TS5A6542

0.75- Ω SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

Check for Samples: TS5A6542

FEATURES

- Specified Break-Before-Make Switching
- Low ON-State Resistance (0.75Ω Max)
- Control Inputs Referenced to V_{10}
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 2.25-V to 5.5-V Power Supply (V_{+})
- 1.65-V to 1.95-V Logic Supply (V_{I})
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 4000-V Human-Body Model
(A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- 400-V Machine Model (A115-A)
- COM Port to GND
- 8000-V Human-Body Model
(A114-B, Class II)
- $\pm 15-k V$ Contact Discharge (IEC 61000-4-2)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation

> YZP PACKAGE
(BOTTOM VIEW)

V_{10}	(1)4 5 (2)	V_{+}
NC		IN
GND	(8)27 $7^{(8)}$	COM
NO	(A1) 18 (a)	GND

DESCRIPTION/ORDERING INFORMATION

The TS5A6542 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 2.25 V to 5.5 V. The device offers a low ON-state resistance with an excellent channel-to-channel ON-state resistance matching, and the break-before-make feature to prevent signal distorion during the transferring of a signal from one path to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.
The TS5A6542 has a separate logic supply pin $\left(\mathrm{V}_{\mathrm{IO}}\right)$ that is characterized to operate from 1.65 V to 1.95 V . V_{10} powers the control circuitry, which allows the TS5A6542 to be controlled by 1.8-V signals.

Table 1. ORDERING INFORMATION ${ }^{(1)}$

TA	PACKAGE ${ }^{(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING ${ }^{(3)}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) 0.23-mm Large Bump - YZP (Pb-free)	Tape and reel	TS5A6542YZPR	_ _ _ JH7

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(3) YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \bullet=\mathrm{Pb}-\mathrm{free}$).

SUMMARY OF CHARACTERISTICS ${ }^{(1)}$

Configuration	2:1 Multiplexer/Demultiplexer ($1 \times$ SPDT)
Number of channels	1
ON-state resistance ($r_{\text {on }}$)	0.75Ω max
ON-state resistance match ($\Delta r_{\text {on }}$)	0.1Ω max
ON-state resistance flatness ($\mathrm{r}_{\text {on(flat) }}$)	0.1Ω max
Turn-on/turn-off time (ton/toff)	$25 \mathrm{~ns} / 20 \mathrm{~ns}$
Charge injection (Q_{C})	15 pC
Bandwidth (BW)	43 MHz
OFF isolation ($\mathrm{O}_{\text {ISO }}$)	-63 dB at 1 MHz
Crosstalk ($\mathrm{X}_{\text {TALK }}$)	-63 dB at 1 MHz
Total harmonic distortion (THD)	0.004\%
Leakage current ($\left.\mathrm{l}_{\mathrm{NO}(\mathrm{OFF})} / \mathrm{l}_{\mathrm{NC}(\mathrm{OFF})}\right)$	20 nA
Package option	8-pin WCSP

(1) $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)(2)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\begin{aligned} & \mathrm{V}_{+} \\ & \mathrm{V}_{10} \end{aligned}$	Supply voltage range ${ }^{(3)}$		-0.5	6.5	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(3)(4)(5)}$		-0.5	$\mathrm{V}_{+}+0.5$	V
I/OK	Analog port diode current ${ }^{(6)}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$ or $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}>\mathrm{V}_{+}$	-50	50	mA
I_{NC}	On-state switch current	$\mathrm{V}_{\mathrm{NO},} \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}	-450	450	mA
$\begin{array}{\|l} I_{\text {NO }} \\ I_{\text {COM }} \\ \hline \end{array}$	On-state peak switch current ${ }^{(7)}$		-700	700	
V_{1}	Digital input voltage range ${ }^{(3)}{ }^{(4)}$		-0.5	6.5	V
I_{IK}	Digital input clamp current	$\mathrm{V}_{1}<0$	-50		mA
$\begin{array}{\|l\|} \hline I_{+} \\ I_{\mathrm{GND}} \end{array}$	Continuous current through V_{+}or GND		-100	100	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) All voltages are with respect to ground, unless otherwise specified.
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(5) This value is limited to 5.5 V maximum.
(6) Requires clamp diodes on analog port to V_{+}
(7) Pulse at 1 -ms duration $<10 \%$ duty cycle

THERMAL IMPEDANCE RATINGS

$\theta_{\text {JA }}$	Package thermal impedance ${ }^{(1)}$	YZP package		

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at $\mathrm{V}_{1 \mathrm{O}}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY ${ }^{(1)}$ (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 18 \end{aligned}$	$25^{\circ} \mathrm{C}$	5 V	1	12.5	25	ns
				Full	4.5 V			30	
Turn-off time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 18	$25^{\circ} \mathrm{C}$	5 V	1	9.5	20	ns
				Full	4.5 V			25	
Break-before-make time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 19	$25^{\circ} \mathrm{C}$	5 V	1	5	10	ns
				Full	4.5 V	1		12	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	5 V		15		pC
NO OFF capacitance	$\mathrm{C}_{\text {NO(OFF) }}$	$\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or GND, }$ Switch OFF,	See Figure 17	$25^{\circ} \mathrm{C}$	5 V		37		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or }$ GND, Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	5 V		130		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	5 V		130		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	5 V		6.5		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 20	$25^{\circ} \mathrm{C}$	5 V		43		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 21	$25^{\circ} \mathrm{C}$	5 V		-63		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 22	$25^{\circ} \mathrm{C}$	5 V		-63		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ $\text { See Figure } 24$	$25^{\circ} \mathrm{C}$	5 V		$\begin{array}{r} 0.00 \\ \hline \end{array}$		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or GND		$25^{\circ} \mathrm{C}$	5.5 V		5.5	100	nA
				Full				750	

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{aligned} & \mathrm{V}_{\text {COM }}, \\ & \mathrm{V}_{\mathrm{NO}} \end{aligned}$					0		V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	3 V		0.75	0.9	Ω
				Full				1.2	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V}$, Switch ON , $I_{\text {сом }}=-100 \mathrm{~mA}, \quad$ See Figure 14		$25^{\circ} \mathrm{C}$	3 V		0.1	0.15	Ω
				Full				0.15	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$0 \leq\left(V_{\mathrm{NO}}\right.$ or $\left.\mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}$, Switch ON, $\mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}$, See Figure 14		$25^{\circ} \mathrm{C}$	3 V	0.2			Ω
		V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2 \mathrm{~V}$, Switch ON , $\mathrm{I}_{\text {сом }}=-100 \mathrm{~mA}, \quad$ See Figure 14		$25^{\circ} \mathrm{C}$			0.1	0.3	
				Full				0.3	
		$\mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V}$,		$25^{\circ} \mathrm{C}$		-20	2	20	
NO, NC OFF leakage current	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}}$ (OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\text { Open, } \\ & \mathrm{or}_{\mathrm{N}} \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, 1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\text { Open, } \end{aligned}$	Switch OFF, See Figure 15	Full	3.6 V	-50		50	nA
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { and } \mathrm{V}_{\mathrm{COM}}=\text { Open, } \\ & o r \\ & \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V}, 3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { and } \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V	-10	2	10	nA
				Full		-30		30	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { and } \mathrm{V}_{\mathrm{NC}}=\text { Open, } \\ & \mathrm{or}^{\mathrm{V}} \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { and } \mathrm{V}_{\mathrm{NC}}=\text { Open, } \end{aligned}$	See Figure 16	$25^{\circ} \mathrm{C}$	3.6 V	-10	2	10	nA
				Full		-30		30	
Digital Control Input (IN) ${ }^{(2)}$									
Input logic high	V_{IH}	$\mathrm{V}_{10}=1.65 \mathrm{~V}$ to 1.95 V		Full		$\begin{array}{r} 0.65 \\ \times V_{10} \end{array}$		V_{10}	V
Input logic low	VIL	$\mathrm{V}_{10}=1.65 \mathrm{~V}$ to 1.95 V		Full		0		$\begin{array}{r} 0.35 \\ \times V_{10} \\ \hline \end{array}$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V	-2		2	nA
				Full		-20		20	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at $\mathrm{V}_{1 \mathrm{O}}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY ${ }^{(1)}$ (continued)

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, }$ See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V	5	15	30	ns
				Full	3 V	3		35	
Turn-off time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$$\text { See Figure } 18$	$25^{\circ} \mathrm{C}$	3.3 V	1	9	20	ns
				Full	3 V	1		25	
Break-before-make time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 19	$25^{\circ} \mathrm{C}$	3.3 V	1	8	13	ns
				Full	3 V	1		15	
Charge injection	Qc	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	3.3 V		6.5		pC
NO OFF capacitance	$\mathrm{C}_{\text {NO(OFF) }}$	$\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V		38		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V		133		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V		133		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V		6.5		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{Switch} \mathrm{ON}, \end{aligned}$	See Figure 20	$25^{\circ} \mathrm{C}$	3.3 V		42		MHz
OFF isolation	OISO	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 21	$25^{\circ} \mathrm{C}$	3.3 V		-63		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 22	$25^{\circ} \mathrm{C}$	3.3 V		-63		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \\ & \mathrm{kHz}, \\ & \text { See Figure } 24 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.3 V		$\begin{array}{r} 0.00 \\ 4 \end{array}$		\%
Supply									
Positive supply current	I_{+}	$V_{1}=V_{10} \text { or } G N D$		$25^{\circ} \mathrm{C}$	3.6 V		10	50	nA
				Full				300	

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=2.25 \mathrm{~V}$ to $2.75 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP MAX	UNIT
Analog Switch								
Analog signal range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}} \end{aligned}$					0	V_{+}	V
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.25 V		11.3	Ω
				Full			1.6	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & 0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.25 V		0.150 .2	Ω
				Full			0.2	
ON-state resistance flatness	$r_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(V_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$	2.25 V	0.5		Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1 \mathrm{~V}, \\ & 1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 14	$25^{\circ} \mathrm{C}$			0.250 .5	
				Full			0.6	
		$\mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V}$,		$25^{\circ} \mathrm{C}$		-20	220	
NO, NC OFF leakage current	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}}$ (OFF)	$\mathrm{V}_{\mathrm{NC}}=$ Open, or $\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=2.2 \mathrm{~V}, 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\text { Open, } \end{aligned}$	Switch OFF, See Figure 15	Full	2.75 V	-50	50	nA
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { and } \mathrm{V}_{\mathrm{COM}}=\mathrm{Open}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=2.2 \mathrm{~V}, 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { and } \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	2.75 V	-10	210	nA
				Full		-20	20	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	$\mathrm{V}_{\text {сом }}=0.5 \mathrm{~V} \text {, }$ V_{NO} and $\mathrm{V}_{\mathrm{NC}}=$ Open, or $\mathrm{V}_{\text {Сом }}=2.2 \mathrm{~V} \text {, }$ V_{NO} and $\mathrm{V}_{\mathrm{NC}}=$ Open,	Switch ON, See Figure 16	$25^{\circ} \mathrm{C}$	2.75 V	-10	210	nA
				Full		-20	20	
Digital Control Input (IN) ${ }^{(2)}$								
Input logic high	V_{IH}	$\mathrm{V}_{\mathrm{IO}}=1.65 \mathrm{~V}$ to 1.95 V		Full		$\begin{array}{r} 0.65 \\ \times V_{10} \\ \hline \end{array}$	V_{10}	V
Input logic low	VIL	$\mathrm{V}_{\mathrm{IO}}=1.65 \mathrm{~V}$ to 1.95 V		Full		0	$\begin{array}{r} 0.35 \\ \times V_{10} \end{array}$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or 0		$25^{\circ} \mathrm{C}$	2.75 V	-2	2	nA
				Full		-20	20	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY ${ }^{(1)}$ (continued)

$\mathrm{V}_{+}=2.25 \mathrm{~V}$ to $2.75 \mathrm{~V}, \mathrm{~V}_{10}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, }$ See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V	5	20	35	ns
				Full	2.25 V	5		40	
Turn-off time	$t_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 18 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V	2	10	20	ns
				Full	2.25 V	2		25	
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 19 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V	1	11	20	ns
				Full	2.25 V	1		25	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 23	$25^{\circ} \mathrm{C}$	2.5 V		5		pC
NO OFF capacitance	$\mathrm{C}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or GND, } \\ & \text { Switch OFF, } \end{aligned}$	See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		38		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		135		pF
COM ON capacitance	$\mathrm{C}_{\text {Com(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		135		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or GND,	See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V		6.5		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch } \mathrm{ON}, \end{aligned}$	See Figure 20	$25^{\circ} \mathrm{C}$	2.5 V		40		MHz
OFF isolation	$\mathrm{O}_{\text {ISo }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V		-63		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 22	$25^{\circ} \mathrm{C}$	2.5 V		-63		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \\ & \mathrm{kHz}, \\ & \text { See Figure } 24 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		$\begin{array}{r} 0.00 \\ 8 \end{array}$		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}_{10}$ or GND		$25^{\circ} \mathrm{C}$	2.75 V		10	25	nA
				Full				100	

TYPICAL PERFORMANCE

Figure 1. $\mathrm{r}_{\text {on }} \mathrm{vs} \mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=2.5 \mathrm{~V}\right)$

Figure 3. r_{on} vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 5. I_{+}vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 2. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {сом }}\left(\mathrm{V}_{+}=3.3 \mathrm{~V}\right)$

Figure 4. Leakage Current vs Temperature ($\mathrm{V}_{+}=5 \mathrm{~V}$)

Figure 6. Charge Injection $\left(\mathbf{Q}_{\mathrm{C}}\right)$ vs $\mathrm{V}_{\mathrm{COM}}$

TYPICAL PERFORMANCE (continued)

Figure 7. $\mathrm{t}_{\mathrm{oN}} / \mathrm{t}_{\mathrm{OFF}}$ vs Supply Voltage

Figure 9. Gain vs Frequency ($\mathrm{V}_{+}=5 \mathrm{~V}$)

Figure 11. OFF Isolation vs Frequency $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 8. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$ vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 10. Crosstalk vs Frequency ($\mathrm{V}_{+}=5 \mathrm{~V}$)

Figure 12. Total Harmonic Distortion vs Frequency ($\mathrm{V}_{+}=2.5 \mathrm{~V}$)

TYPICAL PERFORMANCE (continued)

PARAMETER MEASUREMENT INFORMATION

Channel ON $\mathrm{r}_{\text {On }}=\frac{\mathrm{V}_{\mathrm{COM}}-\mathrm{V}_{\mathrm{NO}}}{\mathrm{I}_{\mathrm{COM}}} \boldsymbol{\Omega}$ $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} l

Figure 14. ON-State Resistance (r_{on})

Figure 15. OFF-State Leakage Current ($\left.\mathrm{I}_{\mathrm{COM}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{COM}(\mathrm{PWROFF})}, \mathrm{I}_{\mathrm{NC}(\mathrm{PWR}(\mathrm{FF})}\right)$

Figure 16. ON-State Leakage Current ($\left.\mathrm{I}_{\mathrm{COM}(\mathrm{ON})}, \mathrm{I}_{\mathrm{NC}(\mathrm{ON})}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 17. Capacitance ($\left.\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\mathrm{COM(OFF)}}, \mathrm{C}_{\mathrm{COM(ON)}}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}\right)$

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 18. Turn-On (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

PARAMETER MEASUREMENT INFORMATION (continued)

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 19. Break-Before-Make Time ($\mathrm{t}_{\text {ввм }}$)

Figure 20. Bandwidth (BW)

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 21. OFF Isolation ($\mathrm{O}_{\mathrm{IsO}}$)

Figure 22. Crosstalk ($\mathrm{X}_{\text {taLK }}$)

PARAMETER MEASUREMENT INFORMATION (continued)

(1) C_{L} includes probe and jig capacitance.
(2) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.

Figure 23. Charge Injection (Q_{C})

(1) C_{L} includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS5A6542YZPR	ACTIVE	DSBGA	YZP	8	3000	RoHS \& Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	JHN	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TS5A6542YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A6542YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

