivek Dham</td>
<td>Removed the series diode on the NRST signal.</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>23/02/2018</td>
<td>J Quintal</td>
<td>Added Variant 002, U2, PCB Label, revised AWR1642 to xWR1642.</td>
</tr>
</tbody>
</table>

© Texas Instruments 2018

Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not warrant that the design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.
OPTIONS FOR INTERNAL DEBUG ONLY

SUPPLY_DECOUPLING_CAPS
Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not warrant that the design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

Sheet Title: VPP SUPPLY LDO

Sheet: 1 of 1

File: http://www.ti.com/support

Design Title: PIC8501

Orderable: AWR1642BOOST-ODS

Drawing By: Vivek Dham

Engineer: Vivek Dham

TID #: N/A

Description: PIC8501

Specifications: PIC8501

Revision: B

Revision Date: 4/17/2018

Copyright 2018 Texas Instruments

http://www.ti.com

http://www.ti.com

Terms of Use: Texas Instruments and its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and its licensors do not warrant that the design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

Sheet Title: VPP SUPPLY LDO

Sheet: 1 of 1

File: http://www.ti.com/support

Design Title: PIC8501

Orderable: AWR1642BOOST-ODS

Drawing By: Vivek Dham

Engineer: Vivek Dham

TID #: N/A

Description: PIC8501

Specifications: PIC8501

Revision: B

Revision Date: 4/17/2018

Copyright 2018 Texas Instruments

http://www.ti.com

http://www.ti.com
CONTROLS FOR THE PMIC

THE 3V3 OUTPUT FROM PMIC IS USED AS PGOOD.

SNUBBER ON SWITCHING NODES

Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

Texas Instruments and/or its licensors do not warrant that this design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.
DXS110(1/2)

BY DEFAULT THE XDS SUPPLY IS DISABLED.
GETS ENABLED ONLY ONCE THE PMIC IS POWERED UP.
CAN INTERFACE

MUX BETWEEN SPI AND CAN INTERFACE
SOP HEADERS

- SOP_MODE1 = "000" SCAN/ATPG
- SOP_MODE2 = "011" DEV/FLED/DRB
- SOP_MODE3 = "000" TED
- SOP_MODE4 = "000" CAN_article "DEFAULT VALUE FOR OUTPUTS"
- SOP_MODE5 = "000" DEV MANAGEMENT -> FOR FLASHING

Notes:
- Texas Instruments and/or its licensors do not warrant the accuracy or completeness of this specification or any information contained therein. Texas Instruments and/or its licensors do not warrant that this design will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Texas Instruments and/or its licensors do not warrant that the design is production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.
- This schematic and its associated text is not in version control.
- SVN Rev: PROC049B_SOP...
ONBOARD TEMP SENSORS

DEFAULT I2C ADDRESS 0X49
AND MMWAVE DEVICE
TEMP SENSOR AWAY FROM PMIC

DEFAULT I2C ADDRESS 0X48
TEMP SENSOR CLOSE TO PMIC
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated