50-mA, 24-V, 3.2-μA SUPPLY CURRENT, LOW-DROPOUT LINEAR REGULATOR

FEATURES

• Controlled Baseline
 – One Assembly Site
 – One Test Site
 – One Fabrication Site
• Extended Temperature Performance of
 –55°C to 125°C
• Enhanced Diminishing Manufacturing Sources
 (DMS) Support
• Enhanced Product-Change Notification
• Qualification Pedigree(1)
• 24-V Maximum Input Voltage
• Low 3.2-μA Quiescent Current at 50 mA
• Stable With Any Capacitor (≥ 0.47 μF)
• 50-mA Low-Dropout Regulator
• Adjustable Output Voltage (1.2 V to 15 V)
• Designed to Support MSP430 Families:
 – 1.9-V Version Ensured to be Higher
 Than Minimum V_IN of 1.8 V
 – 2.3-V Version Ensured to Meet 2.2-V
 Minimum V_IN for Flash on MSP430F2xx
 – 3.45-V Version Ensured to be Lower
 Than Maximum V_IN of 3.6 V
 – Wide Variety of Fixed Output Voltage
 Options to Match V_IN to the Minimum
 Required for Desired MSP430 Speed

APPLICATIONS

• Ultra-Low Power Microcontrollers
• Cellular/Cordless Handsets
• Portable/Battery-Powered Equipment

DESCRIPTION

The TPS71501 low-dropout (LDO) voltage regulators offer the benefits of high input voltage, low dropout voltage, low-power operation, and miniaturized packaging. The device, which operates over an input range of 2.5 V to 24 V, is stable with any capacitor (≥0.47 μF). The low dropout voltage and low quiescent current allow operation at extremely low power levels. Therefore, the devices are ideal for powering battery-management ICs. Specifically, because the devices are enabled as soon as the applied voltage reaches the minimum input voltage, the output is quickly available to power continuously operating battery-charging ICs.

The usual PNP pass transistor has been replaced by a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the low dropout voltage, typically 415 mV at 50 mA of load current, is directly proportional to the load current. The low quiescent current (3.2 μA typically) is stable over the entire range of output load current (0 mA to 50 mA).

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION\(^{(1)}\)

<table>
<thead>
<tr>
<th>(T_J)</th>
<th>PACKAGE(^{(2)})</th>
<th>ORDERABLE PART NUMBER</th>
<th>TOP-SIDE MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>–55°C to 125°C</td>
<td>SC70 – DCK</td>
<td>TPS71501MDCKREP</td>
<td>CVP</td>
</tr>
</tbody>
</table>

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

ABSOLUTE MAXIMUM RATINGS

over operating junction temperature range unless otherwise noted\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>(V_{IN})</th>
<th>Input voltage range</th>
<th>IN</th>
<th>–0.3 V to 24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OUT})</td>
<td>Output voltage range</td>
<td>OUT</td>
<td>–0.3 V to 6 V</td>
</tr>
<tr>
<td>Peak output current</td>
<td></td>
<td></td>
<td>Internally limited</td>
</tr>
<tr>
<td>Continuous total power dissipation</td>
<td></td>
<td></td>
<td>See Dissipation Ratings Table</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Junction temperature range</td>
<td>–55°C to 150°C</td>
<td></td>
</tr>
<tr>
<td>(T_{stg})</td>
<td>Storage temperature range</td>
<td>–65°C to 150°C</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge rating</td>
<td>Human-Body Model (HBM)</td>
<td>2000 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charged-Device Model (CDM)</td>
<td>500 V</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the Electrical Characteristics is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the network ground terminal.

DISSIPATION RATINGS

<table>
<thead>
<tr>
<th>BOARD</th>
<th>PACKAGE</th>
<th>(R_{JC}) (^{\circ}\text{C/W})</th>
<th>(R_{JA}) (^{\circ}\text{C/W})</th>
<th>(\frac{\text{DERATING FACTOR ABOVE } T_A = +25\degree\text{C}}{\text{POWER RATING}})</th>
<th>(T_A = 25\degree\text{C}) POWER RATING</th>
<th>(T_A = 70\degree\text{C}) POWER RATING</th>
<th>(T_A = 85\degree\text{C}) POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-K(^{(1)})</td>
<td>DCK</td>
<td>165</td>
<td>395</td>
<td>2.52 mW/°C</td>
<td>250 mW</td>
<td>140 mW</td>
<td>100 mW</td>
</tr>
<tr>
<td>High-K(^{(2)})</td>
<td>DCK</td>
<td>165</td>
<td>315</td>
<td>3.18 mW/°C</td>
<td>320 mW</td>
<td>175 mW</td>
<td>130 mW</td>
</tr>
</tbody>
</table>

(1) The JEDEC Low-K (1s) board design used to derive this data was a 3-in × 3-in, two-layer board with 2-oz copper traces on top of the board.

(2) The JEDEC High-K (2s2p) board design used to derive this data was a 3-in × 3-in, multilayer board with 1-oz internal power and ground planes and 2-oz copper traces on top and bottom of the board.
OVER OPERATING JUNCTION TEMPERATURE RANGE

Over operating junction temperature range \((T_J = -55^\circ C \text{ to } 125^\circ C)\), \(V_{IN} = V_{OUT(\text{NOM})} + 1\ V\), \(I_{OUT} = 1\ mA\), and \(C_{OUT} = 1\ \mu F\) (unless otherwise noted). Typical values are at \(T_J = 25^\circ C\).

Parameters and Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage(^{(1)})</td>
<td>(V_{IN})</td>
<td>2.5</td>
<td>24</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_D = 10\ mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I_D = 50\ mA)</td>
<td>3</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT}) voltage range</td>
<td></td>
<td>1.2</td>
<td>15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT}) accuracy(^{(1)})</td>
<td>Over (V_{IN}), (I_{OUT}), and temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{IN} + 1.0\ V \leq V_{IN} \leq 24\ V)</td>
<td>-6.25</td>
<td>+6.25</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(100\ \mu A \leq I_{OUT} \leq 50\ mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground pin current(^{(2)})</td>
<td>(I_{GND})</td>
<td>3.2</td>
<td>4.2</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>(0 \leq I_{OUT} \leq 50\ mA, T_J = -40^\circ C \text{ to } +85^\circ C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0\ mA \leq I_{OUT} \leq 50:\ mA)</td>
<td>3.2</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0\ mA \leq I_{OUT} \leq 50\ mA, V_{IN} = 24\ V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation (\Delta V_{OUT}/\Delta I_{OUT})</td>
<td>(I_{OUT} = 100\ \mu A\ \text{ to } 50\ mA)</td>
<td>22</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Output voltage line regulation (^{(1)}) (\Delta V_{OUT}/\Delta V_{IN})</td>
<td>(V_{OUT} + 1\ V < V_{IN} \leq 24\ V)</td>
<td>20</td>
<td>75</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Output noise voltage (V_r)</td>
<td>BW = 200 Hz to 100 kHz, (C_{OUT} = 10\ \mu F), (I_{OUT} = 50\ mA)</td>
<td>575</td>
<td></td>
<td></td>
<td>µVrms</td>
</tr>
<tr>
<td>Output current limit (I_{CL})</td>
<td>(V_{OUT} = 0\ V, V_{IN} \geq 3.5\ V)</td>
<td>125</td>
<td>750</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{OUT} = 0\ V, V_{IN} < 3.5\ V)</td>
<td>90</td>
<td>750</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power-supply ripple rejection (PSRR)</td>
<td>(f = 100\ kHz, C_{OUT} = 10\ \mu F)</td>
<td>60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Dropout voltage (V_{IN} = V_{OUT(\text{NOM})} - 1\ V)</td>
<td>(V_{DO}) (I_{OUT} = 50\ mA)</td>
<td>415</td>
<td>750</td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Minimum \(V_{IN} = V_{OUT} + V_{DO}\) or the value shown for Input voltage in this table, whichever is greater.

\(^{(2)}\) See Figure 1. The TPS71501 employs a leakage null control circuit. This circuit is active only if output current is less than pass FET leakage current. The circuit is typically active when output load is less than 5 µA, \(V_{IN}\) is greater than 18 V, and die temperature is greater than 100°C.
FUNCTIONAL BLOCK DIAGRAM

- **V**(IN)
- **GND**
- **V**(OUT)
- **R1**
- **R2**
- **FB**

Bandgap Reference

\[V_{\text{ref}} = 1.205 \text{ V} \]

Current Sense

Leakage Null Control Circuit

Figure 1. Functional Block Diagram

Table 1. Terminal Functions

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>NO.</td>
</tr>
<tr>
<td>FB</td>
<td>1</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
</tr>
<tr>
<td>IN</td>
<td>4</td>
</tr>
<tr>
<td>OUT</td>
<td>5</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
TYPICAL CHARACTERISTICS (continued)

Figure 11.

POWER UP / POWER DOWN

V_IN, V_OUT, t - Time - ms

Figure 12.

LINE TRANSIENT RESPONSE

V_IN, t - Time - µs

Figure 13.

LOAD TRANSIENT RESPONSE

V_IN, t - Time - µs

V_OUT = 3.3 V
R_L = 66 Ω
C_OUT = 10 µF

I_OUT = 50 mA
C_OUT = 10 µF

V_OUT = 3.3 V
C_OUT = 10 µF
APPLICATION INFORMATION

The TPS71501 LDO regulator has been optimized for ultra-low power applications such as the MSP430 microcontroller. Its ultra-low supply current maximizes efficiency at light loads, and its high input voltage range makes it suitable for supplies such as unconditioned solar panels.

External Capacitor Requirements

Although not required, a 0.047-µF or larger input bypass capacitor, connected between IN and GND and located close to the device, is recommended to improve transient response and noise rejection of the power supply as a whole. A higher-value input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source.

The TPS71501 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. Any capacitor (including ceramic and tantalum) ≥ 0.47 µF properly stabilizes this loop. X7R type capacitors are recommended but X5R and others may be used.

Power Dissipation and Junction Temperature

To ensure reliable operation, worst-case junction temperature should not exceed +125°C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D, which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using the following equation:

$$P_{D(max)} = \frac{T_{J,max} - T_A}{\theta_{JA}}$$ \hspace{1cm} (1)

where:

- $T_{J,max}$ is the maximum allowable junction temperature.
- θ_{JA} is the thermal resistance junction-to-ambient for the package (see the Dissipation Ratings table).
- T_A is the ambient temperature.

The regulator dissipation is calculated using:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$ \hspace{1cm} (2)

For a higher power package version of the TPS715xx, see the TPS715Axx.

Regulator Protection

The TPS71501 PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g., during power-down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might be appropriate.

The TPS71501 features internal current limiting. During normal operation, the TPS71501 limits output current to approximately 500 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. Take care not to exceed the power dissipation ratings of the package.
Programming the TPS71501 Adjustable LDO Regulator

The output voltage of the TPS71501 adjustable regulator is programmed using an external resistor divider as shown in Figure 14. The output voltage operating range is 1.2 V to 15 V, and is calculated using:

\[V_{\text{OUT}} = V_{\text{REF}} \times \left(1 + \frac{R_1}{R_2} \right) \]

where:
- \(V_{\text{REF}} = 1.205 \) V typ (the internal reference voltage)

Resistors \(R_1 \) and \(R_2 \) should be chosen for approximately 1.5-µA divider current. Lower value resistors can be used for improved noise performance, but the solution consumes more power. Higher resistor values should be avoided as leakage current into/out of FB across \(R_1/R_2 \) creates an offset voltage that artificially increases/decreases the feedback voltage and thus erroneously decreases/increases \(V_{\text{OUT}} \). The recommended design procedure is to choose \(R_2 = 1 \) MΩ to set the divider current at 1.5 µA, and then calculate \(R_1 \) using Equation 4:

\[R_1 = \left(\frac{V_{\text{OUT}}}{V_{\text{REF}}} - 1 \right) \times R_2 \]

\[\text{Figure 14. TPS71501 Adjustable LDO Regulator Programming} \]

Power the MSP430 Microcontroller

Several versions of the TPS715xx are ideal for powering the MSP430 microcontroller. Table 2 shows potential applications of some voltage versions.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>V_{OUT} (TYP)</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS71519</td>
<td>1.9 V</td>
<td>(V_{\text{OUT, MIN}} > 1.800) V required by many MSP430s. Allows lowest power consumption operation.</td>
</tr>
<tr>
<td>TPS71523</td>
<td>2.3 V</td>
<td>(V_{\text{OUT, MIN}} > 2.200) V required by some MSP430s FLASH operation.</td>
</tr>
<tr>
<td>TPS71530</td>
<td>3.0 V</td>
<td>(V_{\text{OUT, MIN}} > 2.700) V required by some MSP430s FLASH operation.</td>
</tr>
<tr>
<td>TPS715345</td>
<td>3.45 V</td>
<td>(V_{\text{OUT, MIN}} < 3.600) V required by some MSP430s. Allows highest speed operation.</td>
</tr>
</tbody>
</table>

The TPS715xx family offers many output voltage versions to allow designers to minimize the supply voltage for the processing speed required of the MSP430. This minimizes the supply current consumed by the MSP430.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS71501MDCKREP</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CVP</td>
<td>Samples</td>
</tr>
<tr>
<td>V62/08619-01XE</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>-55 to 125</td>
<td>CVP</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS71501-EP:

- Catalog: TPS71501
- Automotive: TPS71501-Q1

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS71501MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.41</td>
<td>2.41</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS71501MDCKREP</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>202.0</td>
<td>201.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and/or implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers represent that, with respect to their applications, Designers have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agree that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designers are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT RIGHT OR ANY OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.