1 Features

- ±0.5 LSB DNL
- 16-Bit Monotonic
- ±1 LSB INL
- Low Noise: 12 nV/√Hz
- Low Power: \(I_{DD} = 2 \mu A \)
- 2.7-V to 5.5-V Analog Power Supply
- 2-mA Full-Scale Current ±20%, with \(V_{REF} = 10 \) V
- 50-MHz Serial Interface
- 0.5-μs Settling Time
- 4-Quadrant Multiplying Reference
- Reference Bandwidth: 10 MHz
- ±10-V Reference Input
- Reference Dynamics: –105 THD
- Tiny 8-Lead 3 × 3 mm VSON and 3 × 5 mm VSSOP Packages
- Industry-Standard Pin Configuration

2 Applications

- Automatic Test Equipment
- Instrumentation
- Digitally Controlled Calibration
- Industrial Control PLCs

3 Description

The DAC8811 multiplying digital-to-analog converter (DAC) is designed to operate from a single 2.7-V to 5.5-V supply.

The applied external reference input voltage \(V_{REF} \) determines the full-scale output current. An internal feedback resistor (\(R_{FB} \)) provides temperature tracking for the full-scale output when combined with an external I-to-V precision amplifier.

A serial data interface offers high-speed, three-wire microcontroller-compatible inputs using data-in (SDI), clock (CLK), and chip-select (CS).

On power-up, the DAC register is filled with zeroes, and the DAC output is at zero scale.

The DAC8811 is packaged in space-saving 8-lead VSON and VSSOP packages.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC8811</td>
<td>VSSOP (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
<tr>
<td></td>
<td>VSON (8)</td>
<td>3.00 mm × 3.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description .. 1
4 Revision History ... 2
5 Device Comparison Table ... 4
6 Pin Configuration and Functions 4
7 Specifications .. 5
 7.1 Absolute Maximum Ratings 5
 7.2 ESD Ratings .. 5
 7.3 Recommended Operating Conditions 5
 7.4 Thermal Information ... 5
 7.5 Electrical Characteristics 6
 7.6 Timing Requirements ... 7
 7.7 Typical Characteristics: V_{DD} = 5 V...................... 8
 7.8 Typical Characteristics: V_{DD} = 2.7 V................. 10
8 Detailed Description .. 11
 8.1 Overview .. 11
 8.2 Functional Block Diagram 11
9 Application and Implementation 16
 9.1 Application Information 16
 9.2 Typical Application ... 16
10 Power Supply Recommendations 17
11 Layout .. 18
 11.1 Layout Guidelines .. 18
 11.2 Layout Example .. 18
12 Device and Documentation Support 19
 12.1 Documentation Support 19
 12.2 Community Resources 19
 12.3 Trademarks .. 19
 12.4 Electrostatic Discharge Caution 19
 12.5 Glossary .. 19
13 Mechanical, Packaging, and Orderable Information 19

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (October 2015) to Revision D Page

• Changed the DAC8811 Timing Diagram image to show the setup and hold time with respect to rising edge 7
• Changed two instances of falling to rising in the DAC8811 Input Shift Register section ... 15
• Changed the SYNC Interrupt Facility image .. 15

Changes from Revision B (February 2007) to Revision C Page

• Added ESD Ratings table, Recommended Operating Conditions table, Thermal Information table, Timing Requirements table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information sections. ... 1
• Changed R3' From: 50 kΩ To: 50 Ω in Figure 23 .. 14

Changes from Revision A (December 2004) to Revision B Page

• Added a new paragraph to the Description, "On power-up,..." ... 1
• Changed the Simplified Schematic to include the Power-On Reset .. 1
• Added V_{REF}, R_{FB} to GND to the Absolute Maximum Ratings .. 5
• Changed the ESD rating of HBM From: 1500 To: 4000 in the Absolute Maximum Ratings 5
• Added table note: " All ac characteristic tests are performed..." to the Electrical Characteristics 6
• Added test conditions to the Output voltage settling time of the AC characteristics section in the Timing Requirements ... 7
• Added table note: " All ac characteristic tests are performed..." to the Electrical Characteristics 7
• Changed Figure 9 .. 8
<table>
<thead>
<tr>
<th>Changes from Original (November 2004) to Revision A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Removed the Product Preview label</td>
<td>1</td>
</tr>
<tr>
<td>• Added information to the Features</td>
<td>1</td>
</tr>
<tr>
<td>• Added Output leakage current Data = 0000h, $T_A = T_{MAX}$ in the Electrical Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>• Added Input high voltage for $V_{DD} = 2.7$ V and 2.5 V in the Electrical Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>• Changed the values of the Power Requirements and the AC characteristics section in the Electrical Characteristics</td>
<td>6</td>
</tr>
</tbody>
</table>
5 Device Comparison Table

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>INL (LSB)</th>
<th>DNL (LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC8811ICDGK</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>DAC8811IBDGK</td>
<td>±2</td>
<td>±1</td>
</tr>
<tr>
<td>DAC8811ICDRB</td>
<td>±1</td>
<td>±1</td>
</tr>
<tr>
<td>DAC8811IBDRB</td>
<td>±2</td>
<td>±1</td>
</tr>
</tbody>
</table>

6 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>I</td>
<td>Clock input; positive edge triggered clocks data into shift register</td>
</tr>
<tr>
<td>SDI</td>
<td>I</td>
<td>Serial register input; data loads directly into the shift register MSB first. Extra leading bits are ignored.</td>
</tr>
<tr>
<td>RFB</td>
<td>O</td>
<td>Internal matching feedback resistor. Connect to external op amp output.</td>
</tr>
<tr>
<td>VREF</td>
<td>I</td>
<td>DAC reference input pin. Establishes DAC full-scale voltage. Constant input resistance versus code.</td>
</tr>
<tr>
<td>IOUT</td>
<td>O</td>
<td>DAC current output. Connects to inverting terminal of external precision I/V op amp.</td>
</tr>
<tr>
<td>GND</td>
<td>G</td>
<td>Analog and digital ground.</td>
</tr>
<tr>
<td>VDD</td>
<td>I</td>
<td>Positive power supply input. Specified operating range of 2.7 V to 5.5 V.</td>
</tr>
<tr>
<td>CS</td>
<td>I</td>
<td>Chip-select; active low digital input. Transfers shift register data to DAC register on rising edge. See Table 1 for operation.</td>
</tr>
</tbody>
</table>
7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (V_{DD}) to GND</td>
<td>–0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V \text{ (I}_{\text{OUT}}) to GND</td>
<td>–0.3</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Digital input voltage GND</td>
<td>–0.3</td>
<td>(V_{DD} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>Reference voltage, (V_{REF}) (R_{FB}) to GND</td>
<td>–25</td>
<td>25</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>–40</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature, (T_J)</td>
<td>25</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>(V_{(ESD)}) Electrostatic discharge</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±4000</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage to GND</td>
<td>2.7</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Operating ambient temperature, (T_A)</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

7.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>DAC8811</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>169.6</td>
<td>46.7</td>
</tr>
<tr>
<td>(R_{JUC(top)}) Junction-to-case (top) thermal resistance</td>
<td>64.2</td>
<td>61.3</td>
</tr>
<tr>
<td>(R_{JUB}) Junction-to-board thermal resistance</td>
<td>90.3</td>
<td>22</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>7.7</td>
<td>1.1</td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>88.8</td>
<td>22.1</td>
</tr>
<tr>
<td>(R_{JUC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>N/A</td>
<td>3.8</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, \textit{SPRA953}.
7.5 Electrical Characteristics

V\textsubscript{DD} = 2.7 V to 5.5 V; I\textsubscript{OUT} = Virtual GND, GND = 0 V; V\textsubscript{REF} = 10 V; T\textsubscript{A} = full operating temperature. All specifications -40°C to 85°C, unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>Relative accuracy DAC8811C</td>
<td>±1</td>
<td></td>
<td></td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>Relative accuracy DAC8811B</td>
<td>±2</td>
<td></td>
<td></td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>Differential nonlinearity</td>
<td>±0.5</td>
<td>±1</td>
<td></td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>Data = 0000h, T\textsubscript{A} = 25°C</td>
<td>10</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Output leakage current</td>
<td>Data = 0000h, T\textsubscript{A} = T\textsubscript{MAX}</td>
<td>10</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Full-scale gain error</td>
<td>All ones loaded to DAC register</td>
<td>±1</td>
<td>±4</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Full-scale tempco</td>
<td></td>
<td>±3</td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
</tbody>
</table>

OUTPUT CHARACTERISTICS\(^{(1)}\)					
Output current		2			mA
Output capacitance	Code dependent	50			pF

REFERENCE INPUT\(^{(1)}\)					
V\textsubscript{REF} Range	−15	15			V
Input resistance	5				kΩ
Input capacitance	5				pF

LOGIC INPUTS AND OUTPUT\(^{(1)}\)					
V\textsubscript{IL} Input low voltage	V\textsubscript{DD} = 2.7V	0.6			V
	V\textsubscript{DD} = 5V	0.8			V
V\textsubscript{IH} Input high voltage	V\textsubscript{DD} = 2.7V	2.1			V
	V\textsubscript{DD} = 5V	2.4			V
I\textsubscript{IL} Input leakage current		10			µA
C\textsubscript{IL} Input capacitance		10			pF

POWER REQUIREMENTS					
V\textsubscript{DD}	2.7	5.5			V
I\textsubscript{DD} (normal operation)		5			µA
V\textsubscript{DD} = 4.5 V to 5.5 V	V\textsubscript{IH} = V\textsubscript{DD} and V\textsubscript{IL} = GND	3	5		µA
V\textsubscript{DD} = 2.7 V to 3.6 V	V\textsubscript{IH} = V\textsubscript{DD} and V\textsubscript{IL} = GND	1	2.5		µA

AC CHARACTERISTICS\(^{(1)}\)\(^{(2)}\)					
BW −3 dB Reference multiplying BW	V\textsubscript{REF} = 5 Vpp, Data = FFFFh	10			MHz
DAC glitch impulse	V\textsubscript{REF} = 0 V to 10 V, Data = 7FFFh to 8000h to 7FFFh	2			nV/s
Feed through error V\textsubscript{OUT}/V\textsubscript{REF}	Data = 0000h, V\textsubscript{REF} = 100 mVRMS, f = 100kHz	−70			dB
Digital feed through	CS = 1 and f\textsubscript{CLK} = 1 MHz	2			nV/s
Total harmonic distortion	V\textsubscript{REF} = 5 Vpp, Data = FFFFh, f = 1 kHz	−105			dB
Output spot noise voltage	f = 1 kHz, BW = 1 Hz	12			nV/√Hz

\(^{1}\) Specified by design and characterization; not production tested.

\(^{2}\) All ac characteristic tests are performed in a closed-loop system using the THS4011 I-to-V converter amplifier.
7.6 Timing Requirements

<table>
<thead>
<tr>
<th>INTERFACE TIMING</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{CLK} Clock input frequency</td>
<td>50</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>$t_{\text{(CH)}}$ Clock pulse width high</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{(CL)}}$ Clock pulse width low</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{(CSS)}}$ CS to Clock setup time</td>
<td>0</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{(CSH)}}$ Clock to CS hold time</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{(DS)}}$ Data setup time</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{(DH)}}$ Data hold time</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

AC CHARACTERISTICS\(^{(1)}\)\(^{(2)}\)

| t_{s} Output voltage settling time | To ±0.1% of full-scale, Data = 0000h to FFFFh to 0000h | 0.3 | µs |
| | To ±0.0015% of full-scale, Data = 0000h to FFFFh to 0000h | 0.5 | µs |

(1) Specified by design and characterization; not production tested.
(2) All ac characteristic tests are performed in a closed-loop system using the THS4011 I-to-V converter amplifier.

![Figure 1. DAC8811 Timing Diagram](image-url)
7.7 Typical Characteristics: $V_{DD} = 5$ V

At $T_A = 25^\circ$C, $+V_{DD} = 5$ V, unless otherwise noted.

Figure 2. Linearity Error vs Digital Input Code

Figure 3. Differential Linearity Error vs Digital Input Code

Figure 4. Linearity Error vs Digital Input Code

Figure 5. Differential Linearity Error vs Digital Input Code

Figure 6. Linearity Error vs Digital Input Code

Figure 7. Differential Linearity Error vs Digital Input Code
Typical Characteristics: $V_{DD} = 5$ V (continued)

At $T_A = 25^\circ C$, $+V_{DD} = 5$ V, unless otherwise noted.

![Graph](image)

Figure 8. Supply Current vs Logic Input Voltage

![Graph](image)

Figure 9. Reference Multiplying Bandwidth

![Graph](image)

Figure 10. DAC Glitch

![Graph](image)

Figure 11. DAC Settling Time
7.8 Typical Characteristics: $V_{DD} = 2.7$ V

At $T_A = 25^\circ$C, $+V_{DD} = 2.7$ V, unless otherwise noted.

Figure 12. Linearity Error vs Digital Input Code

Figure 13. Differential Linearity Error vs Digital Input Code

Figure 14. Linearity Error vs Digital Input Code

Figure 15. Differential Linearity Error vs Digital Input Code

Figure 16. Linearity Error vs Digital Input Code

Figure 17. Differential Linearity Error vs Digital Input Code
8 Detailed Description

8.1 Overview
The DAC8811 is a single channel current output, 16-bit digital-to-analog converter (DAC). The device includes a 3-wire serial interface to communicate with most DSPs.

8.2 Functional Block Diagram

8.3 Feature Description
The DAC8811 is a single channel current output, 16-bit digital-to-analog converter (DAC). The architecture, illustrated in Figure 18, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the ladder is either switched to GND or the \(I_{\text{OUT}} \) terminal. The \(I_{\text{OUT}} \) terminal of the DAC is held at a virtual GND potential by the use of an external I/V converter op amp. The R-2R ladder is connected to an external reference input \(V_{\text{REF}} \) that determines the DAC full-scale current. The R-2R ladder presents a code independent load impedance to the external reference of 5 k\(\Omega \) ±25%. The external reference voltage can vary in a range of -15 V to 15 V, thus providing bipolar \(I_{\text{OUT}} \) current operation. By using an external I/V converter and the DAC8811 \(R_{\text{FB}} \) resistor, output voltage ranges of \(-V_{\text{REF}}\) to \(V_{\text{REF}}\) can be generated.

\[
V_{\text{OUT}} = -V_{\text{REF}} \times \frac{\text{CODE}}{65536}
\]

Figure 18. Equivalent R-2R DAC Circuit
Feature Description (continued)

Each DAC code determines the 2R leg switch position to either GND or \(I_{\text{OUT}} \). Because the DAC output impedance as seen looking into the \(I_{\text{OUT}} \) terminal changes versus code, the external I/V converter noise gain will also change. Because of this, the external I/V converter op amp must have a sufficiently low offset voltage such that the amplifier offset is not modulated by the DAC \(I_{\text{OUT}} \) terminal impedance change. External op amps with large offset voltages can produce INL errors in the transfer function of the DAC8811 due to offset modulation versus DAC code. For best linearity performance of the DAC8811, an operational amplifier (OPA277) is recommended (Figure 19). This circuit allows \(V_{\text{REF}} \) swinging from -10 V to +10 V.

![Figure 19. Voltage Output Configuration](image)

8.3.1 Stability Circuit

For a current-to-voltage design (see Figure 20), the DAC8811 current output (\(I_{\text{OUT}} \)) and the connection with the inverting node of the op amp should be as short as possible and according to correct PCB layout design. For each code change, there is a step function. If the GBP of the op amp is limited and parasitic capacitance is excessive at the inverting node then gain peaking is possible. Therefore, for circuit stability, a compensation capacitor \(C1 \) (4 pF to 20 pF typ) can be added to the design, as shown in Figure 20.

![Figure 20. Gain Peaking Prevention Circuit With Compensation Capacitor](image)

8.3.2 Positive Voltage Output Circuit

As Figure 21 illustrates, in order to generate a positive voltage output, a negative reference is input to the DAC8811. This design is suggested instead of using an inverting amp to invert the output due to tolerance errors of the resistor. For a negative reference, \(V_{\text{OUT}} \) and GND of the reference are level-shifted to a virtual ground and a –2.5 V input to the DAC8811 with an op amp.
8.3.3 Bipolar Output Circuit

The DAC8811, as a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the full-scale output \(I_{\text{OUT}} \) is the inverse of the input reference voltage at \(V_{\text{REF}} \).

Some applications require full 4-quadrant multiplying capabilities or bipolar output swing. As shown in Figure 22, external op amp U4 is added as a summing amp and has a gain of 2X that widens the output span to 5 V. A 4-quadrant multiplying circuit is implemented by using a 2.5-V offset of the reference voltage to bias U4. According to the circuit transfer equation given in Equation 2, input data (D) from code 0 to full scale produces output voltages of \(V_{\text{OUT}} = -2.5 \) V to \(V_{\text{OUT}} = +2.5 \) V.

\[
V_{\text{OUT}} = \left(\frac{D}{32,768} - 1 \right) \times V_{\text{REF}}
\]

(2)

External resistance mismatching is the significant error in Figure 22.

8.3.4 Programmable Current Source Circuit

A DAC8811 can be integrated into the circuit in Figure 23 to implement an improved Howland current pump for precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two features of the circuit. With a matched resistor network, the load current of the circuit is shown by Equation 3:

\[
I_L = \left(\frac{R_2 + R_3}{R_1} \right) \times V_{\text{REF}} \times D
\]

(3)

The value of \(R_3 \) in the previous equation can be reduced to increase the output current drive of U3. U3 can drive \(\pm 20 \) mA in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the circuit compensation capacitor \(C_1 \) in the circuit is not suggested as a result of the change in the output impedance \(Z_O \), according to Equation 4:
As shown in Equation 4, with matched resistors, Z_O is infinite and the circuit is optimum for use as a current source. However, if unmatched resistors are used, Z_O is positive or negative with negative output impedance being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a value of several pF is suggested.

Figure 23. Programmable Bidirectional Current Source Circuit

8.4 Device Functional Mode

<table>
<thead>
<tr>
<th>CLK</th>
<th>CS</th>
<th>SERIAL SHIFT REGISTER</th>
<th>DAC REGISTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>H</td>
<td>No effect</td>
<td>Latched</td>
</tr>
<tr>
<td>↑+</td>
<td>L</td>
<td>Shift register data advanced one bit</td>
<td>Latched</td>
</tr>
<tr>
<td>X</td>
<td>H</td>
<td>No effect</td>
<td>Latched</td>
</tr>
<tr>
<td>X</td>
<td>↑+</td>
<td>Shift register data transferred to DAC register</td>
<td>New data loaded from serial register</td>
</tr>
</tbody>
</table>

(1) ↑+ Positive logic transition; X = Don’t care
8.5 Programming

8.5.1 DAC8811 Input Shift Register

The DAC8811 has a 3-wire serial interface (CS, SCLK, and DIN) compatible with SPI, QSPI, and Microwire interface standards, as well as most DSPs. See Figure 1 for an example of a typical write sequence.

The input shift register is 16 bits wide, as shown in Figure 25. The write sequence begins by bringing the CS line low. Data from the DIN line are clocked into the 16-bit shift register on each rising edge of CLK. The serial clock frequency can be as high as 50 MHz, making the DAC8811 compatible with high-speed DSPs. On the 16th rising edge of the serial clock, the last data bit is clocked in and the programmed function is executed.

At this point, the CS line may be kept low or brought high. In either case, it must be brought high for a minimum of 20 ns before the next write sequence so that a falling edge of CS can initiate the next write sequence.

![Figure 24. Data Input Register](image)

<table>
<thead>
<tr>
<th>DB15</th>
<th>DB14</th>
<th>DB13</th>
<th>DB12</th>
<th>DB11</th>
<th>DB10</th>
<th>DB9</th>
<th>DB8</th>
<th>DB7</th>
<th>DB6</th>
<th>DB5</th>
<th>DB4</th>
<th>DB3</th>
<th>DB2</th>
<th>DB1</th>
<th>DB0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D15</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
<td>D10</td>
<td>D9</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

![Figure 25. CS Interrupt Facility](image)

Invalid Write Sequence: CS HIGH before 16th Rising Edge
Valid Write Sequence: Output Updates on 16th Rising Edge
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
This design features the DAC8811 followed by a four-quadrant circuit for multiplying DACs. The circuit conditions the current output of an MDAC into a symmetrical bipolar voltage. The design uses an operational amplifier in a transimpedance configuration to convert the MDAC current into a voltage followed by an additional amplifier in a summing configuration to apply an offset voltage.

9.2 Typical Application

Figure 26. Typical Application

9.2.1 Design Requirements
Using a multiplying DAC requires a transimpedance stage with an amplifier with minimal input offset voltage. The tolerance of the external resistors will vary depending on the goals of the application, but for optimal performance with the DAC8811 the tolerance should be 0.1 % for all of the external resistors. The summing stage amplifier also needs low input-offset voltage and enough slew rate for the output range desired.

9.2.2 Detailed Design Procedure
The first stage of the design converts the current output of the MDAC (I_{OUT}) to a voltage (V_{OUT}) using an amplifier in a transimpedance configuration. A typical MDAC features an on-chip feedback resistor sized appropriately to match the ratio of the resistor values used in the DAC R-2R ladder. This resistor is available using the input shown in Figure 26 called RFB on the MDAC. The MDAC reference and the output of the transimpedance stage are then connected to the inverting input of the amplifier in the summing stage to produce the output that is defined by Equation 5.

$$V_{OUT (Code)} = \left(\frac{2^{FB2}}{R_{G1}} \times \frac{V_{REF} \times \text{Code}}{2^{\text{RES}}} \right) - \left(\frac{R_{FB2}}{R_{G2}} \times V_{REF} \right)$$

(5)
Typical Application (continued)

9.2.3 Application Curves

Figure 27 shows the output voltage vs code of this design, while Figure 28 shows the output error vs code. Keep in mind that the error gets worse as the output code increases because the contribution of the gain error increases with code.

10 Power Supply Recommendations

These devices can operate within the specified supply voltage range of 2.7 V to 5.5 V. The power applied to AVDD should be well-regulated and low-noise. In order to further minimize noise from the power supplies, a strong recommendation is to include a pair of 100 pF and 1 nF capacitors and a 0.1 μF to 1 μF bypass capacitor. The current consumption of the AVDD pin, the short-circuit current limit, and the load current for these devices are listed in the Electrical Characteristics table. Choose the power supplies for these devices to meet the aforementioned current requirements.
11 Layout

11.1 Layout Guidelines

A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power supplies. The DAC8811 devices offer single-supply operation, and are often used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to keep digital noise from appearing at the output. As a result of the single ground pin of the DAC8811, all return currents (including digital and analog return currents for the DAC) must flow through a single point. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from the ground connection for the digital components until they were connected at the power-entry point of the system. The power applied to AVDD should be well-regulated and low noise. Switching power supplies and dc-dc converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes as their internal logic switches states. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. As with the GND connection, AVDD should be connected to a power-supply plane or trace that is separate from the connection for digital logic until they are connected at the power-entry point. In addition, a pair of 100-pF to 1-nF capacitors and a 0.1-μF to 1-μF bypass capacitor are strongly recommended. In some situations, additional bypassing may be required, such as a 100 μF electrolytic capacitor or even a pi filter made up of inductors and capacitors – all designed essentially to provide low-pass filtering for the supply and remove the high-frequency noise.

While all the other recommendations apply to most DACs, multiplying DACs also require that the transimpedance amplifier be placed in close proximity in order to minimize non-linearity errors introduced by any resistance between the I_OUT pin and V- pin of the amplifier.

11.2 Layout Example

![Figure 29. DAC8811 Layout Example](image-url)
12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation
For related documentation see the following:
• DAC8801/11EVM, SLAU151
• Interfacing the DAC8811 to the MSP430F449, SLAA238
• Topology and Noise Using Multiplying DAC, SBAA146

12.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks
E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (RoHS) & no Sb/Br</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC8811BDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811BDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811BDGKTG4</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811BDRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811BDRBTG4</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDGKRG4</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDGKTG4</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAUG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDRBT</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
<tr>
<td>DAC8811CDRBTG4</td>
<td>ACTIVE</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>Green</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>D11</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines “Green” to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI’s knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI’s liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

- **Device**: DAC8811IBDRBT
 - **Package Type**: SON
 - **Drawing**: DRB
 - **Pins**: 8
 - **SPQ**: 250
 - **Reel Diameter (mm)**: 180.0
 - **Reel Width W1 (mm)**: 12.4
 - **A0 (mm)**: 3.3
 - **B0 (mm)**: 3.3
 - **K0 (mm)**: 1.1
 - **P1 (mm)**: 8.0
 - **W (mm)**: 8.0
 - **Pin1 Quadrant**: Q2

- **Device**: DAC8811ICDGKR
 - **Package Type**: VSSOP
 - **Drawing**: DGK
 - **Pins**: 8
 - **SPQ**: 2500
 - **Reel Diameter (mm)**: 330.0
 - **Reel Width W1 (mm)**: 12.4
 - **A0 (mm)**: 5.3
 - **B0 (mm)**: 3.4
 - **K0 (mm)**: 1.4
 - **P1 (mm)**: 8.0
 - **W (mm)**: 8.0
 - **Pin1 Quadrant**: Q1

- **Device**: DAC8811ICDGKT
 - **Package Type**: VSSOP
 - **Drawing**: DGK
 - **Pins**: 8
 - **SPQ**: 250
 - **Reel Diameter (mm)**: 330.0
 - **Reel Width W1 (mm)**: 12.4
 - **A0 (mm)**: 5.3
 - **B0 (mm)**: 3.4
 - **K0 (mm)**: 1.4
 - **P1 (mm)**: 8.0
 - **W (mm)**: 8.0
 - **Pin1 Quadrant**: Q1

- **Device**: DAC8811ICDRBT
 - **Package Type**: SON
 - **Drawing**: DRB
 - **Pins**: 8
 - **SPQ**: 250
 - **Reel Diameter (mm)**: 180.0
 - **Reel Width W1 (mm)**: 12.4
 - **A0 (mm)**: 3.3
 - **B0 (mm)**: 3.3
 - **K0 (mm)**: 1.1
 - **P1 (mm)**: 8.0
 - **W (mm)**: 8.0
 - **Pin1 Quadrant**: Q2

All dimensions are nominal.

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

- **Sprocket Holes**
- **User Direction of Feed**
- **Pocket Quadrants**

www.ti.com 28-Jan-2018
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC8811IBDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>DAC8811ICDGKR</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>DAC8811ICDGKT</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>366.0</td>
<td>364.0</td>
<td>50.0</td>
</tr>
<tr>
<td>DAC8811ICDRBT</td>
<td>SON</td>
<td>DRB</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
 ▶ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
 ▶ Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC–7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC–7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers agree that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designers are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE, IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.