Technical documentation

Design \& development

TS3A24159 0.3- Ω 2-Channel SPDT Bidirectional Analog Switch Dual-Channel 2:1 Multiplexer and Demultiplexer

1 Features

- Specified break-before-make switching
- Low ON-state resistance (0.3Ω maximum)
- Low charge injection
- Excellent ON-state resistance matching
- Low total harmonic distortion (THD)
- $1.65-\mathrm{V}$ to $3.6-\mathrm{V}$ single-supply operation
- Control inputs are $1.8-\mathrm{V}$ logic compatible
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD performance tested per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)

2 Applications

- Cell phones
- Personal digital assistant (PDAs)
- Portable instrumentation
- Audio and video signal routing
- Low-voltage data-acquisition systems
- Communication circuits
- Modems
- Hard drives
- Computer peripherals
- Wireless terminals and peripherals

Functional Block Diagram

Table of Contents

1 Features. 1
8.2 Functional Block Diagram 18
2 Applications 1
3 Description
4 Revision History 2
5 Pin Configuration and Functions. 3
6 Specifications 5
6.1 Absolute Maximum Ratings 5
6.2 ESD Ratings 5
6.3 Recommended Operating Conditions.5
6.4 Thermal Information 6
6.5 Electrical Characteristics for 3-V Supply 6
6.6 Electrical Characteristics for 2.5-V Supply7
6.7 Electrical Characteristics for 1.8-V Supply. 9
6.8 Switching Characteristics for a 3-V Supply 10
6.9 Switching Characteristics for a $2.5-\mathrm{V}$ Supply 10
6.10 Switching Characteristics for a $1.8-\mathrm{V}$ Supply 11
6.11 Typical Characteristics. 12
7 Parameter Measurement Information 14
8 Detailed Description 18
8.1 Overview 18
8.3 Feature Description 18
8.4 Device Functional Modes. 18
9 Application and Implementation. 19
9.1 Application Information 19
9.2 Typical Application 19
10 Power Supply Recommendations 20
11 Layout 21
11.1 Layout Guidelines 21
11.2 Layout Example 21
12 Device and Documentation Support 22
12.1 Documentation Support 22
12.2 Receiving Notification of Documentation Updates. 22
12.3 Support Resources 22
12.4 Trademarks 22
12.5 Electrostatic Discharge Caution 22
12.6 Glossary 22
13 Mechanical, Packaging, and Orderable Information 22

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision G (February 2022) to Revision H (August 2022) Page

- Changed the maximum V_{CC} from: 3.6 V to: 4 V 5
Changes from Revision F (September 2019) to Revision G (February 2022) Page
- Updated the numbering format for tables, figures, and cross-references throughout the document.1
- Updated the part number in the Detailed Design Procedure 20
Changes from Revision E (March 2019) to Revision F (September 2019) Page
- Changed the YZP package image view From: Top-Through View To: Bottom View 3
Changes from Revision D (July 2015) to Revision E (March 2019) Page
- Changed the YZP package image and deleted the YZP Package, Terminal Assignments table 3
- Changed Turnon time V_{Cc} (Full) value From: 2.3 V to 2.7 V To: 2.7 V to 3.6 V in Switching Characteristics for a 3-V Supply 10
- Changed Turnon time V_{CC} (Full) value From: 2.3 V to 2.7 V To: 2.7 V to 3.6 V in Switching Characteristics for a 2.5-V Supply 10
Changes from Revision C (February 2008) to Revision D (March 2015) Page
- Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, DeviceFunctional Modes, Application and Implementation section, Power Supply Recommendations section, Layoutsection, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Informationsection1
- Changed $\mathrm{V}+$ to V_{CC} throughout the document to meet JEDEC standards 1

5 Pin Configuration and Functions

Figure 5-1. DGS Package, 10-Pin VSSOP (Top View)

Figure 5-2. DRC Package, 10-Pin VSON (Top View)

Table 5-1. Pin Functions - VSSOP and VSON

PIN		TYPE $^{(1)}$	
NO.	NAME		
1	VCCRIPTION		
2	NO1	I/O	Power supply
3	COM1	I/O	Common signal path
4	IN1	I	Digital control to connect COM to NO or NC
5	NC1	I/O	Normally closed signal path
6	GND	-	Ground
7	NC2	I/O	Normally closed signal path
8	IN2	I	Digital control to connect COM to NO or NC
9	COM2	I/O	Common signal path
10	NO2	I/O	Normally open signal path

(1) I = input, O = output

Figure 5-3. YZP Package, 10-Pin DSBGA (Bottom View)

	Legend
Input or Output	Input
Ground	Power

Table 5-2. Pin Functions - DSBGA

PIN		TYPE $^{(1)}$	
NO.	NAME		
A1	NESCRIPTION	I/O	Normally closed signal path
A2	GND	-	Ground
A3	NC2	I/O	Normally closed signal path
B1	IN1	I	Digital control to connect COM to NO or NC
B3	IN2	I	Digital control to connect COM to NO or NC
C1	COM1	I/O	Common signal path
C3	COM2	I/O	Common signal path
D1	NO1	I/O	Normally open signal path
D2	VCC	-	Power supply
D3	NO2	I/O	Normally open signal path

(1) I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
V_{Cc}	Supply voltage ${ }^{(3)}$		-0.5	4	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Signal voltage ${ }^{(3)}{ }^{(4)}$		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
l/OK	Analog port diode current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$	-50	50	mA
I_{NC}	ON-state switch current		-300	300	
Iсом	ON-state peak switch current ${ }^{(5)}$		-500	500	ma
$\mathrm{V}_{\text {IN }}$	Digital input voltage		-0.5	3.6	V
I_{IK}	Digital input clamp current ${ }^{(3)}$	$\mathrm{V}_{1}<0$	-50		mA
I_{CC}	Continuous current through V_{CC}			100	mA
$\mathrm{I}_{\text {GND }}$	Continuous current through GND		-100		mA
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(3) All voltages are with respect to ground, unless otherwise specified.
(4) This value is limited to 5.5 V maximum.
(5) Pulse at $1-\mathrm{ms}$ duration $<10 \%$ duty cycle.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	2000	
$V_{\text {(ESD) }}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ${ }^{(2)}$	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply Voltage	1.65	3.6	V
$\mathrm{~V}_{\mathrm{NC}}$	Signal Voltage	0	V_{CC}	V
V_{NO}				
$\mathrm{V}_{\mathrm{COM}}$		0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IN}	Digital Input Voltage	0		

TS3A24159
www.ti.com

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TS3A24159			UNIT
		DGS (VSSOP)	DRC (VSON)	YZP (DSBGA)	
		10 PINS	10 PINS	10 PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	154	49.4	90.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	37.9	71.2	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	83.6	23.8	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	1.4	2.2	3.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	82.2	23.8	8.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	N/A	6.1	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics for 3-V Supply

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{Cc}	MIN	TYP MAX	UNIT
ANALOG SWITCH								
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0	V_{CC}	V
Peak ON resistance	$\mathrm{r}_{\text {peak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.7 V		$0.2 \quad 0.3$	Ω
				Full			0.35	
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.7 V		$0.26 \quad 0.3$	Ω
				Full			0.34	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.7 V		0.010 .05	Ω
				Full			0.05	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, 0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-100 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1 Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.7 V	0.13		Ω
				$25^{\circ} \mathrm{C}$			0.010 .04	Q
				Full			0.05	Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \end{aligned}$	Switch OFF, See Figure 7-2	$25^{\circ} \mathrm{C}$	3.6 V	-10	10	nA
				Full		-50	50	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7-3	$25^{\circ} \mathrm{C}$	3.6 V	-10	10	nA
				Full		-100	100	
COM ON leakage current	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\text { Open, } \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \end{aligned}$	Switch ON, See Figure 7-3	$25^{\circ} \mathrm{C}$	3.6 V	-10	10	nA
				Full		-100	100	

DIGITAL CONTROL INPUTS (IN1, IN2) ${ }^{(2)}$

Input logic high	V_{IH}		Full		1.4			V
Input logic low	$\mathrm{V}_{\text {IL }}$		Full				0.5	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{I}}=3.6 \mathrm{~V}$ or 0	$25^{\circ} \mathrm{C}$	3.6 V	-40	5	40	nA
			Full		-50		50	

6.5 Electrical Characteristics for 3-V Supply (continued)

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{cc}	MIN TYP MAX	UNIT
DYNAMIC							
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ & \text { See Figure } \\ & 7-10 \end{aligned}$	$25^{\circ} \mathrm{C}$	3 V	9	pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND , Switch OFF,	See Figure 7-4	$25^{\circ} \mathrm{C}$	3 V	90	pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND, Switch ON,	See Figure 7-4	$25^{\circ} \mathrm{C}$	3 V	224	pF
COM ON capacitance	$\mathrm{C}_{\text {Com(ON) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \text { Switch ON, } \end{aligned}$	See Figure 7-4	$25^{\circ} \mathrm{C}$	3 V	250	pF
Digital input capacitance	C_{1}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	See Figure 7-4	$25^{\circ} \mathrm{C}$	3 V	2	pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{Switch} \mathrm{ON}, \end{aligned}$	See Figure 7-7	$25^{\circ} \mathrm{C}$	3 V	23	MHz
OFF isolation	$\mathrm{O}_{\text {ISo }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-8	$25^{\circ} \mathrm{C}$	3 V	-72	dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-9	$25^{\circ} \mathrm{C}$	3 V	-96	dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } \\ & 7-11 \end{aligned}$	$25^{\circ} \mathrm{C}$	3 V	0.003\%	
SUPPLY							
Positive supply current	I_{cc}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND		$25^{\circ} \mathrm{C}$	3.6 V	15100	nA
				Full		1	$\mu \mathrm{A}$

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{Cc} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs.

6.6 Electrical Characteristics for 2.5-V Supply

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{cc}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{CC}	V
Peak ON resistance	$\mathrm{r}_{\text {peak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.3 V			0.35	Ω
				Full				0.45	
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.3 V				Ω
				Full				0.4	
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.8 \mathrm{~V}, 0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.3 V		0.01	0.05	Ω
				Full			0.05	0.05	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	2.3 V		0.05		Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 1.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{com}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$			0.03	0.08	
				Full				0.1	
NC, NO OFF leakage current	$I_{\text {NC(OFF), }}$ I_{NO} (OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2.2 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, \end{aligned}$	Switch OFF, See Figure 7-2	$25^{\circ} \mathrm{C}$	2.7 V	-10		10	nA
				Full		-50		50	

TS3A24159

6.6 Electrical Characteristics for 2.5-V Supply (continued)

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{Cc}	MIN	TYP	MAX	UNIT
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON}),}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open, or V_{NC} or $\mathrm{V}_{\mathrm{NO}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ Open,	Switch ON, See Figure 7-3	$25^{\circ} \mathrm{C}$	2.7 V	-10		10	nA
				Full		-100		100	
ANALOG SWITCH (continued)									
COM ON leakage current	$\mathrm{I}_{\mathrm{COM}(\mathrm{ON})}$	V_{NC} or or V_{NC} or		$25^{\circ} \mathrm{C}$	2.7 V	-10		10	nA
				Full		-100		100	
DIGITAL CONTROL INPUTS (IN1, IN2) ${ }^{(2)}$									
Input logic high	$\mathrm{V}_{\text {IH }}$			Full		1.25			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				0.5	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V	-4	5	40	$n A$
				Full		-50		50	
DYNAMIC									
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure $7-10$	$25^{\circ} \mathrm{C}$	2.5 V		8		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND , Switch OFF,	See Figure 7-4	$25^{\circ} \mathrm{C}$	2.5 V		90		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND , Switch ON,	See Figure 7-4	$25^{\circ} \mathrm{C}$	2.5 V		250		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{CC}} \text { or GND, }$ Switch ON,	See Figure 7-4	$25^{\circ} \mathrm{C}$	2.5 V		250		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	See Figure 7-4	$25^{\circ} \mathrm{C}$	2.5 V		2		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ Switch ON,	See Figure 7-7	$25^{\circ} \mathrm{C}$	2.5 V		23		MHz
OFF isolation	OISO	$\begin{aligned} & R_{L}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-8	$25^{\circ} \mathrm{C}$	2.5 V		-72		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{L}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-9	$25^{\circ} \mathrm{C}$	2.5 V		-96		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \\ & \mathrm{kHz}, \\ & \text { See Figure } \\ & 7-11 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		03\%		
SUPPLY									
Positive supply current	$I_{\text {cc }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}$ or GND		Full	2.7 V		10 700	100	nA

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
(2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.7 Electrical Characteristics for 1.8-V Supply

$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{cc}	MIN	TYP	MAX	UNIT
ANALOG SWITCH									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM},}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{cc}	V
Peak ON resistance	$\mathrm{r}_{\text {peak }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	1.65 V		0.4	0.7	Ω
				Full				0.8	
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	1.65 V		0.3	0.45	Ω
				Full				0.5	
ANALOG SWITCH (continued)									
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	1.65 V		0.02	0.04	Ω
				Full				0.05	
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{COM}}=-2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$	1.65 V	0.13			Ω
			Switch ON, See Figure 7-1	$25^{\circ} \mathrm{C}$			0.08	0.15	
				Full				0.2	
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.65 \mathrm{~V}, \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \end{aligned}$	Switch OFF, See Figure 7-2	$25^{\circ} \mathrm{C}$	1.95	-10		10	nA
				Full		-50		50	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7-3	$25^{\circ} \mathrm{C}$	1.95 V	-10		10	nA
				Full		-100		100	
COM ON leakage current	$\mathrm{I}_{\text {Com(ON }}$	```V or \mp@subsup{V}{NC}{}}\mathrm{ or }\mp@subsup{\textrm{V}}{\textrm{NO}}{}=\mathrm{ Open, }\mp@subsup{\textrm{V}}{\textrm{COM}}{}=1.65\textrm{V}\mathrm{ ,```	Switch ON, See Figure 7-3	$25^{\circ} \mathrm{C}$	1.95 V	-10		10	nA
				Full		-100		100	

DIGITAL CONTROL INPUTS (IN1, IN2) ${ }^{(2)}$

Input logic high	V_{IH}			Full		1		V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full			0.4	V
Input leakage				$25^{\circ} \mathrm{C}$		-40 5	40	,
current		. 5 V or		Full		-50	50	
DYNAMIC								
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 7-10	$25^{\circ} \mathrm{C}$	1.8 V	5		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND , Switch OFF,	See Figure 7-4	$25^{\circ} \mathrm{C}$	1.8 V	90		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}$ or GND , Switch ON,	See Figure 7-4	$25^{\circ} \mathrm{C}$	1.8 V	250		pF
COM ON capacitance	$\mathrm{C}_{\text {Com(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{CC}}$ or GND, Switch ON,	See Figure 7-4	$25^{\circ} \mathrm{C}$	1.8 V	250		pF
Digital input capacitance	$\mathrm{Cl}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}$ or GND,	See Figure 7-4	$25^{\circ} \mathrm{C}$	1.8 V	2		pF
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 7-7	$25^{\circ} \mathrm{C}$	1.8 V	23		MHz
OFF isolation	$\mathrm{O}_{\text {Iso }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-8	$25^{\circ} \mathrm{C}$	1.8 V	-73		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	See Figure 7-9	$25^{\circ} \mathrm{C}$	1.8 V	-97		dB

SCDS238H - MARCH 2007 - REVISED AUGUST 2022

6.7 Electrical Characteristics for 1.8-V Supply (continued)

$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.8 Switching Characteristics for a 3-V Supply

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		TA	V_{cc}	MIN	TYP	MAX	UNIT
Dynamic									
Turnon time	t_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.0 V		20	35	
				Full	$\begin{gathered} 2.7 \mathrm{~V} \\ \text { to } \\ 3.6 \mathrm{~V} \end{gathered}$			40	ns
Turnoff time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.0 V		12	25	
				Full	$\begin{gathered} 2.7 \mathrm{~V} \\ \text { to } \\ 3.6 \mathrm{~V} \end{gathered}$			30	ns
Break-beforemake time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-6 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.0 V	1	10	25	ns
				Full	$\begin{gathered} 2.7 \mathrm{~V} \\ \text { to } \\ 3.6 \mathrm{~V} \end{gathered}$	0.5		30	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

6.9 Switching Characteristics for a 2.5-V Supply

$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted) ${ }^{(1)}$

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{cc}	MIN	TYP	MAX	UNIT
Dynamic									
Turnon time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		23	45	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$			50	
Turnoff time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		17	27	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$			30	
Break-beforemake time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-6 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V	2	14	30	ns
				Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	1		35	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

6.10 Switching Characteristics for a 1.8-V Supply

PARAMETER		TEST CONDITIONS		TA	V_{cc}	MIN	TYP	MAX	UNIT
Dynamic									
Turnon time	t_{ON}	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		53	75	
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.96 \mathrm{~V} \end{gathered}$			80	ns
Turnoff time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 7-5 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		24	35	
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.96 \mathrm{~V} \end{gathered}$			40	ns
Break-beforemake time	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure 7-6 } \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V	2	30	40	ns
				Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.96 \mathrm{~V} \end{gathered}$	1		50	

[^0]
6.11 Typical Characteristics

6.11 Typical Characteristics (continued)

7 Parameter Measurement Information

Figure 7-1. ON-State Resistance

OFF-State Leakage Current
Channel OFF
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}

Figure 7-2. OFF-State Leakage Current (I $\left.\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NC}(\mathrm{PWROFF})}, \mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{NO}(\mathrm{PWROFF})}, \mathrm{I}_{\mathrm{COM}(\mathrm{OFF})}, \mathrm{I}_{\mathrm{COM}(\mathrm{PWROFF})}\right)$

ON-State Leakage Current
Channel ON
$\mathbf{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$

Figure 7-3. ON-State Leakage Current (ICOM(ON), $\left.I_{\mathrm{NC}(\mathrm{ON})}, I_{\mathrm{NO}(\mathrm{ON})}\right)$

$V_{\text {BIAS }}=V_{C C}$ or GND and
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
Capacitance is measured at NO, COM, and IN inputs during ON and OFF conditions.

Figure 7-4. Capacitance $\left.\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

A. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 7-5. Turn-On (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

A. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
B. $\quad C_{L}$ includes probe and jig capacitance.

Figure 7-6. Break-Before-Make Time ($\mathbf{t}_{\text {BBM }}$)

Figure 7-7. Bandwidth (BW)

Figure 7-8. OFF Isolation ($\mathrm{O}_{\mathrm{Iso}}$)

Channel ON: NC to COM
Channel OFF: NO to COM
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

```
Network Analyzer Setup
Source Power = 0 dBm
(632-mV P-P at 50-\Omegaload)
DC Bias = 350 mV
```

Figure 7-9. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

A. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
B. $\quad C_{L}$ includes probe and jig capacitance.

Figure 7-10. Charge Injection $\left(Q_{C}\right)$

Channel ON: COM to NO	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ $\mathrm{~V}_{\text {SoURCE }}=\mathrm{V}_{\text {CC }} \mathrm{P}-\mathrm{P}$
Source Signal $=20 \mathrm{~Hz}$ to 20 kHz	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	

A. C_{L} includes probe and jig capacitance.

Figure 7-11. Total Harmonic Distortion (THD)

8 Detailed Description

8.1 Overview

The TS3A24159 is a 2-channel single-pole double-throw (SPDT) bidirectional analog switch that is designed to operate from 1.65 V to 3.6 V . It offers low ON -state resistance and excellent ON -state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance, low ON-state resistance, and consumes very low power. These are some of the features that make this device suitable for a variety of markets and many different applications.

8.2 Functional Block Diagram

8.3 Feature Description

The TS3A24159 device is bidirectional with two single-pole, double-throw switches. Each of the two switches are controlled independently by two digital signals.

8.4 Device Functional Modes

Table 8-1. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and Tl does not warrant its accuracy or completeness. Tl's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The switch of the TS3A24159 device is bidirectional. Hence, NO, NC, and COM pins can be used as both inputs or outputs.

9.2 Typical Application

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are within the specified ranges to ensure proper performance.

Table 9-1. Design Parameters

			MIN	MAX
$V_{C C}$	Supply Voltage	1.65	3.6	V
$V_{N C}$				
$V_{N O}$	Uignal Voltage	0	$V_{C C}$	V
$V_{C O M}$				
$V_{I N}$	Digital Input Voltage	0	$V_{C C}$	V

9.2.2 Detailed Design Procedure

The TS3A24159 device can be properly operated without any external components. However, it is recommended to connect the unused pins to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. It is also recommended that the digital control pins (IN1 and IN2) be pulled up to V_{CC} or down to GND to avoid undesired switch positions that could result from the floating pin.
Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS3A24159 input/output signal swing through NO and COM are dependant of the supply voltage V_{Cc}.

9.2.3 Application Curve

Figure 9-1. r_{ON} vs $\mathrm{V}_{\text {com }}$

10 Power Supply Recommendations

- Proper power-supply sequencing is recommended for all CMOS devices.
- Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device.
- Always sequence V_{CC} on first, followed by NO or COM .
- Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components.
- A $0.1-\mu \mathrm{F}$ capacitor, connected from V_{CC} to GND , is adequate for most applications.

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended. Bypass capacitors must be used on power supplies. Short trace lengths should be used to avoid excessive loading.

11.2 Layout Example

Figure 11-1. Layout Example

SCDS238H - MARCH 2007 - REVISED AUGUST 2022

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Implications of Slow or Floating CMOS Inputs application note

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E ${ }^{\text {TM }}$ support forums are an engineer's go-to source for fast, verified answers and design help - straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E ${ }^{\text {TM }}$ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS3A24159DGSR	ACTIVE	VSSOP	DGS	10	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(L8Q, L8R)	Samples
TS3A24159DGSRG4	LIFEBUY	VSSOP	DGS	10	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(L8Q, L8R)	
TS3A24159DRCR	ACTIVE	VSON	DRC	10	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZWS	Samples
TS3A24159DRCRG4	LIFEBUY	vSON	DRC	10	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	zWS	
TS3A24159YZPR	ACTIVE	DSBGA	YZP	10	3000	RoHS \& Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	L87	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TS3A24159DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS3A24159DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS3A24159YZPR	DSBGA	YZP	10	3000	178.0	9.2	1.49	1.99	0.63	4.0	8.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A24159DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TS3A24159DRCR	VSON	DRC	10	3000	356.0	356.0	35.0
TS3A24159YZPR	DSBGA	YZP	10	3000	220.0	220.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD 11:
80\% PRINTED SOLDER COVERAGE BY AREA
SCALE:25X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.

For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL SCALE:30X

NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

[^0]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

