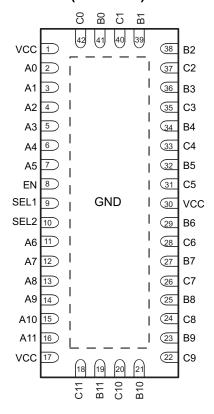


12-Channel, 1:2 MUX/DEMUX Switch for DDR3 Applications

Check for Samples: TS3DDR3812


FEATURES

- Compatible with DDR3 SDRAM Standard (JESD79-3D)
- Wide Bandwidth of 1.675 GHz
- Low Propagation Delay (t_{pd} = 40 ps Typ)
- Low Bit-to-Bit Skew (t_{sk(o)} = 6 ps Typ)
- Low and Flat ON-State Resistance (r_{ON} = 8 Ω Typ)
- Low Input/Output Capacitance (C_{ON} = 5.6 pF Typ)
- Low Crosstalk (X_{TALK} = -43 dB, Typ at 250 MHz)
- V_{CC} Operating Range from 3 V to 3.6 V
- Rail-to-Rail Switching on Data I/O Ports (0 to V_{CC})
- Separate Switch Control Logic for Upper and Lower 6-Channels
- Dedicated Enable Logic Supports Hi-Z Mode
- I_{OFF} Protection Prevents Current Leakage in Powered Down State (V_{CC} = 0 V)
- ESD Performance Tested Per JESD22
 - 2000 V Human Body Model (A114B, Class II)
 - 1000 V Charged Device Model (C101)
- 42-pin RUA Package (9 x 3.5 mm, 0.5 mm Pitch)

APPLICATIONS

- DDR3 Signal Switching
- DIMM Modules
- Notebook/Desktop PCs
- Servers

Figure 1. RUA PACKAGE (TOP VIEW)

DESCRIPTION

The TS3DDR3812 is a 12-channel, 1:2 multiplexer/demultiplexer switch designed for DDR3 applications. It operates from a 3 to 3.6 V supply and offers low and flat ON-state resistance as well as low I/O capacitance which allow it to achieve a typical bandwidth of 1.675 GHz.

Channels A_0 through A_{11} are divided into two banks of six bits and are independently controlled via two digital inputs called SEL1 and SEL2. These select inputs control the switch position of each 6-bit DDR3 source and allow them to be routed to one of two end-points. Alternatively, the switch can be used to connect a single endpoint to one of two 6-bit DDR3 sources. For switching 12-bit DDR3 sources, simply connect SEL1 and SEL2 together externally and control all 12 channels with a single GPIO input. An EN input allows the entire chip to be placed into a high-impedance (Hi-Z) state while not in use.

These characteristics make the TS3DDR3812 an excellent choice for use in memory, analog/digital video, LAN, and other high-speed signal switching applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

For package and ordering information, see the Package Option Addendum at the end of this document.

 A_0 A_1 A_2 Аз A_4 A_5 C_1 C_5 A_6 Α7 B_8 Α8 Α9 B₁₀ A 10 A 11 B₁₁ C_7 C_8 C_{10} C_{11} ΕN SEL1 Control Logic SEL2

Figure 2. LOGIC DIAGRAM

FUNCTION TABLE

EN	SEL1	SEL2	FUNCTION
L	Х	Х	A_0 to A_{11} , B_0 to B_{11} , and C_0 to C_{11} are Hi-Z
Н	L	L	A_0 to $A_5 = B_0$ to B_5 and A_6 to $A_{11} = B_6$ to B_{11}
Н	L	Н	A_0 to $A_5 = B_0$ to B_5 and A_6 to $A_{11} = C_6$ to C_{11}
Н	Н	L	A_0 to $A_5 = C_0$ to C_5 and A_6 to $A_{11} = B_6$ to B_{11}
Н	Н	Н	A_0 to $A_5 = C_0$ to C_5 and A_6 to $A_{11} = C_6$ to C_{11}

TERMINAL FUNCTIONS

PIN	PIN					
NAME	NUMBER	DESCRIPTION				
V _{CC}	1,17, 30	Supply Voltage				
GND	ThermalPad	Ground				

Submit Documentation Feedback

TERMINAL FUNCTIONS (continued)

PIN	DECODIDEION		
NAME	NUMBER	DESCRIPTION	
EN	8	Enable Input	
SEL1	9	Select Input	
SEL2	10	Select Input	
$A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9, A_{10}, A_{11}$	2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16	Data I/Os	
B ₀ , B ₁ , B ₂ , B ₃ , B ₄ , B ₅ , B ₆ , B ₇ , B ₈ , B ₉ , B ₁₀ , B ₁₁	41, 39, 38, 36, 34, 32, 29, 27, 25, 23, 21, 19	Data I/Os	
C ₀ , C ₁ , C ₂ , C ₃ , C ₄ , C ₅ , C ₆ , C ₇ , C ₈ , C ₉ , C ₁₀ , C ₁₁	42, 40, 37, 35, 33, 31, 28, 26, 24, 22, 20, 18	Data I/Os	

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range				V
V _{I/O}	Analog voltage range (2)(3)(4)	A, B, C	-0.5	7	V
V _{IN}	Digital input voltage range (2)(3)	SEL1, SEL2	-0.5	7	V
I _{I/OK}	Analog port diode current	V _{I/O} < 0		-50	mA
I _{IK}	Digital input clamp current	V _{IN} < 0		-50	mA
I _{I/O}	On-state switch current ⁽⁵⁾	A, B, C	-128	128	mA
I _{DD} , I _{GND}	Continuous current through V _{DD} or GND				mA
θ_{JA}	Package thermal impedance (6)	RUA package		31.8	°C/W
T _{stg}	Storage temperature range				°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to ground, unless otherwise specified.

The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. V_I and V_O are used to denote specific conditions for $V_{I/O}$.

 I_{l} and I_{O} are used to denote specific conditions for $I_{l/O}$

The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage				V
V_{IH}	High-level control input voltage	SEL1, SEL2	2	5.5	V
V_{IL}	Low-level control input voltage	SEL1, SEL2	0	8.0	V
V_{IN}	Input voltage	SEL1, SEL2	0	5.5	V
V _{I/O}	Input/Output voltage		0	V_{CC}	V
T _A	Operating free-air temperature	·	-40	85	°C

⁽¹⁾ All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

	PARAMETER		TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V_{IK}	Digital input clamp voltage	SEL1, SEL2	$V_{CC} = 3.6 \text{ V}, I_{IN} = -18 \text{ mA}$	-1.2	-0.8		V
R _{ON}	ON-state resistance	A, B, C	$V_{CC} = 3 \text{ V}, 1.5 \text{ V} \le V_{I/O} \le V_{CC},$ $I_{I/O} = -40 \text{ mA}$		8	12	Ω
R _{ON(flat)} (3)	ON-state resistance flatness	A, B, C	V_{CC} = 3 V, $V_{I/O}$ = 1.5 V and V_{CC} , $I_{I/O}$ = -40 mA		1.5		Ω
$\Delta R_{ON}^{(4)}$	On-state resistance match between channels	A, B, C	$V_{CC} = 3 \text{ V}, 1.5 \text{ V} \le V_{I/O} \le V_{CC},$ $I_{I/O} = -40 \text{ mA}$		0.4	1	Ω
I _{IH}	Digital input high leakage current	SEL1, SEL2	$V_{CC} = 3.6 \text{ V}$, $V_{IN} = V_{DD}$			±1	μΑ
I _{IL}	Digital input low leakage current	SEL1, SEL2	$V_{CC} = 3.6 \text{ V}, V_{IN} = \text{GND}$			±1	μΑ
I _{OFF}	Leakage under power off conditions	All outputs	$V_{CC} = 0 \text{ V}, V_{I/O} = 0 \text{ to } 3.6 \text{ V}, V_{IN} = 0 \text{ to } 5.5 \text{ V}$			±1	μΑ
C _{IN}	Digital input capacitance	SEL1, SEL2	$f = 1 MHz, V_{IN} = 0 V$		2.6	3.2	pF
C _{OFF}	Switch OFF capacitance	A, B, C	$f = 1 \text{ MHz}, V_{I/O} = 0 \text{ V}, \text{ Output is open},$ Switch is OFF		2		pF
C _{ON}	Switch ON capacitance	A, B, C	$f = 1 \text{ MHz}, V_{I/O} = 0 \text{ V}, \text{ Output is open},$ Switch is ON		5.6		pF
Icc	V _{CC} supply current		$V_{CC} = 3.6 \text{ V}, I_{I/O} = 0, V_{IN} = V_{DD} \text{ or GND}$		300	400	μΑ

Submit Documentation Feedback

Copyright © 2011-2013, Texas Instruments Incorporated

 $[\]begin{array}{lll} \hbox{(1)} & V_I, \ V_O, \ I_I, \ \text{and} \ I_O \ \text{refer} \ \text{to} \ \text{I/O} \ \text{pins}, \ V_{IN} \ \text{refers} \ \text{to} \ \text{the} \ \text{control} \ \text{inputs} \\ \hbox{(2)} & \text{All typical values are at} \ V_{CC} = 3.3V \ \text{(unless otherwise noted)}, \ T_A = 25^{\circ}\text{C} \\ \hbox{(3)} & R_{ON(FLAT)} \ \text{is} \ \text{the} \ \text{difference} \ \text{of} \ R_{ON} \ \text{in} \ \text{a} \ \text{given} \ \text{channel} \ \text{at} \ \text{specified} \ \text{voltages}. \\ \hbox{(4)} & \Delta R_{ON} \ \text{is} \ \text{the} \ \text{difference} \ \text{of} \ R_{ON} \ \text{from} \ \text{center} \ \text{port} \ \text{(A}_5, \ A_6) \ \text{to} \ \text{any} \ \text{other} \ \text{ports}. \\ \end{array}$

SWITCHING CHARACTERISTICS

Over recommended operation free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, R_L = 200 Ω , C_L = 4 pF (unless otherwise noted) (see Figure 7 and Figure 9)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TY	′P ⁽¹⁾	MAX	UNIT
t _{pd} (2)	A or B,C	B,C or A		40		ps
t _{PZH} , t _{PZL}	SEL1	A ₀₋₅ or B ₀₋₅ , C ₀₋₅	2		7	ns
	SEL2	A ₆₋₁₁ or B ₆₋₁₁ , C ₆₋₁₁	2		7	ns
t _{PHZ} , t _{PLZ}	SEL1	A ₀₋₅ or B ₀₋₅ , C ₀₋₅	2		5	ns
	SEL2	A ₆₋₁₁ or B ₆₋₁₁ , C ₆₋₁₁	2		5	ns
t _{sk(0)} (3)	A or B,C	B, C or A		6	30	ps
t _{sk(p)} (4)	A or B, C	B, C or A		6	30	ps

- All typical values are at V_{CC} = 3.3V (unless otherwise noted), T_A = 25°C. The propagation delay is the calculated RC time constant of the typical ON-State resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
- Output skew between center port (A₅, A₆) and any other channel.
- Skew between opposite transitions of the same output |t_{PHL} t_{PLH}|

DYNAMIC CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
X _{TALK}	$R_L = 50 \Omega$, $f = 250 MHz$ (see Figure 11)	-43	dB
O _{IRR}	$R_L = 50 \Omega$, $f = 250 MHz$ (see Figure 12)	-42	dB
BW	$R_L = 50 \Omega$, Switch ON (see Figure 10)	1.675	GHz

(1) All Typical Values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.

OPERATING CHARACTERISTICS

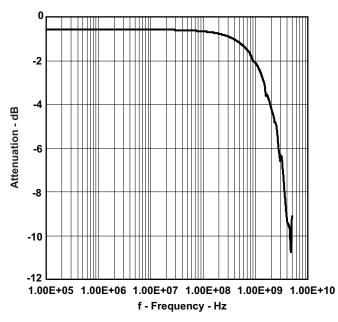


Figure 3. Gain vs Frequency

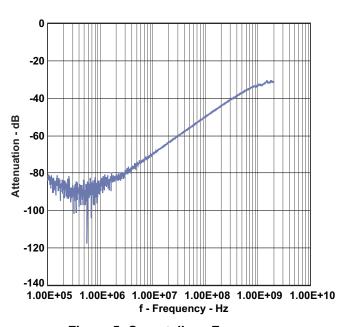


Figure 5. Crosstalk vs Frequency

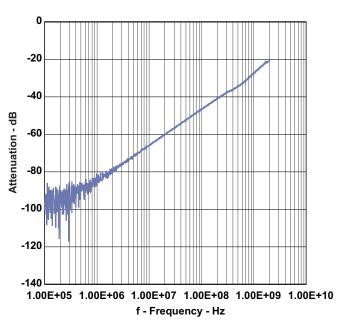


Figure 4. Off Isolation vs Frequency

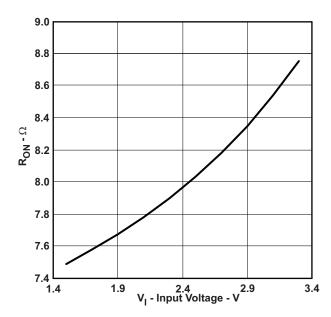
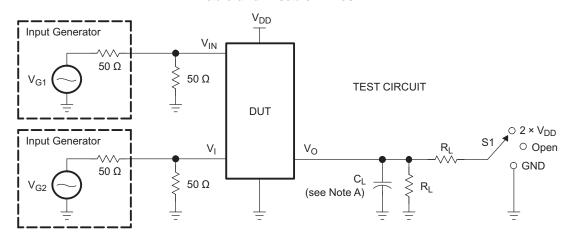
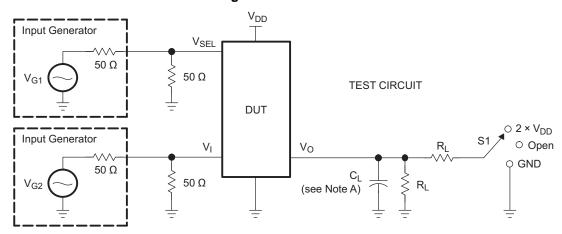



Figure 6. R_{ON} vs V_{IN}

PARAMETER MEASUREMENT INFORMATION

Enable and Disable Times

TEST	V _{DD}	S1	R _L	V _{in}	CL	V_{Δ}
t _{PLZ} /t _{PZL}	3.3 V ± 0.3 V	2 × V _{DD}	200 Ω	GND	4 pF	0.3 V
t _{PHZ} /t _{PZH}	3.3 V ± 0.3 V	GND	200 Ω	V _{DD}	4 pF	0.3 V


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .

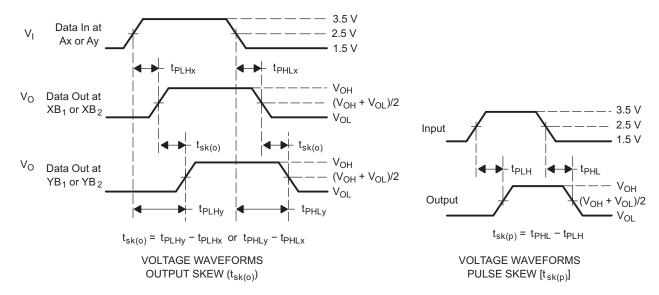

Figure 7. Test Circuit and Voltage Waveforms

Figure 8. Skew

TEST	V _{CC}	S1	R _L	V _{in}	CL
t _{sk(o)}	3.3 V ± 0.3 V	Open	200 Ω	V _{CC} or GND	4 pF
t _{sk(p)}	3.3 V ± 0.3V	Open	200 Ω	V _{CC} or GND	4 pF

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \,\Omega$, $t_r \leq 2.5 \,\text{ns}$.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 9. Test Circuit andf Voltage Waveforms

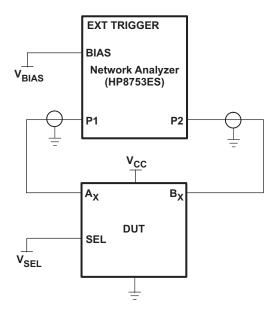
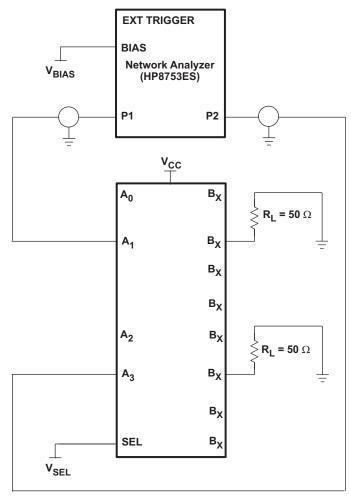


Figure 10. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL} = 0$ and A_0 is the input, the output is measured at B0. All unused analog I/O ports are left open.

HP8753ES Setup


Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 \text{ V}$ ST = 2 s

P1 = 0 dBM

A. C_L includes probe and jig capacitance.

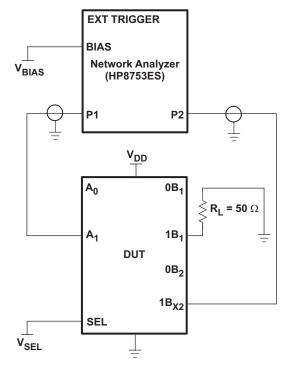
B. A 50 W termination resistor is needed to match the loading of the network analyzer.

Figure 11. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{SEL} = 0$ and A_1 is the input, the output is measured at A_3 . All unused analog input (A) ports are connected to GND, and output (B) ports are left open.

HP8753ES Setup

Average = 4


RBW = 3 kHz

 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBM

- A. C_L includes probe and jig capacitance.
- B. A 50 W termination resistor is needed to match the loading of the network analyzer.

Figure 12. Test Circuit for OFF Isolation (O_{IRR})

OFF isolation is measured at the output of the OFF channel. For example, when $V_{SEL} = GND$ and A_1 is the input, the output is measured at $1B_2$. All unused analog input (A) ports are connected to ground, and output (B) ports are left open.

HP8753ES Setup

Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 \text{ V}$

ST = 2 s

P1 = 0 dBM

Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback

REVISION HISTORY

Changes from Revision A (March 2012) to Revision B					
•	Changed Low B Low Bit-to-Bit Skew in the FEATURES list from $(t_{sk(0)} = 6 \text{ ps Max})$ to $(t_{sk(0)} = 6 \text{ ps Typ})$.	1			

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS3DDR3812RUAR	ACTIVE	WQFN	RUA	42	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SL812	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

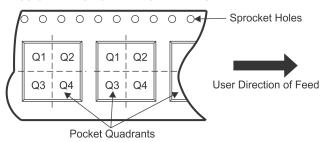
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

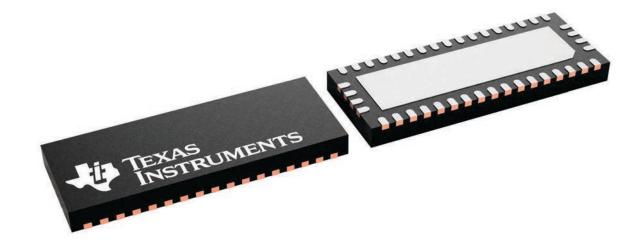
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

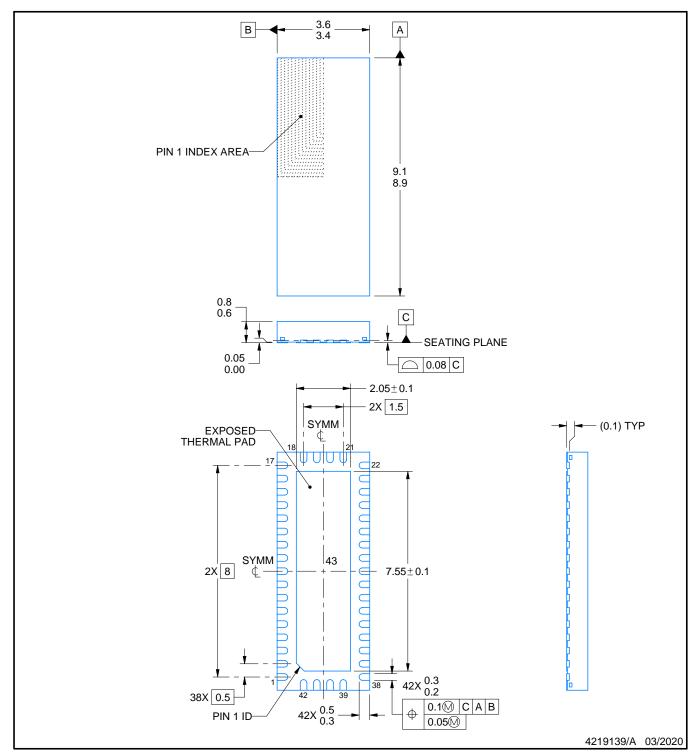
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3DDR3812RUAR	WQFN	RUA	42	3000	330.0	16.4	3.8	9.3	1.0	8.0	16.0	Q1

www.ti.com 3-Aug-2017


*All dimensions are nominal

Device		Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	TS3DDR3812RUAR	WQFN	RUA	42	3000	358.0	335.0	35.0	

9 x 3.5, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

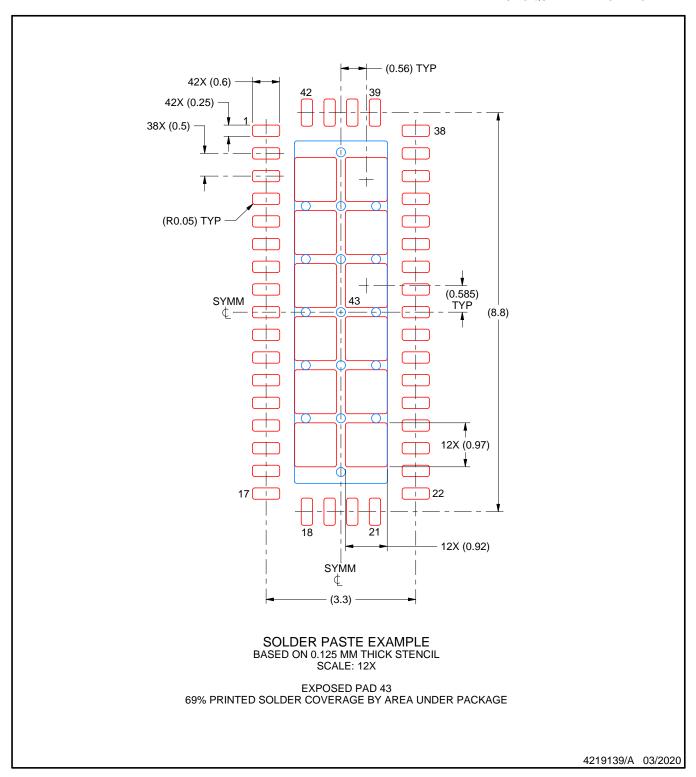
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated