This device is a monolithic two-stage high-frequency amplifier with differential inputs and outputs.

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pin. No external compensation components are required.

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL026C is characterized for operation from 0°C to 70°C.

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise Noted)

- Supply voltage, \(V_{CC+} \) (see Note 1) \(\leq 8 \) V
- Supply voltage, \(V_{CC-} \) (see Note 1) \(\leq -8 \) V
- Differential input voltage \(\leq \pm 5 \) V
- Common-mode input voltage \(\leq \pm 6 \) V
- Output current \(\leq \pm 10 \) mA
- Continuous total dissipation \(\leq 725 \) mW
- Operating free-air temperature range \(0°C \) to \(70°C \)
- Storage temperature range \(-65°C \) to \(150°C \)
- Lead temperature range 1.6 mm (1/16 inch) from case for 10 seconds \(\leq 260°C \)

† Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to the midpoint of \(V_{CC+} \) and \(V_{CC-} \), except differential input and output voltages.

Dissipation Rating Table

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>(T_A \leq 25°C) Power Rating</th>
<th>Operating Factor Above (T_A = 25°C)</th>
<th>(T_A = 70°C) Power Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>725 mW</td>
<td>5.8 mW/°C</td>
<td>464 mW</td>
</tr>
<tr>
<td>P</td>
<td>1000 mW</td>
<td>8.0 mW/°C</td>
<td>640 mW</td>
</tr>
</tbody>
</table>
recommended operating conditions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC}) +</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>Supply voltage, (V_{CC}) –</td>
<td>–3</td>
<td>–6</td>
<td>–8</td>
<td>V</td>
</tr>
<tr>
<td>Operating free-air temperature, (T_A)</td>
<td>0</td>
<td>70</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

electrical characteristics at 25°C operating free-air temperature, \(V_{CC} = \pm 6 \text{ V} \), \(V_{AGC} = 0 \), REF OUT pin open (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FIGURE</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{VD}) Large-signal differential voltage amplification</td>
<td>1</td>
<td>(V_{O(PP)} = 3 \text{ V}, R_L = 2 \text{ kΩ})</td>
<td>65</td>
<td>85</td>
<td>105</td>
<td>V/V</td>
</tr>
<tr>
<td>(\Delta A_{VD}) Change in voltage amplification</td>
<td>1</td>
<td>(V_{IPP} = 28.5 \text{ mV}, R_L = 2 \text{ kΩ}, V_{AGC} - V_{ref} = \pm 180 \text{ mV})</td>
<td>–50</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(V_{ref}) Voltage at REF OUT</td>
<td>1</td>
<td>(I_{ref} = –1 \text{ mA to 100 \text{ μA}})</td>
<td>1.3</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BW Bandwidth (–3 dB)</td>
<td>2</td>
<td>(V_{O(PP)} = 1 \text{ V}, V_{AGC} - V_{ref} = \pm 180 \text{ mV})</td>
<td>50</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>I_{IO} Input offset current</td>
<td></td>
<td></td>
<td>0.4</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IB} Input bias current</td>
<td></td>
<td></td>
<td>10</td>
<td>30</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>(V_{ICR}) Common-mode input voltage range</td>
<td>3</td>
<td></td>
<td>±1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OC}) Common-mode output voltage</td>
<td>1</td>
<td>(R_L = \infty)</td>
<td>3.25</td>
<td>3.75</td>
<td>4.25</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{OC}) Change in common-mode output voltage</td>
<td>1</td>
<td>(V_{AGC} = 0 \text{ to 2 V}, R_L = \infty)</td>
<td>300</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(V_{OO}) Output offset voltage</td>
<td>1</td>
<td>(V_{ID} = 0), (R_L = \infty)</td>
<td>0.75</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{PP}) Maximum peak-to-peak output voltage swing</td>
<td>1</td>
<td>(R_L = 2 \text{ kΩ})</td>
<td>3</td>
<td>4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(r_i) Input resistance at AGC, IN+, or IN –</td>
<td>1</td>
<td>(R_L = 2 \text{ kΩ})</td>
<td>10</td>
<td>30</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>(r_o) Output resistance</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>CMRR Common-mode rejection ratio</td>
<td>3</td>
<td>(V_{IC} = \pm 1 \text{ V}, f = 100 \text{ kHz})</td>
<td>60</td>
<td>86</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(k_{SVR}) Supply voltage rejection ratio ((\Delta V_{CC} / \Delta V_{O}))</td>
<td>4</td>
<td>(\Delta V_{CC} = \pm 0.5 \text{ V}, \Delta V_{O} = \pm 0.5 \text{ V})</td>
<td>50</td>
<td>70</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(V_{n}) Broadband equivalent noise voltage</td>
<td>4</td>
<td>(BW = 1 \text{ kHz to 10 MHz})</td>
<td>12</td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>(I_{pd}) Propagation delay time</td>
<td>2</td>
<td>(\Delta V_{O} = 1 \text{ V})</td>
<td>6</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(I_{r}) Rise time</td>
<td>2</td>
<td>(\Delta V_{O} = 1 \text{ V})</td>
<td>4.5</td>
<td>12</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(I_{sink(max)}) Maximum output sink current</td>
<td>2</td>
<td>(V_{ID} = 1 \text{ V}, V_{O} = 3 \text{ V})</td>
<td>3</td>
<td>4</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CC}) Supply current</td>
<td></td>
<td></td>
<td>22</td>
<td>27</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
electrical characteristics over recommended operating free-air temperature range, $V_{CC} = \pm 6$ V, $V_{AGC} = 0$, REF OUT pin open (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>FIGURE</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{VD}</td>
<td>1</td>
<td>$V_{O(PP)} = 3$ V, $R_L = 2$ kΩ</td>
<td>55</td>
<td>6</td>
<td>115</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>1</td>
<td>$V_{ID} = 0$, $R_L = \infty$</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IB}</td>
<td>1</td>
<td>$R_L = 2$ kΩ</td>
<td>2.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ICR}</td>
<td>3</td>
<td>$V_{IC} = \pm 1$ V, $f = 100$ kHz</td>
<td>50</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OO}</td>
<td>1</td>
<td>$V_{OD} = 0$</td>
<td>1.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{O(PP)}$</td>
<td>1</td>
<td>$R_L = 2$ kΩ</td>
<td>2.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OC}</td>
<td>1</td>
<td>No load, No signal</td>
<td>30</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sink(max)}$</td>
<td>4</td>
<td>$V_{OD} = 1$ V, $V_{OD} = 3$ V</td>
<td>2.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>1</td>
<td>$V_{OD} = 0$</td>
<td>0.2</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuit

Figure 2. Test Circuit

Figure 3. Test Circuit

Figure 4. Test Circuit
TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION

VS

DIFFERENTIAL GAIN-CONTROL VOLTAGE

Figure 5
APPLICATION INFORMATION

gain characteristics

Figure 5 shows the differential voltage amplification versus the differential gain-control voltage ($V_{AGC} - V_{ref}$). V_{AGC} is the absolute voltage applied to the AGC input and V_{ref} is the dc voltage at the REF OUT output. As V_{AGC} increases with respect to V_{ref}, the TL026C gain changes from maximum to minimum. As shown in Figure 5 for example, V_{AGC} would have to vary from approximately 180 mV less than V_{ref} to approximately 180 mV greater than V_{ref} to change the gain from maximum to minimum. The total signal change in V_{AGC} is defined by the following equation.

$$\Delta V_{AGC} = V_{ref} + 180 \text{ mV} - (V_{ref} - 180 \text{ mV})$$

However, because V_{AGC} varies as the ac AGC signal varies and also differentially around V_{ref}, then V_{AGC} should have an ac signal component and a dc component. To preserve the dc and thermal tracking of the device, this dc voltage must be generated from V_{ref}. To apply proper bias to the AGC input, the external circuit used to generate V_{AGC} must combine these two voltages. Figures 6 and 7 show two circuits that will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete AGC systems.

circuit operation

Amplifier A1 amplifies and inverts the rectified and filtered AGC signal voltage V_C producing output voltage V_1. Amplifier A2 is a differential amplifier that inverts V_1 again and adds the scaled V_{ref} voltage. This conditioning makes V_{AGC} the sum of the signal plus the scaled V_{ref}. As the signal voltage increases, V_{AGC} increases and the gain of the TL026C is reduced. This maintains a constant output level.

feedback circuit equations

Following the AGC input signal (Figures 6 and 7) from the OUT output through the feedback amplifiers to the AGC input produces the following equations:

1. AC output to diode D1, assuming sinusoidal signals
 $$V_O = V_{OP} \sin (\omega t)$$
 where:
 $$V_{OP} = \text{peak voltage of } V_O$$

2. Diode D1 and capacitor C1 output
 $$V_C = V_{OP} - V_F$$
 where:
 $$V_F = \text{forward voltage drop of D1}$$
 $$V_C = \text{voltage across capacitor C1}$$

3. A1 output
 $$V_1 = -\frac{R2}{R1} \cdot V_C$$

4. A2 output ($R3 = R4$)
 $$V_{AGC} = \frac{R2}{R1} \cdot V_C + 2 \cdot \frac{R6}{R5 + R6} \cdot V_{ref}$$
APPLICATION INFORMATION

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL026C AGC pin consists of an AGC signal equal to:

\[\frac{R_2}{R_1} V_C \]

and a dc voltage derived from \(V_{\text{ref}} \), defined as the quiescent value of \(V_{\text{AGC}} \):

\[V_{\text{AGC}}(q) = 2 \frac{R_6}{R_5 + R_6} V_{\text{ref}} \]

For the initial resistor calculations, \(V_{\text{ref}} \) is assumed to be typically 1.4 V making quiescent \(V_{\text{AGC}} \) approximately 1.22 V \((V_{\text{AGC}}(q) = V_{\text{ref}} - 180 \text{ mV}) \). This voltage allows the TL026C to operate at maximum gain under no-signal and low-signal conditions. In addition, with \(V_{\text{ref}} \) used as both internal and external reference, its variation from device to device automatically adjusts the overall bias and makes AGC operation essentially independent of the absolute value of \(V_{\text{ref}} \). The resistor divider needs to be calculated only once and is valid for the full tolerance of \(V_{\text{ref}} \).

output voltage limits (see Figures 6 and 7)

The output voltage level desired must fall within the following limits:

1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-kΩ load resistor, the user-selected design limit for the peak output swing should not exceed 1.5 V.
2. The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is used, this voltage is approximately 0.7 V. The output voltage \(V_O \) must have sufficient amplitude to exceed the rectifying diode drop. An Schottky diode can be used to reduce the \(V_O \) level required.

gain calculations for a peak output voltage of 1 V

A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between the limits of conditions 1 and 2 in the preceding paragraph.

Using equation 3 \((V_C = V_{\text{OP}} - V_d) \), \(V_C \) is calculated as follows:

\[V_C = 1 \text{ V} - 0.7 \text{ V} \]
\[V_C = 0.3 \text{ V} \]

Therefore, the gain of A1 must produce a voltage V1 that is equal to or greater than the total change in \(V_{\text{AGC}} \) for maximum TL026C gain change.

With a total change in \(V_{\text{AGC}} \) of 360 mV and using equation 4, the calculation is as follows:

\[-\frac{V_1}{V_C} = \frac{\Delta V_{\text{AGC}}}{V_C} = \frac{R_2}{R_1} = \frac{0.36}{0.3} = 1.2 \]

If \(R_1 \) is 10 kΩ, \(R_2 \) is 1.2 time \(R_1 \) or 12 kΩ.

Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in Figures 6 and 7 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature variations of the diode and minimum output voltage specification.
APPLICATION INFORMATION

The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about 32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.

considerations for the use of the TL026C

To obtain the most reliable results, RF breadboarding techniques must be used. A groundplane board should be used and power supplies should be bypassed with 0.1-μF capacitors. Input leads and output leads should be as short as possible and separated from each other.

A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL026C and, while the circuit is in the AGC mode, the output signal may become distorted.

To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider technique shown in Figure 6 should be used.

In Figure 6, the circuit configuration is shown with no attenuation. The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about 32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output voltage is desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.

To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider technique shown in Figure 6 should be used.

NOTE: VCC+ = 6 V and VCC− = −6 V for TL026C and amplifiers A1 and A2.

Figure 6. Typical Application Circuit With No Attenuation
APPLICATION INFORMATION

![Circuit Diagram](image)

Figure 7. Typical Application Circuit With Attenuation

NOTE: $V_{CC}^+ = 6$ V and $V_{CC}^- = -6$ V for TL026C and amplifiers A1 and A2.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL026CD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>0 to 70</td>
<td>TL026C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL026CDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>0 to 70</td>
<td>TL026C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL026CDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>0 to 70</td>
<td>TL026C</td>
<td>Samples</td>
</tr>
<tr>
<td>TL026CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TL026CP</td>
<td>Samples</td>
</tr>
<tr>
<td>TL026CPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TL026CPE4</td>
<td>Samples</td>
</tr>
<tr>
<td>TL026CPSR</td>
<td>ACTIVE</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>T026</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBsolete:** TI has discontinued the production of the device.

(2) **Eco Plan** - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD:** The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS):** TI's terms “Lead-Free” or “Pb-Free” mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

Device	**Package Type**	**Drawing**	**Pins**	**SPQ**	**Reel Diameter (mm)**	**Reel Width W1 (mm)**	**A0 (mm)**	**B0 (mm)**	**K0 (mm)**	**P1 (mm)**	**W (mm)**	**Pin1 Quadrant**
TL026CDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1
TL026CPSR | SO | PS | 8 | 2000 | 330.0 | 16.4 | 8.2 | 6.6 | 2.5 | 12.0 | 16.0 | Q1

All dimensions are nominal.

Notes:
- **A0** Dimension designed to accommodate the component width
- **B0** Dimension designed to accommodate the component length
- **K0** Dimension designed to accommodate the component thickness
- **W** Overall width of the carrier tape
- **P1** Pitch between successive cavity centers

Pack Materials-Page 1
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL026CDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TL026CPSR</td>
<td>SO</td>
<td>PS</td>
<td>8</td>
<td>2000</td>
<td>367.0</td>
<td>367.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
MECHANICAL DATA

D (R-PDSO-G8) PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
 ▲ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall
 not exceed 0.006 (0.15) each side.
 ▲ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.
E. Reference JEDEC MS-012 variation AA.

4040047-3/M 06/11
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.15.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
MECHANICAL DATA

P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties, including any associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers represent that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for the purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designers are solely responsible for compliance with all legal and regulatory requirements in connection with any damages, costs, losses, and/or liabilities arising out of Designers’ non-compliance with the terms and provisions of this Notice.