The TPIC6A595 is a monolithic, high-voltage, high-current power logic 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads. Each open-drain DMOS transistor features an independent chopping current-limiting circuit to prevent damage in the case of a short circuit.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit, D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift-register clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shift-register clear (SRCLR) is high. When SRCLR is low, the input shift register is cleared. When output enable (G) is held high, all data in the output buffers is held low and all drain outputs are off. When G is held low, data from the storage register is transparent to the output buffers. The serial output (SER OUT) allows for cascading of the data from the shift register to additional devices.

Outputs are low-side, open-drain DMOS transistors with output ratings of 50 V and a 350-mA continuous sink current capability. When data in the output buffers is low, the DMOS-transistor outputs are off. When data is high, the DMOS-transistor outputs have sink current capability.

Separate power ground (PGND) and logic ground (LGND) terminals are provided to facilitate maximum system flexibility. All PGND terminals are internally connected, and each PGND terminal must be externally connected to the power system ground in order to minimize parasitic impedance. A single-point connection between LGND and PGND must be made externally in a manner that reduces crosstalk between the logic and load circuits.

The TPIC6A595 is offered in a thermally-enhanced dual-in-line (NE) package and a wide-body surface-mount (DW) package. The TPIC6A595 is characterized for operation over the operating case temperature range of −40°C to 125°C.
logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

- G
- RCK
- SER IN
- SRCK
- SRCLR
- DRAIN0
- DRAIN1
- DRAIN2
- DRAIN3
- DRAIN4
- DRAIN5
- DRAIN6
- DRAIN7
- PGND

Current Limit and Charge Pump
schematic of inputs and outputs

Typical of Serial Out

- **Vcc**
- **SER OUT**
- **LGND**

Equivalent of Each Input

- **Vcc**
- **Input**
 - **25 V**
 - **12 V**
- **LGND**

Typical of All Drain Outputs

- **DRAIN**
- **RSENSE**
- **LGND**
- **PGND**

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted)†

- Logic supply voltage, V_{CC} (see Note 1) ... 7 V
- Logic input voltage range, V_I ... $-0.3 \text{ V to } 7 \text{ V}$
- Power DMOS drain-to-source voltage, V_{DS} (see Note 2) 50 V
- Continuous source-drain diode anode current ... 1 A
- Pulsed source-drain diode anode current (see Note 3) ... 2 A
- Pulsed drain current, each output, all outputs on, $I_{Dn}, T_A = 25^\circ C$ (see Note 3) ... 1.1 A
- Continuous drain current, each output, all outputs on, $I_{Dn}, T_A = 25^\circ C$ 350 mA
- Peak drain current, single output, $T_A = 25^\circ C$ (see Note 3) 1.1 A
- Single-pulse avalanche energy, E_{AS} (see Figure 6) ... 75 mJ
- Avalanche current, I_{AS} (see Note 4) ... 600 mA
- Continuous total dissipation ... See Dissipation Rating Table
- Operating case temperature range, T_C .. $-40^\circ C \text{ to } 125^\circ C$
- Operating virtual junction temperature range, T_J .. $-40^\circ C \text{ to } 150^\circ C$
- Storage temperature range, T_{stg} .. $-65^\circ C \text{ to } 150^\circ C$
- Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds 260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES:
1. All voltage values are with respect to LGND and PGND.
2. Each power DMOS source is internally connected to PGND.
3. Pulse duration $\leq 100 \mu s$ and duty cycle $\leq 2\%$.
4. DRAIN supply voltage = 15 V, starting junction temperature (T_{JS}) = $25^\circ C$, $L = 210 \text{ mH}$, $I_{AS} = 600 \text{ mA}$ (see Figure 6).

Dissipation Rating Table

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>$T_C \leq 25^\circ C$ POWER RATING</th>
<th>DERATING FACTOR ABOVE $T_C = 25^\circ C$</th>
<th>$T_C = 125^\circ C$ POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>1750 mW</td>
<td>14 mW/°C</td>
<td>350 mW</td>
</tr>
<tr>
<td>NE</td>
<td>2500 mW</td>
<td>20 mW/°C</td>
<td>500 mW</td>
</tr>
</tbody>
</table>
recommended operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic supply voltage, VCC</td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>High-level input voltage, VIH</td>
<td>0.85 VCC</td>
<td>VCC</td>
<td>V</td>
</tr>
<tr>
<td>Low-level input voltage, VIL</td>
<td>0</td>
<td>0.15 VCC</td>
<td>V</td>
</tr>
<tr>
<td>Pulsed drain output current, T<sub>C</sub> = 25°C, VCC = 5 V (see Notes 3 and 5)</td>
<td>−1.8</td>
<td>0.6</td>
<td>A</td>
</tr>
<tr>
<td>Setup time, SER IN high before SRCK↑, t<sub>su</sub> (see Figure 2)</td>
<td>10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold time, SER IN high after SRCK↑, t<sub>h</sub> (see Figure 2)</td>
<td>10 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse duration, t<sub>W</sub> (see Figure 2)</td>
<td>20 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating case temperature, T<sub>C</sub></td>
<td>−40°C</td>
<td>125°C</td>
<td></td>
</tr>
</tbody>
</table>

electrical characteristics, VCC = 5 V, T_C = 25°C (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(BR)DSX Drain-to-source breakdown voltage</td>
<td>I<sub>D</sub> = 1 mA</td>
<td>50</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VSD Source-to-drain diode forward voltage</td>
<td>I<sub>F</sub> = 350 mA, See Note 3</td>
<td>0.8</td>
<td>1.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOH High-level output voltage, SER OUT</td>
<td>I<sub>OH</sub> = −20 µA</td>
<td>VCC−0.1</td>
<td>VCC</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOH High-level output voltage, SER OUT</td>
<td>I<sub>OH</sub> = −4 mA</td>
<td>VCC−0.5</td>
<td>VCC−0.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL Low-level output voltage, SER OUT</td>
<td>I<sub>OL</sub> = 20 µA</td>
<td>0</td>
<td>0.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL Low-level output voltage, SER OUT</td>
<td>I<sub>OL</sub> = 4 mA</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I<sub>IH</sub> High-level input current</td>
<td>V<sub>I</sub> = VCC</td>
<td>1</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>IL</sub> Low-level input current</td>
<td>V<sub>I</sub> = 0</td>
<td>−1</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>Q(chop)</sub> Output current at which chopping starts</td>
<td>T<sub>C</sub> = 25°C, See Note 5 and Figures 3 and 4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>A</td>
</tr>
<tr>
<td>I<sub>CC</sub> Logic supply current</td>
<td>I<sub>O</sub> = 0, V<sub>I</sub> = VCC or 0</td>
<td>0.5</td>
<td>5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>CC(FRQ)</sub> Logic supply current at frequency</td>
<td>I<sub>SRCK</sub> = 5 MHz, V<sub>I</sub> = VCC or 0, I<sub>O</sub> = 0, C<sub>L</sub> = 30 pF, VCC = 5 V, See Figure 7</td>
<td>1.3</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I(nom) Nominal current</td>
<td>VDS(on) = 0.5 V, VCC = 5 V, I<sub>(nom) = I<sub>D</sub></i></td>
<td>V<sub>C</sub> = 85°C, See Notes 5, 6, and 7</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Drain current, off-state</td>
<td>VDS = 40 V, T<sub>C</sub> = 25°C</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>ID Drain current, off-state</td>
<td>VDS = 40 V, T<sub>C</sub> = 125°C</td>
<td>0.2</td>
<td>5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>r<sub>DS(on)</sub> Static drain-source on-state resistance</td>
<td>I<sub>D</sub> = 350 mA, T<sub>C</sub> = 25°C</td>
<td>1</td>
<td>1.5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>r<sub>DS(on)</sub> Static drain-source on-state resistance</td>
<td>I<sub>D</sub> = 350 mA, T<sub>C</sub> = 125°C</td>
<td>1.7</td>
<td>2.5</td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

NOTES:
3. Pulse duration ≤ 100 µs and duty cycle ≤ 2%.
5. Technique should limit T_J − T_C to 10°C maximum.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at T_C = 85°C.
Switching Characteristics, $V_{CC} = 5\,V$, $T_C = 25\,^\circ\text{C}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PHL}</td>
<td>Propagation delay time, high-to-low-level output from G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_L = 30,\text{pF},\quad I_D = 350,\text{mA}$,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{PLH} Propagation delay time, low-to-high-level output from G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_r Rise time, drain output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$C_L = 30,\text{pF},\quad I_D = 350,\text{mA},\quad$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_f Fall time, drain output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_F = 350,\text{mA},\quad \frac{di}{dt} = 20,\text{A/\mu s}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_a Reverse-recovery-current rise time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_F = 350,\text{mA},\quad \frac{di}{dt} = 20,\text{A/\mu s}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{fr} Reverse-recovery time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
5. Technique should limit $T_J - T_C$ to 10°C maximum.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

Thermal Resistance

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{0JC} Thermal resistance,</td>
<td>Junction-to-case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{0JA} Thermal resistance,</td>
<td>Junction-to-ambient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{0JC}</td>
<td>R_{0JA} All eight outputs with equal power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DW All eight outputs with equal power</td>
<td>10</td>
<td>10</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>NE All eight outputs with equal power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DW All eight outputs with equal power</td>
<td>50</td>
<td>50</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>NE All eight outputs with equal power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The word generator has the following characteristics: $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$, $t_w = 300 \text{ ns}$, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \text{ }\Omega$.
B. C_L includes probe and jig capacitance.

Figure 1. Resistive Load Operation

INPUT SETUP AND HOLD WAVEFORMS

NOTES: A. The word generator has the following characteristics: $t_r \leq 10 \text{ ns}$, $t_f \leq 10 \text{ ns}$, $t_w = 300 \text{ ns}$, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \text{ }\Omega$.
B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit, Switching Times, and Voltage Waveforms
PARAMETER MEASUREMENT INFORMATION

OUTPUT CURRENT

VS
TIME FOR INCREASING LOAD RESISTANCE

REGION 1 CURRENT WAVEFORM

NOTES:
A. Figure 3 illustrates the output current characteristics of the device energizing a load having initially low, increasing resistance, e.g., an incandescent lamp. In region 1, chopping occurs and the peak current is limited to I_{OK}. In region 2, output current is continuous. The same characteristics occur in reverse order when the device energizes a load having an initially high, decreasing resistance.
B. Region 1 duty cycle is approximately 2%.

Figure 3. Chopping-Mode Characteristics

OUTPUT CURRENT LIMIT

VS
CASE TEMPERATURE

Figure 4
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

- **Circuit Under Test**
- **DRAIN**
- **TP K**
- **L = 1 mH**
- **2500 µF 250 V**
- **24 V**
- **IF** (see Note B)
- **V GG** (see Note A)
- **RG**
- **50 Ω**
- **Driver**
- **TP A**

CURRENT WAVEFORM

- **0.35 A**
- **di/dt = 20 A/µs**
- **25% of I RM**
- **t a**
- **t rr**

NOTES:

A. The V GG amplitude and RG are adjusted for di/dt = 20 A/µs. A V GG double-pulse train is used to set IF = 0.35 A, where t1 = 10 µs, t2 = 7 µs, and t3 = 3 µs.
B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.
C. I RM = maximum recovery current

Figure 5. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT

- **VCC**
- **DUT**
- **V DS**
- **ID**
- **V DS**
- **15 V**
- **1 Ω**
- **210 mH**
- **SER IN**
- **R CK**
- **LG ND**
- **PG ND**

VOLTAGE AND CURRENT WAVEFORMS

- **Input**
- **See Note B**
- **I D**
- **I AS = 600 mA**
- **V(BR)DSX = 50 V MIN**

NOTES:

† Non JEDEC symbol for avalanche time.
A. The word generator has the following characteristics: t r ≤ 10 ns, t f ≤ 10 ns, Z O = 50 Ω.
B. Input pulse duration, t w, is increased until peak current I AS = 600 mA.
 Energy test level is defined as E AS = (I AS × V (BR)DSX × t av)/2 = 75 mJ.

Figure 6. Single-Pulse Avalanche Energy Test Circuit and Waveforms
TYPICAL CHARACTERISTICS

SUPPLY CURRENT vs FREQUENCY

\[I_{CC} = 5 \text{ V} \]
\[T_{JS} = -40^\circ \text{C} \text{ to } 125^\circ \text{C} \]

Figure 7

MAXIMUM PEAK DRAIN CURRENT OF EACH OUTPUT vs NUMBER OF OUTPUTS CONDUCTING SIMULTANEOUSLY

\[V_{CC} = 5 \text{ V} \]
\[T_{A} = 25^\circ \text{C} \]
\[T_{A} = 100^\circ \text{C} \]
\[T_{A} = 125^\circ \text{C} \]

Figure 8

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT

\[V_{CC} = 5 \text{ V} \]

See Note A

NOTE A: Technique should limit \(T_{J} - T_{C} \) to 10°C maximum.

Figure 10
TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

vs

LOGIC SUPPLY VOLTAGE

$\frac{V_{CC}}{V_{CC}}$ − Logic Supply Voltage − V

$\frac{R_{DS(on)}}{R_{DS(on)}}$ − Static Drain-Source On-State Resistance − Ω

$T_C = 125^\circ C$

$T_C = 25^\circ C$

$T_C = -40^\circ C$

$I_D = 350 mA$

See Note A

Figure 11

NOTE A: Technique should limit $T_J - T_C$ to $10^\circ C$ maximum.

SWITCHING TIME

vs

CASE TEMPERATURE

$\frac{t_{PLH}}{t_{PLH}}$ − Switching Time − ns

$\frac{t_r}{t_r}$

$\frac{t_f}{t_f}$

T_C − Case Temperature − °C

$T_C = 125^\circ C$

$I_D = 350 mA$

See Note A

Figure 12

THERMAL INFORMATION

The single-pulse curve represents measured data. The curves for various pulse durations are based on the following equation:

$$Z_{thJA} = \left| \frac{t_w}{t_c} \right| R_{thJA} + \left| 1 - \frac{t_w}{t_c} \right| Z_{th}(t_w + t_c) + Z_{th}(t_w) - Z_{th}(t_c)$$

Where:

$Z_{th}(t_w)$ = the single-pulse thermal impedance for $t = t_w$ seconds

$Z_{th}(t_c)$ = the single-pulse thermal impedance for $t = t_c$ seconds

$Z_{th}(t_w + t_c)$ = the single-pulse thermal impedance for $t = t_w + t_c$ seconds

$d = \frac{t_w}{t_c}$

Figure 13
Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>REV</th>
<th>PAGE</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/18/05</td>
<td>B</td>
<td>7</td>
<td>Figure 1</td>
<td>Changed SRCLR timing diagram and changed title on Drain timing diagrams</td>
</tr>
<tr>
<td>1/1/95</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4/1/93</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>Original reversion</td>
</tr>
</tbody>
</table>

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPIC6A595DW</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPIC6A595</td>
<td></td>
</tr>
<tr>
<td>TPIC6A595DWG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>25</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPIC6A595</td>
<td></td>
</tr>
<tr>
<td>TPIC6A595DWR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPIC6A595</td>
<td></td>
</tr>
<tr>
<td>TPIC6A595DWRG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>TPIC6A595</td>
<td></td>
</tr>
<tr>
<td>TPIC6A595NE</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>NE</td>
<td>20</td>
<td>20</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>TPIC6A595NE</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI’s terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “-” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPIC6A595DWR</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>330.0</td>
<td>24.4</td>
<td>10.75</td>
<td>15.7</td>
<td>2.7</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TPIC6A595DWRG4</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>330.0</td>
<td>24.4</td>
<td>10.75</td>
<td>15.7</td>
<td>2.7</td>
<td>12.0</td>
<td>24.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPIC6A595DWR</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
<tr>
<td>TPIC6A595DWRG4</td>
<td>SOIC</td>
<td>DW</td>
<td>24</td>
<td>2000</td>
<td>350.0</td>
<td>350.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>
NOTES:
A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
D. Falls within JEDEC MS-013 variation AD.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated