

Sample &

Buv

SN74AUP1G00

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016

SN74AUP1G00 Low-Power Single 2-Input Positive-NAND Gate

1 Features

- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Available in the Ultra Small 0.64 mm² Package (DPW) with 0.5-mm Pitch
- Low Static-Power Consumption $(I_{CC} = 0.9 \ \mu A Max)$
- Low Dynamic-Power Consumption ٠ $(C_{pd} = 4 \text{ pF Typical at 3.3 V})$
- Low Input Capacitance ($C_i = 1.5 \text{ pF Typical}$)
- Low Noise Overshoot and Undershoot <10% of V_{CC}
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at Input (V_{hvs} = 250 mV Typical at 3.3 V)
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V ٠
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 4.8 ns Maximum at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

2 Applications

- **ATCA Solutions**
- Active Noise Cancellation (ANC)
- Barcode Scanner
- **Blood Pressure Monitor**
- **CPAP** Machine •
- **Cable Solutions**
- DLP 3D Machine Vision, Hyperspectral Imaging, Optical Networking, and Spectroscopy
- E-Book
- Embedded PC
- Field Transmitter: Temperature or Pressure Sensor
- **Fingerprint Biometrics**
- HVAC: Heating, Ventilating, and Air Conditioning
- Network-Attached Storage (NAS)
- Server Motherboard and PSU
- Software Defined Radio (SDR)
- TV: High-Definition (HDTV), LCD, and Digital •
- Video Communications System
- Wireless Data Access Card, Headset, Keyboard, Mouse, and LAN Card
- X-ray: Baggage Scanner, Medical, and Dental

3 Description

This single 2-input positive-NAND gate performs the Boolean function $Y = \overline{A \times B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

PACKAGE	BODY SIZE (NOM)							
SOT-23 (5)	2.90 mm × 1.60 mm							
SC70 (5)	2.00 mm × 1.25 mm							
SOT (5)	1.60 mm × 1.20 mm							
SON (6)	1.45 mm × 1.00 mm							
SON (6)	1.00 mm × 1.00 mm							
DSBGA (6)	1.00 mm × 1.40 mm							
DSBGA (5)	1.37 mm × 0.87 mm							
X2SON (5)	0.80 mm × 0.80 mm							
	PACKAGE SOT-23 (5) SC70 (5) SOT (5) SON (6) SON (6) DSBGA (6) DSBGA (5)							

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4		sion History 2
5	Pin	Configuration and Functions 4
6	Spe	cifications
	6.1	Absolute Maximum Ratings 6
	6.2	ESD Ratings 6
	6.3	Recommended Operating Conditions7
	6.4	Thermal Information 7
	6.5	Electrical Characteristics
	6.6	Switching Characteristics, C _L = 5 pF8
	6.7	Switching Characteristics, $C_L = 10 \text{ pF}$
	6.8	Switching Characteristics, $C_L = 15 \text{ pF}$
	6.9	Switching Characteristics, $C_L = 30 \text{ pF}$
	6.10	Operating Characteristics9
	6.11	Typical Characteristics 10
7	Para	meter Measurement Information 11
	7.1	Propagation Delays, Setup and Hold Times, and Pulse Width
	7.2	Enable and Disable Times 12

8	Deta	iled Description 13
	8.1	Overview 13
	8.2	Functional Block Diagram 13
	8.3	Feature Description 13
	8.4	Device Functional Modes 13
9	Арр	lication and Implementation14
	9.1	Application Information 14
	9.2	Typical Application 14
10	Pow	ver Supply Recommendations 16
11	Lay	out
	11.1	Layout Guidelines 16
	11.2	Layout Example 16
12	Dev	ice and Documentation Support 17
	12.1	Receiving Notification of Documentation Updates 17
	12.2	Community Resources 17
	12.3	Trademarks 17
	12.4	Electrostatic Discharge Caution 17
	12.5	Glossary 17
13		hanical, Packaging, and Orderable
	INTO	mation 17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision I (June 2014) to Revision J

•	Changed X2SON package pin count from: "(4)" to: "(5)"	. 1
	Added DSF (SON) (6), YFP (DSBGA) (6), and YZP (DSBGA) (5) packages to Device Information	
•	Changed pinout images with new diagrams	. 4
•	Changed Pin Functions table to Pin Functions — DBV, DCK, DRL, DPW, DRY, and DSF and Pin Functions — YZP and YFP tables	. 4
•	Added missing pinout information to Pin Functions table	. 4
•	Added Junction temperature, T _J	. 6
•	Changed Handling Ratings table to a ESD Ratings table	. 6
•	Changed unit from: "A" to:"µA" for I _{OL} at V _{CC} = 0.8 V	. 7
•	Added Receiving Notification of Documentation Updates section and Community Resources section	17

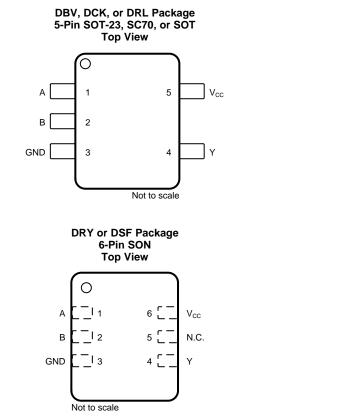
Changes from Revision H (April 2012) to Revision I

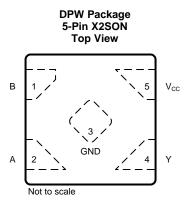
•	Updated document to new TI data sheet format	. 1
•	Removed Ordering Information table.	. 1
•	Updated I _{off} in <i>Features</i> .	. 1
•	Added Applications.	. 1
•	Added Device Information table.	. 1
•	Added DPW Package	. 4
•	Added Handling Ratings table	. 6
•	Added Thermal Information table.	. 7
•	Added Typical Characteristics.	10

Product Folder Links: SN74AUP1G00

XAS STRUMENTS

www.ti.com

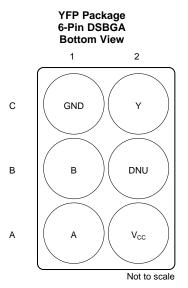



Page

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016

5 Pin Configuration and Functions

N.C. – No internal connection


		PIN			
NAME	DBV, DCK, DRL	DPW	DRY, DSF	I/O	DESCRIPTION
A	1	2	1	I	Input A
В	2	1	2	I	Input B
GND	3	3	3	_	Ground
N.C.	-	-	5	_	No internal connection
V _{CC}	5	5	6	_	Power Pin
Y	4	4	4	0	Output Y

Pin Functions — DBV, DCK, DRL, DPW, DRY, and DSF⁽¹⁾

(1) See mechanical drawings for dimensions.

YZP Package 5-Pin DSBGA Bottom View 1 2 C GND Y B B B A V_{CC} Not to scale

DNU - Do not use

Pin Functions — YZP and YFP⁽¹⁾

PIN		I/O	DESCRIPTION		
YZP	YFP	NAME	1/0	DESCRIPTION	
A1	A1	А	I	Input A	
A2	A2	V _{CC}	—	Power Pin	
B1	B1	В	I	Input B	
-	B2	DNU	—	Do not use	
C1	C1	GND	_	Ground	
C2	C2	Y	0	Output Y	

(1) See mechanical drawings for dimensions.

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	4.6	V
VI	Input voltage ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-impedance	or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		50	mA
I _{OK}	Output clamp current	V _O < 0		50	mA
lo	Continuous output current			20	mA
	Continuous current through V _{CC} or GND			50	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
V(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT				
V _{CC}	Supply voltage		0.8	3.6	V				
		V _{CC} = 0.8 V	V _{CC}						
		$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V				
V _{1H}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.6		v				
		$V_{CC} = 3 V \text{ to } 3.6 V$	2						
		V _{CC} = 0.8 V		0	- V				
v		$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$					
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	v				
		$V_{CC} = 3 V \text{ to } 3.6 V$		0.9					
VI	Input voltage		0	3.6	V				
Vo	Output voltage		0	V _{CC}	V				
		$V_{CC} = 0.8 V$		-20	μA				
		V _{CC} = 1.1 V		-1.1					
		V _{CC} = 1.4 V		-1.7					
ЮН	High-level output current	V _{CC} = 1.65		-1.9	mA				
		V _{CC} = 2.3 V		-3.1					
		$V_{CC} = 3 V$		-4					
		V _{CC} = 0.8 V		20	μA				
		V _{CC} = 1.1 V		1.1					
		V _{CC} = 1.4 V			1				
IOL	Low-level output current	V _{CC} = 1.65 V		1.9	mA				
		V _{CC} = 2.3 V		3.1	-				
		$V_{CC} = 3 V$		4					
$\Delta t / \Delta v$	Input transition rise or fall rate	$V_{CC} = 0.8 V$ to 3.6 V		200	ns/V				
T _A	Operating free-air temperature		-40	85	°C				

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See *Implications of Slow or Floating* CMOS Inputs, SCBA004.

6.4 Thermal Information

		SN74AUP1G00						
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	DPW (X2SON)	DRL (SOT)	DRY (SON)	DSF (SON)	UNIT
		5 PINS	5 PINS	5 PINS	5 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	298.6	314.4	291.8	349.7	554.9	407.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	240.2	128.7	224.2	120.5	385.4	232.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	134.6	100.6	245.8	171.4	388.2	306.9	°C/W
ΨJT	Junction-to-top characterization parameter	114.5	7.1	31.4	10.8	159.0	40.3	°C/W
Ψјв	Junction-to-board characterization parameter	133.9	99.8	245.6	169.4	384.1	306.0	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	195.4	n/a	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

SN74AUP1G00

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			T,	₄ = 25°C		$T_A = -40^{\circ}C$			
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	ТҮР	MAX	MIN	MAX	UNIT	
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} – 0.1			V _{CC} – 0.1			
	I _{OH} = -1.1 mA	1.1 V	0.75 × V _{CC}			$0.7 \times V_{CC}$			
	I _{OH} = -1.7 mA	1.4 V	1.11			1.03			
V _{OH}	I _{OH} = -1.9 mA	1.65 V	1.32			1.3			
	I _{OH} = -2.3 mA	2.2.1/	2.05			1.97		V	
	I _{OH} = -3.1 mA	2.3 V	1.9			1.85			
	I _{OH} = -2.7 mA	0.14	2.72			2.67			
	I _{OH} = -4 mA	3 V	2.6			2.55			
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		0.1		
	I _{OL} = 1.1 mA	1.1 V			0.3 × V _{CC}		$0.3 \times V_{CC}$		
	I _{OL} = 1.7 mA	1.4 V			0.31		0.37	V	
V _{OL}	I _{OL} = 1.9 mA	1.65 V			0.31		0.35		
	I _{OL} = 2.3 mA	2.2.1/			0.31		0.33	v	
	I _{OL} = 3.1 mA	2.3 V			0.44		0.45		
	I _{OL} = 2.7 mA	2.14			0.31		0.33		
	$I_{OL} = 4 \text{ mA}$	3 V			0.44		0.45		
II A or B input	$V_I = GND$ to 3.6 V	0 V to 3.6 V			0.1		0.5	μA	
I _{off}	V_{I} or V_{O} = 0 V to 3.6 V	0 V			0.2		0.6	μA	
ΔI_{off}	V_{I} or $V_{O} = 0$ V to 3.6 V	0 V to 0.2 V			0.2		0.6	μA	
I _{CC}	$V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_O = 0$	0.8 V to 3.6 V			0.5		0.9	μA	
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V^{(1)}, I_{O} = 0$	3.3 V			40		50	μA	
0		0 V		1.5				- 5	
C _i	$V_{I} = V_{CC}$ or GND	3.6 V		1.5				pF	
Co	V _O = GND	0 V		3				pF	

(1) One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

6.6 Switching Characteristics, C_L = 5 pF

over recommended operating free-air temperature range, (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	T,	ג = 25°C		$T_A = -40^{\circ}C tc$	o +85°C	UNIT
	(INPUT)			MIN	TYP	MAX	MIN	MAX	
		Y	0.8 V		16.6				
			1.2 V ± 0.1 V	2.6	7	13.8	2.1	17.1	
•	A or B		1.5 V ± 0.1 V	2.9	5	9.2	2.9	11.1	20
t _{pd}	AUD		1.8 V ± 0.15 V	2	4	7.1	2	9	ns
			2.5 V ± 0.2 V	1.3	2.9	4.9	1.3	6.2	
			3.3 V ± 0.3 V	1	2.4	3.8	1	4.8	

ISTRUMENTS

EXAS

6.7 Switching Characteristics, $C_L = 10 \text{ pF}$

over recommended operating free-air temperature range, (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	Т,	_λ = 25°C		$T_A = -40^{\circ}C tc$	• +85°C	UNIT
	(INPUT)			MIN	TYP	MAX	MIN	MAX	
			0.8 V		18.9				
		×	1.2 V ± 0.1 V	3.2	8	15.7	3.1	18.8	ns
	A or D		1.5 V ± 0.1 V	2.9	5.8	10.5	2.9	12.1	
t _{pd}	A or B Y	ř	1.8 V ± 0.15 V	2	4.7	8.2	2	9.8	
			2.5 V ± 0.2 V	1.3	3.4	5.7	1.3	6.8	
			3.3 V ± 0.3 V	1	2.9	4.5	1	5.2	

6.8 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range, (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	V	T _A = 25°C			$T_A = -40^{\circ}C tc$	• +85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V		21.3				
		Y	1.2 V ± 0.1 V	3.6	9	17.3	3.1	21.5	ns
	A or D		1.5 V ± 0.1 V	2.9	6.5	11.6	2.9	14	
τ _{pd}	A or B		1.8 V ± 0.15 V	2	5.3	9.2	2	11.4	
			2.5 V ± 0.2 V	1.3	3.9	6.4	1.3	8	
			3.3 V ± 0.3 V	1	3.3	5.1	1	6.4	

6.9 Switching Characteristics, $C_L = 30 \text{ pF}$

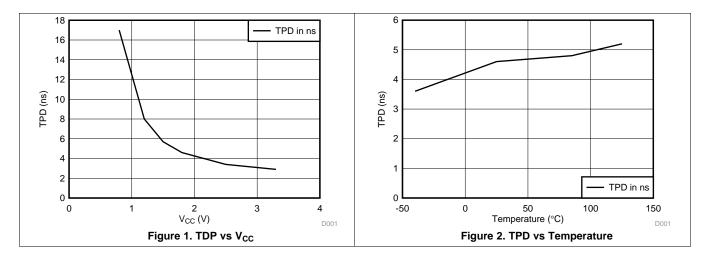
over recommended operating free-air temperature range, (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	Vcc	T _A	= 25°C		$T_A = -40^{\circ}C tc$	UNIT	
PARAMETER	(INPUT)			MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V		28.4				
		Y	1.2 V ± 0.1 V	4.9	11.9	21.9	4.4	27.1	ns
	A or B		1.5 V ± 0.1 V	2.9	8.6	14.7	2.9	17.7	
t _{pd}	AUB		1.8 V ± 0.15 V	2	7.1	11.5	2	14.2	
			2.5 V ± 0.2 V	1.3	5.3	8.1	1.3	10	
			3.3 V ± 0.3 V	1	4.5	6.5	1	8	

6.10 Operating Characteristics

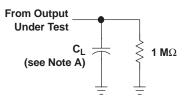
 $T_A = 25^{\circ}C$

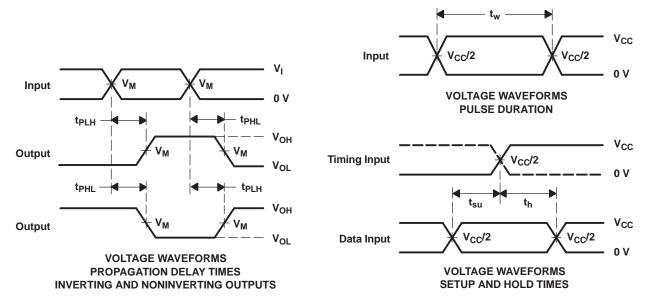
	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			0.8 V	4	
			1.2 V ± 0.1 V	4	
C	Dower dissinction conscitutes	f = 10 MHz	1.5 V ± 0.1 V	4	pF
C _{pd}	Power dissipation capacitance		1.8 V ± 0.15 V	4	рг
			2.5 V ± 0.2 V	4	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	4	


SN74AUP1G00

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016

www.ti.com


6.11 Typical Characteristics


7 Parameter Measurement Information

7.1 Propagation Delays, Setup and Hold Times, and Pulse Width

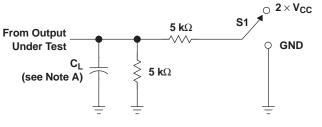
LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
VM	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

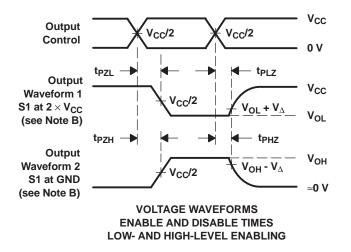
NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} . E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms


SN74AUP1G00

SCES604J-SEPTEMBER 2004-REVISED DECEMBER 2016


www.ti.com

7.2 Enable and Disable Times

TEST	S1
t _{PLZ} /t _{PZL}	$2 \times V_{CC}$
t _{PHZ} /t _{PZH}	GND

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	$V_{CC} = 3.3 \text{ V}$ $\pm 0.3 \text{ V}$
С _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V _Δ	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , slew rate \geq 1 V/ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

This is a single 2-input positive-NAND gate that is designed in Texas Instrument's ultra-low power technology. It performs the Boolean function $Y = A \times B$ or Y = A + B in positive logic.

The AUP family of devices has quiescent power consumption less than 1 µA and comes in the ultra small DPW package. The DPW package technology is a major breakthrough in IC packaging. Its tiny 0.64 mm square footprint saves significant board space over other package options while still retaining the traditional manufacturing friendly lead pitch of 0.5 mm.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered. The I_{off} feature also allows for live insertion.

8.2 Functional Block Diagram

Figure 5. Logic Diagram (Positive Logic)

8.3 Feature Description

- Wide operating V_{CC} range of 0.8 V to 3.6 V
- 3.6-V I/O tolerant to support down translation
- · Input hysteresis allows slow input transition and better switching noise immunity at the input
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V
- · Low noise due to slower edge rates

8.4 Device Functional Modes

Table 1 shows the functional modes of the SN74AUP1G00 device.

Table 1. Function Table

INP	UTS	OUTPUT
Α	В	Y
L	L	Н
L	н	н
н	L	н
н	Н	L

9 Application and Implementation

9.1 Application Information

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity. It has a small amount of hysteresis built in allowing for slower or noisy input signals. The lowered drive produces slower edges and prevents overshoot and undershoot on the outputs.

9.2 Typical Application

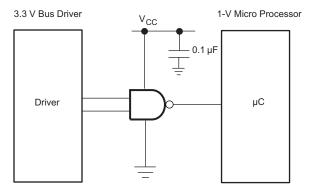
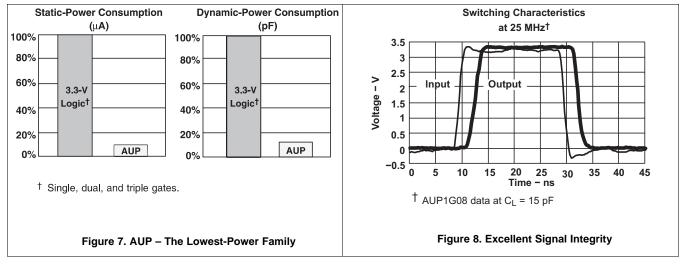


Figure 6. Typical Application Diagram

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits.


9.2.2 Detailed Design Procedure

- 1. Recommended Input conditions:
 - Rise time and fall time specs. See ($\Delta t/\Delta V$) in Recommended Operating Conditions
 - Specified high and low levels. See (VIH and VIL) in Recommended Operating Conditions
 - Inputs are overvoltage tolerant allowing them to go as high as 3.6 V at any valid V_{CC}
- 2. Recommended output conditions:
 - Load currents should not exceed 20 mA on the output and 50 mA total for the part
 - Outputs should not be pulled above V_{CC}

Typical Application (continued)

9.2.3 Application Curves

The AUP family of single gate logic makes excellent translators for the new lower voltage microprocessors that typically are powered from 0.8 V to 1.2 V. They can drop the voltage of peripheral drivers and accessories that are still powered by 3.3 V to the new uC power levels.

The power supply can be any voltage between the Min and Max supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 9 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the l/Os, so they cannot float when disabled.

11.2 Layout Example

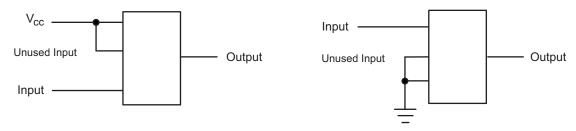


Figure 9. Layout Diagram

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AUP1G00DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HOOR	Samples
SN74AUP1G00DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HOOR	Samples
SN74AUP1G00DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HAF, HAK, HAR)	Samples
SN74AUP1G00DCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HAR	Samples
SN74AUP1G00DPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	A4	Samples
SN74AUP1G00DRLR	ACTIVE	SOT-5X3	DRL	5	4000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(HA7, HAR)	Samples
SN74AUP1G00DRY2	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00DSF2	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НА	Samples
SN74AUP1G00YFPR	ACTIVE	DSBGA	YFP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM		HAN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

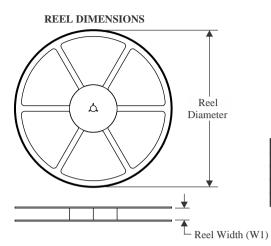
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

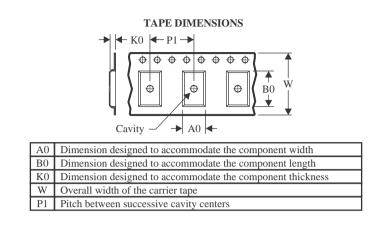
PACKAGE OPTION ADDENDUM

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

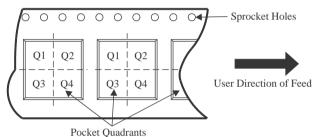
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

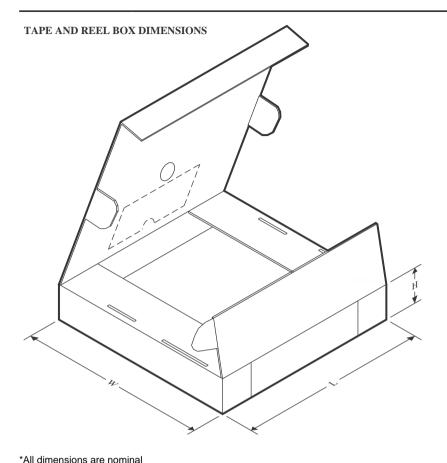

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G00DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74AUP1G00DBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74AUP1G00DCKR	SC70	DCK	5	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74AUP1G00DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74AUP1G00DCKT	SC70	DCK	5	250	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74AUP1G00DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q3
SN74AUP1G00DRLR	SOT-5X3	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AUP1G00DRY2	SON	DRY	6	5000	180.0	9.5	1.6	1.15	0.75	4.0	8.0	Q3
SN74AUP1G00DRY2	SON	DRY	6	5000	180.0	8.4	1.65	1.2	0.7	4.0	8.0	Q3
SN74AUP1G00DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP1G00DSF2	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q3
SN74AUP1G00DSF2	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.63	4.0	8.0	Q3
SN74AUP1G00DSFR	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.63	4.0	8.0	Q2
SN74AUP1G00DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP1G00YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

15-Mar-2024

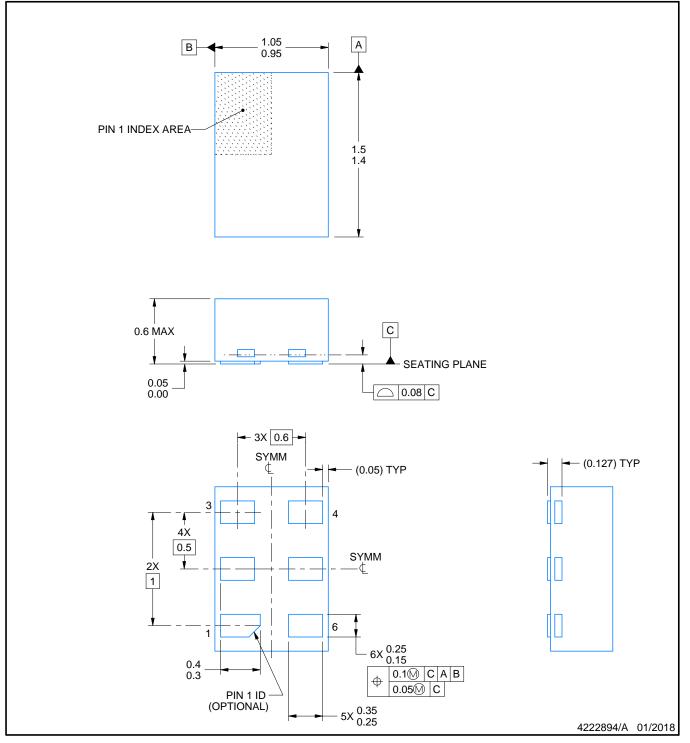
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G00DBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
SN74AUP1G00DBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
SN74AUP1G00DCKR	SC70	DCK	5	3000	205.0	200.0	33.0
SN74AUP1G00DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
SN74AUP1G00DCKT	SC70	DCK	5	250	202.0	201.0	28.0
SN74AUP1G00DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
SN74AUP1G00DRLR	SOT-5X3	DRL	5	4000	202.0	201.0	28.0
SN74AUP1G00DRY2	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP1G00DRY2	SON	DRY	6	5000	202.0	201.0	28.0
SN74AUP1G00DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP1G00DSF2	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP1G00DSF2	SON	DSF	6	5000	202.0	201.0	28.0
SN74AUP1G00DSFR	SON	DSF	6	5000	202.0	201.0	28.0
SN74AUP1G00DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP1G00YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006A

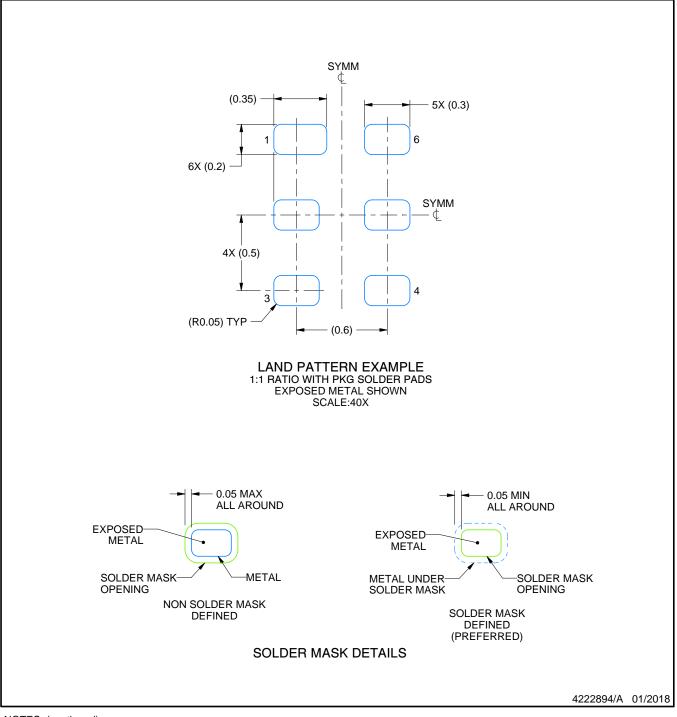
PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006A

EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



DRY0006A

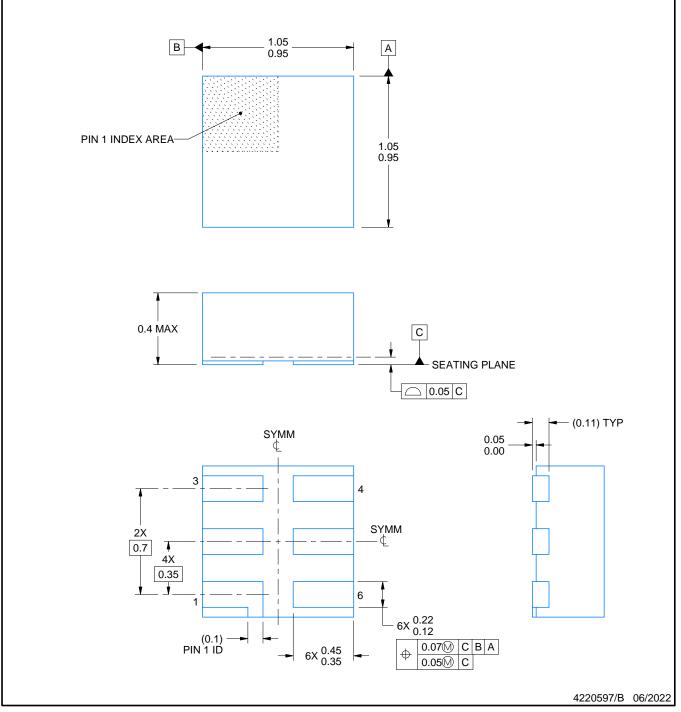
EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DSF0006A

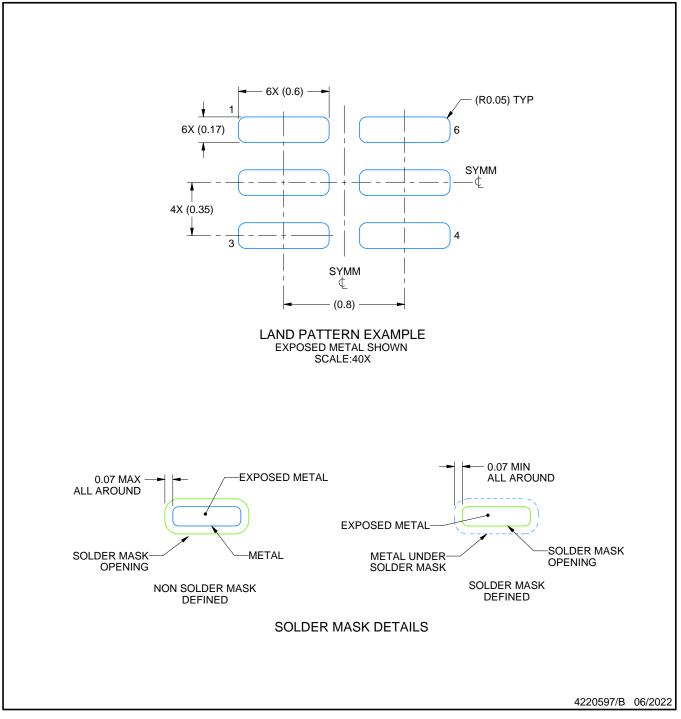
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.



DSF0006A

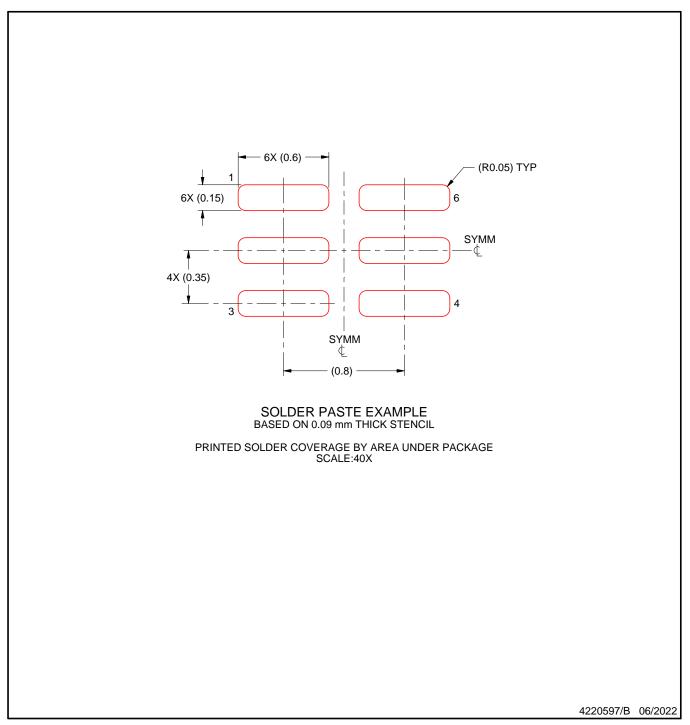
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

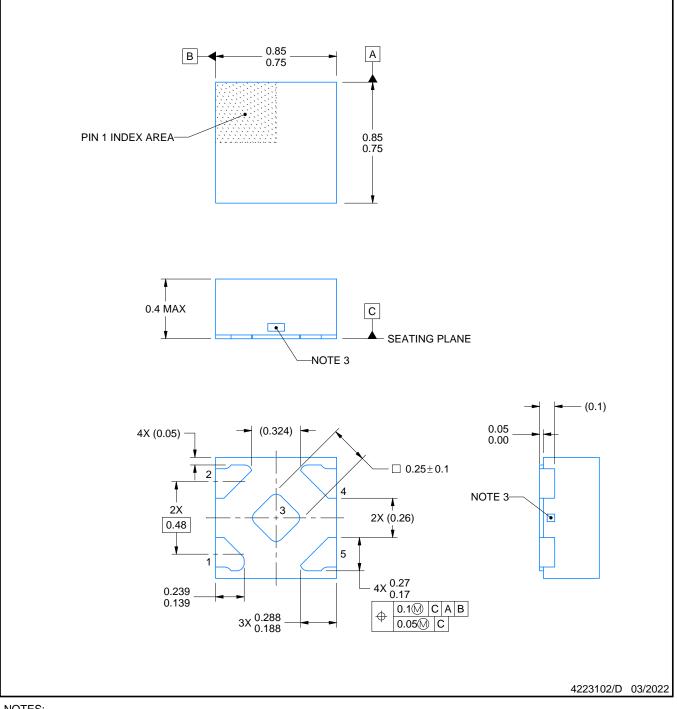
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW

X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D


DPW0005A

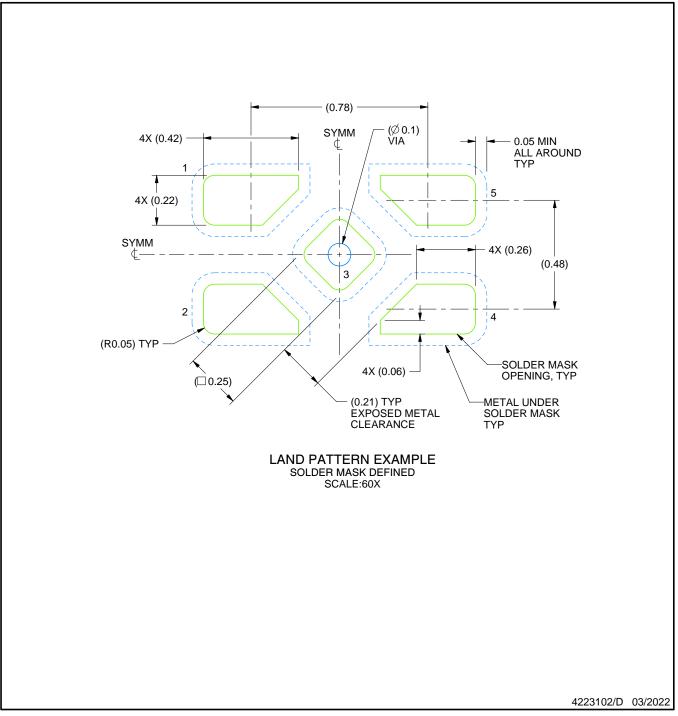
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.



DPW0005A

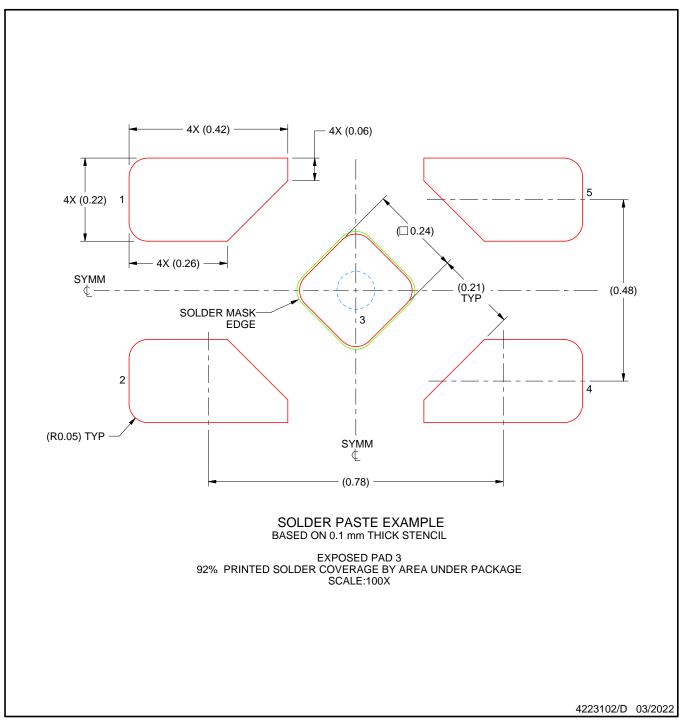
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).



DPW0005A

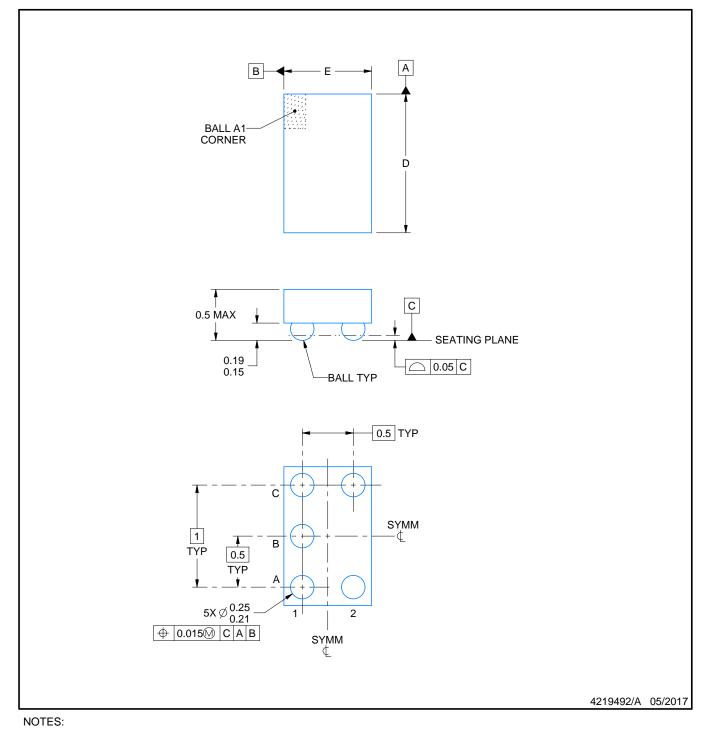
EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

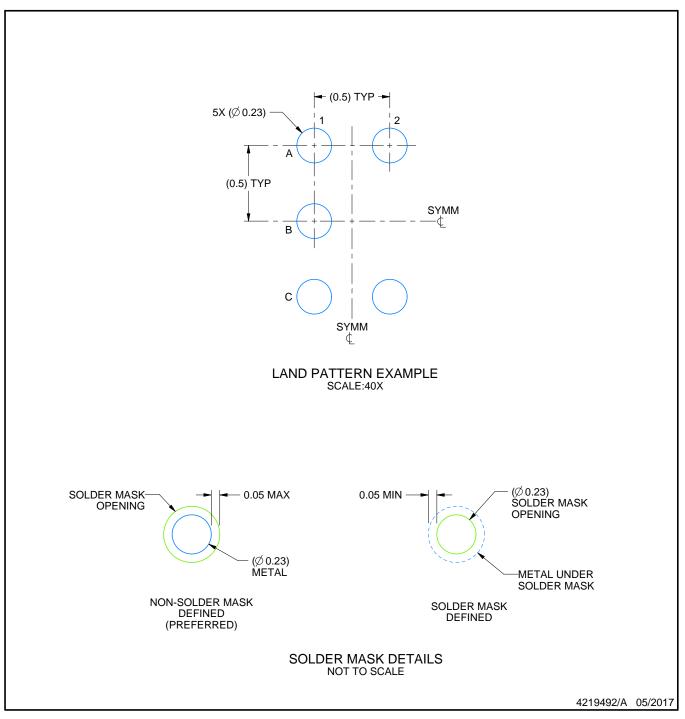

YZP0005

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.



YZP0005

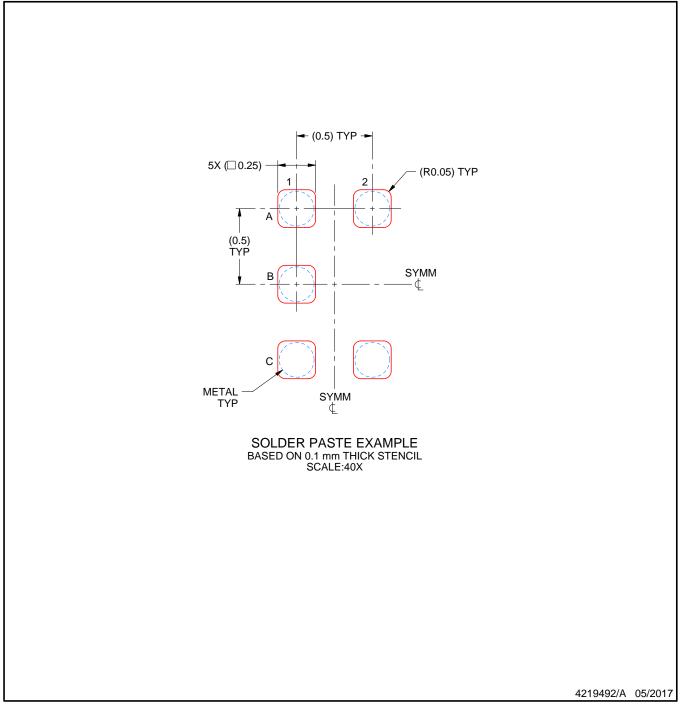
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YZP0005

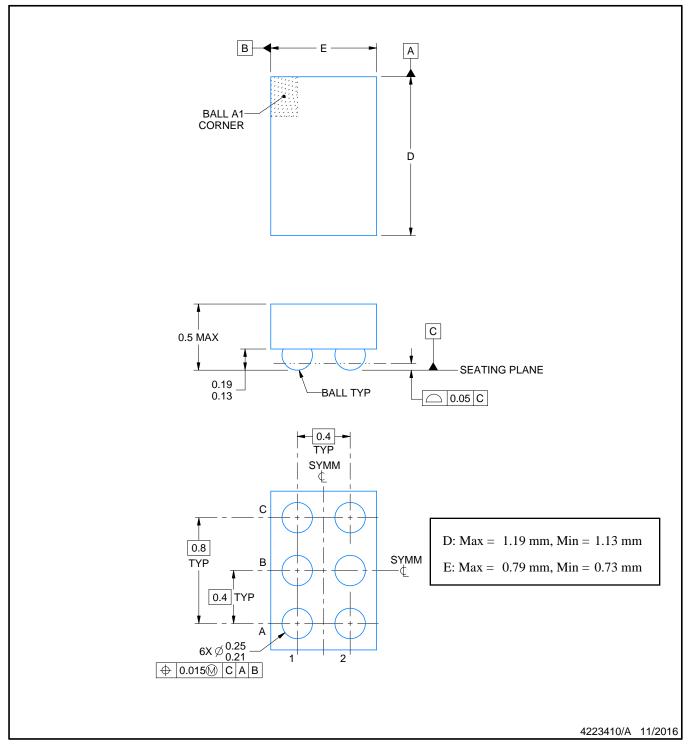
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


YFP0006

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

YFP0006

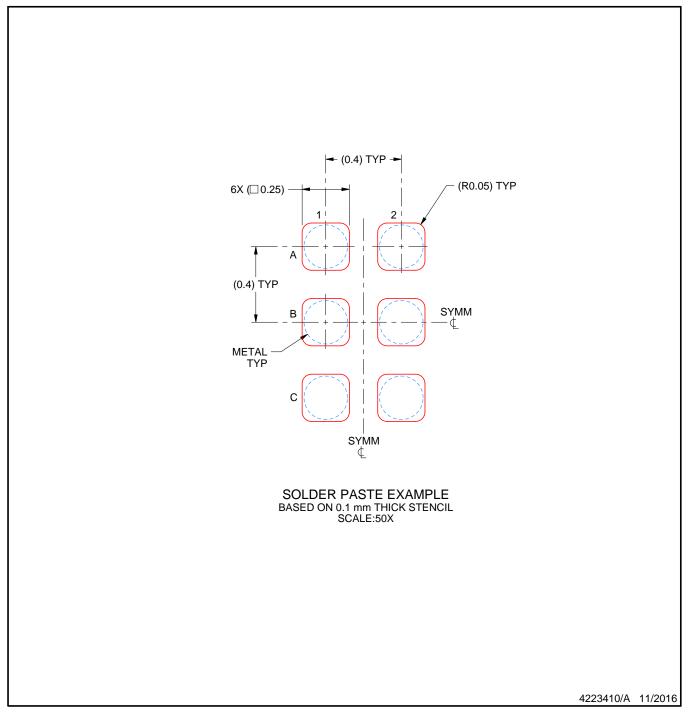
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YFP0006

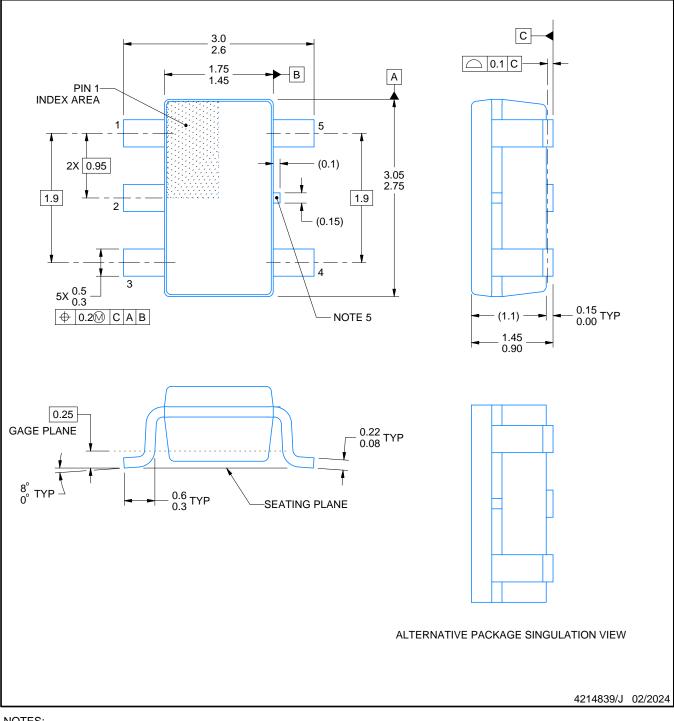
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


DBV0005A

PACKAGE OUTLINE

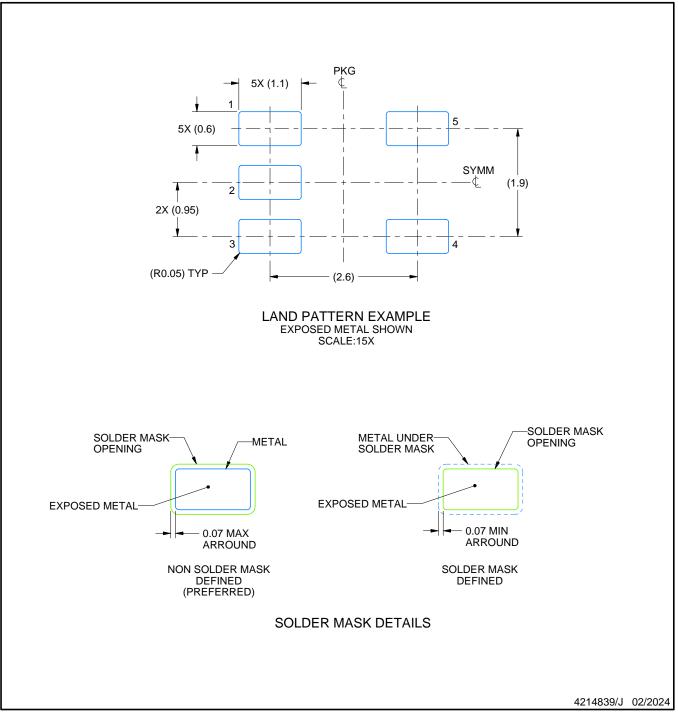
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



DBV0005A

EXAMPLE BOARD LAYOUT

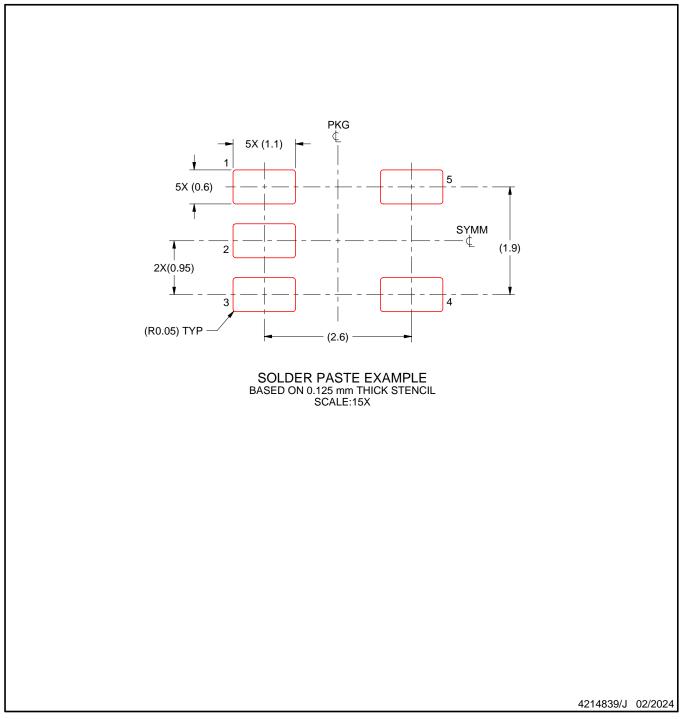
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

EXAMPLE STENCIL DESIGN

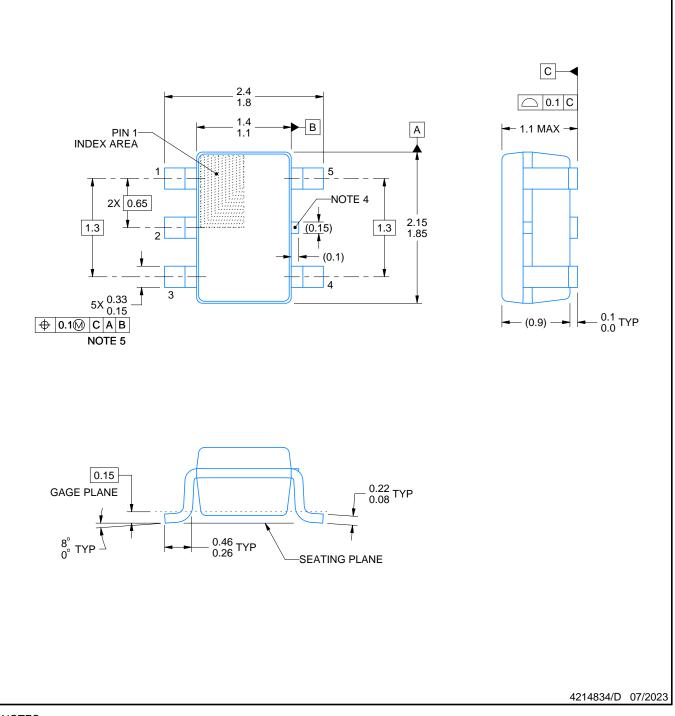
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


DCK0005A

PACKAGE OUTLINE

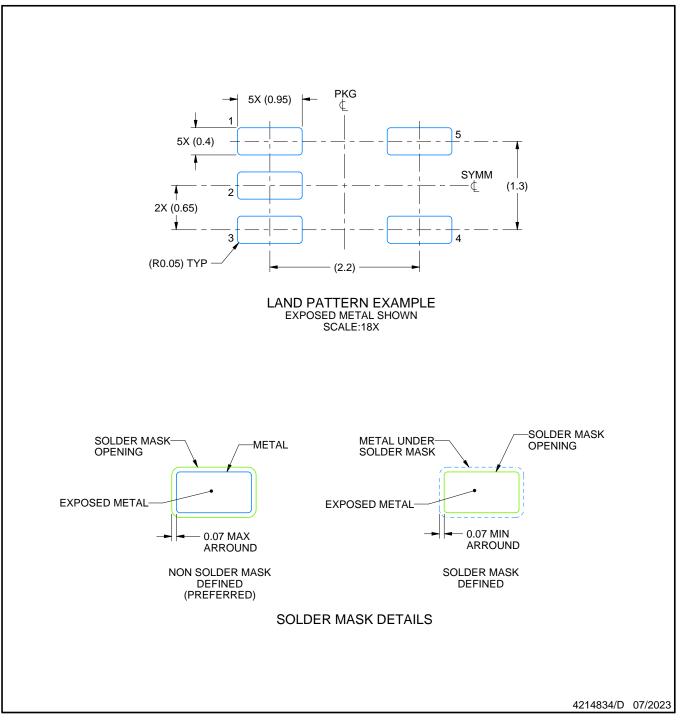
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.



DCK0005A

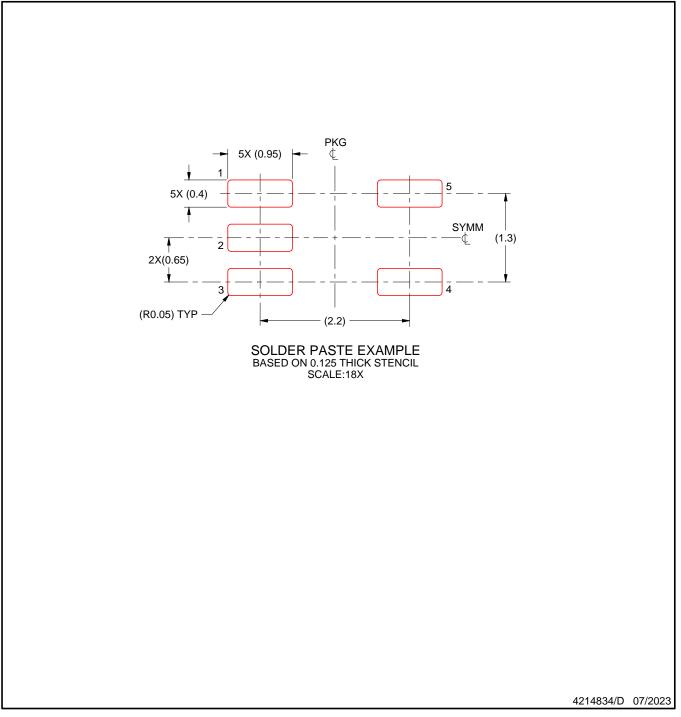
EXAMPLE BOARD LAYOUT

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCK0005A

EXAMPLE STENCIL DESIGN

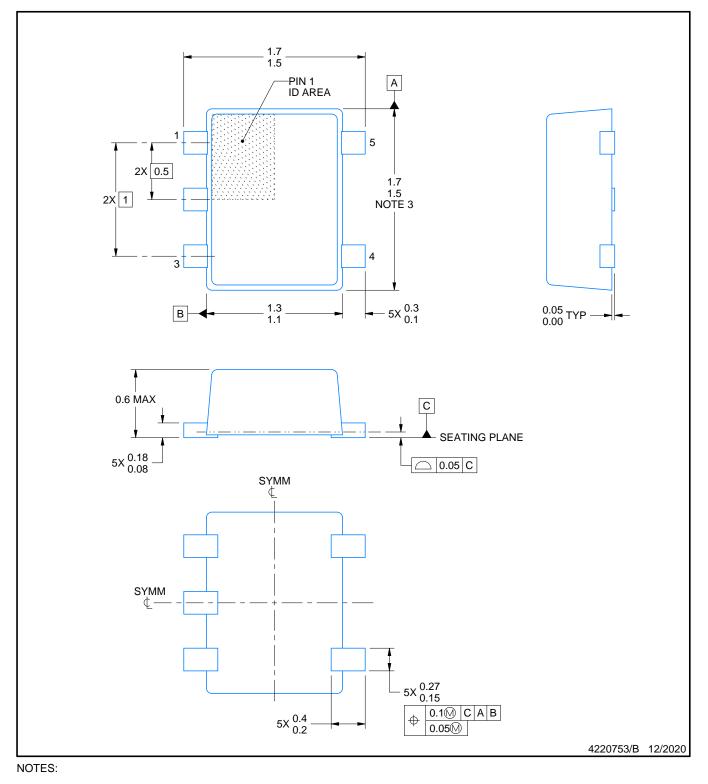
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

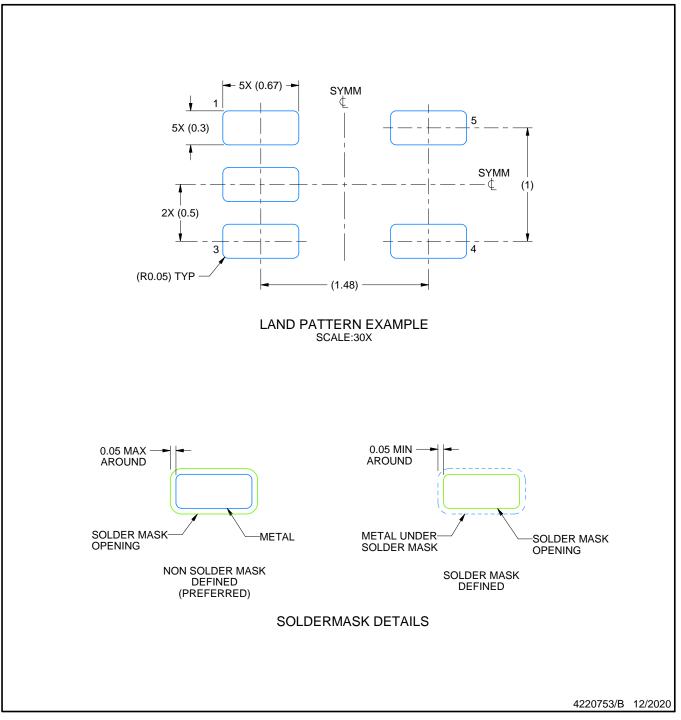

DRL0005A

PACKAGE OUTLINE

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-293 Variation UAAD-1



DRL0005A

EXAMPLE BOARD LAYOUT

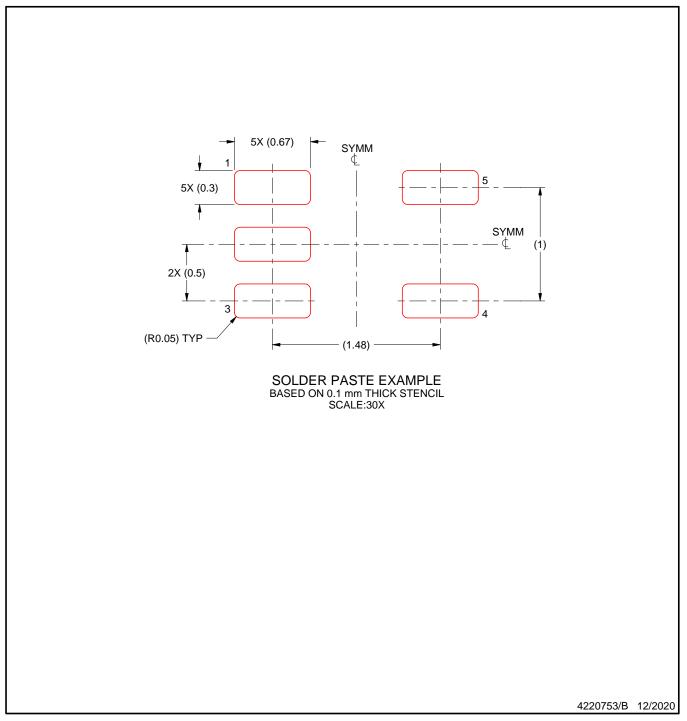
SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



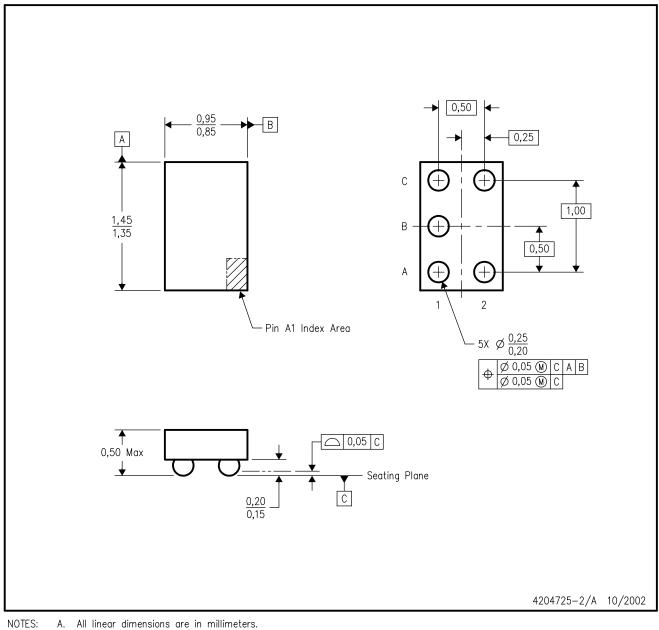
DRL0005A

EXAMPLE STENCIL DESIGN

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)


7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

YEP (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoStar™ package configuration.
- D. This package is tin-lead (SnPb). Refer to the 5 YZP package (drawing 4204741) for lead-free.

NanoStar is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated