6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT-VOLTAGE LDOs

, TPS65051-Q1

FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
- Device Temperature Grade 1: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Ambient Operating Temperature Range
- Device HBM ESD Classification Level H2
- Device CDM ESD Classification Level C3B
- Up To 95\% Efficiency
- Output Current for DC-DC Converters:
- TPS65050-Q1: $2 \times 0.6 \mathrm{~A}$
- TPS65051-Q1: DCDC1 = 1 A; DCDC2 $=0.6 \mathrm{~A}$
- TPS65052-Q1: DCDC1 = $1 \mathrm{~A} ; \mathrm{DCDC} 2=0.6 \mathrm{~A}$
- TPS65054-Q1: 2×0.6 A
- TPS65056-Q1: DCDC1 = 1 A; DCDC2 $=0.6 \mathrm{~A}$
- Output Voltages for DC-DC Converters:
- TPS65050-Q1: Externally Adjustable
- TPS65051-Q1: Externally Adjustable
- TPS65052-Q1: DCDC1 = Fixed at 3.3 V ; DCDC2 = 1 V or 1.3 V for Samsung Application Processors
- TPS65054-Q1: DCDC1 = Externally Adjustable; DCDC2 = 1.3 V or 1.05 V for OMAP ${ }^{\text {TM }} 1710$ Processor
- TPS65056-Q1: DCDC1 = Fixed at 3.3 V ; DCDC2 = 1 V or 1.3 V for Samsung Application Processors
- V_{1} Range for DC-DC Converters From 2.5 V to 6 V
- 2.25-MHz Fixed-Frequency Operation
- Power-Save Mode at Light Load Current
- 180° Out-of-Phase Operation
- Output-Voltage Accuracy in PWM Mode $\pm 1 \%$
- Low-Ripple PFM Mode
- Total Typical 32- $\mu \mathrm{A}$ Quiescent Current for Both DC-DC Converters
- 100\% Duty Cycle for Lowest Dropout
- Two General-Purpose 400-mA, High-PSRR LDOs
- Two General-Purpose 200-mA, High-PSRR LDOs
- V_{1} Range for LDOs from 1.5 V to 6.5 V
- Digital Voltage Selection for the LDOs
- Available in a $4-\mathrm{mm} \times 4-\mathrm{mm} 32$-Pin QFN Package

APPLICATIONS

Automotive

DESCRIPTION

The TPS6505x-Q1 devices are integrated powermanagement ICs for applications powered by one LiIon or Li-Polymer cell, which require multiple power rails. The TPS6505x-Q1 provides two efficient, 2.25MHz step-down converters targeted at providing the core voltage and I/O voltage in a processor-based system. Both step-down converters enter a low-power mode at light load for maximum efficiency across the widest possible range of load currents.

For low-noise applications, the user can force the devices into fixed-frequency PWM mode by pulling the MODE pin high. Operating in the shutdown mode reduces the current consumption to less than $1 \mu \mathrm{~A}$. The devices allow the use of small inductors and capacitors to achieve a small solution size. The TPS6505x-Q1 provides an output current of up to 1 A on each dc-dc converter. The TPS6505x-Q1 also integrates two $400-\mathrm{mA}$ LDO and two $200-\mathrm{mA}$ LDO voltage regulators, which one can turn on or off using separate enable pins on each LDO. Each LDO operates with an input voltage range between 1.5 V and 6.5 V , allowing their supply to be from one of the step-down converters or directly from the main battery.
Four digital input pins set the output voltage of the LDOs from a set of 16 different combinations for LDO1 to LDO4 on TPS65050-Q1 and TPS65052-Q1. In TPS65051-Q1, TPS65054-Q1, and TPS65056-Q1, the LDO voltages are adjustable using external resistor dividers.

The TPS6505x-Q1 devices come in a small 32-pin leadless package ($4-\mathrm{mm} \times 4-\mathrm{mm}$ QFN) with a 0.4 mm pitch.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

T_{A}	PART NUMBER	OPTION	OUTPUT CURRENT FOR DC-DC CONVERTERS	$\begin{gathered} \text { QFN }^{(1)} \\ \text { PACKAGE }^{(2)} \end{gathered}$	PACKAGE MARKING
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TPS65050QRSMRQ1 TPS65050-Q1	LDO voltages according to Table 1 DC-DC converters externally adjustable	$2 \times 600 \mathrm{~mA}$	RSM	On demand
	TPS65051QRSMRQ1 TPS65051-Q1	LDO voltages externally adjustable DC-DC converters externally adjustable	$\begin{gathered} \mathrm{DCDC} 1=1 \mathrm{~A} \\ \mathrm{DCDC2}=600 \mathrm{~mA} \end{gathered}$		TPS65051Q
	TPS65052QRSMRQ1 TPS65052-Q1	LDO voltages according to Table 1 DCDC1 $=3.3 \mathrm{~V} ; \mathrm{DCDC} 2=1 \mathrm{~V}$ or 1.3 V	$\begin{gathered} \mathrm{DCDC} 1=1 \mathrm{~A} \\ \mathrm{DCDC} 2=600 \mathrm{~mA} \end{gathered}$		On demand
	TPS65054QRSMRQ1 TPS65054-Q1	LDO voltages externally adjustable DCDC1 = externally adjustable DCDC2 $=1.3 \mathrm{~V}$ or 1.05 V	$2 \times 600 \mathrm{~mA}$		On demand
	TPS65056QRSMRQ1 TPS65056-Q1	LDO voltages externally adjustable DCDC1 $=3.3 \mathrm{~V}$ DCDC2 $=1 \mathrm{~V}$ or 1.3 V	$\begin{gathered} \mathrm{DCDC1}=1 \mathrm{~A} \\ \mathrm{DCDC2}=600 \mathrm{~mA} \end{gathered}$		On demand

(1) The RSM package is available in tape and reel. Add the R suffix (TPS65050RSMR) to order quantities of 3000 parts per reel. Add the T suffix (TPS65050RSMT) to order quantities of 250 parts per reel.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		UNITS
V	Input voltage range on all pins except AGND, PGND, and EN_LDO1 pins with respect to AGND	-0.3 V to 7 V
	Input voltage range on EN_LDO1 pins with respect to AGND	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
	Current at VINDCDC1/2, L1, PGND1, L2, PGND2	1800 mA
1	Current at all other pins	1000 mA
V_{0}	Output voltage range for LDO1, LDO2, LDO3, and LDO4	-0.3 V to 4.0 V
	Continuous total power dissipation	See the Thermal Table
ESD rating	Human-body model (HBM) AEC-Q100 Classification Level H2	2 kV
	Charged-device model (CDM) AEC-Q100 Classification Level C3B	750 V
T_{A}	Operating free-air temperature	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

THERMAL METRIC ${ }^{(1)}$		TPS6505x-Q1	UNIT
		RSM	
		32 PINS	
$\theta_{\text {JA }}$	Junction-to-ambient thermal resistance ${ }^{(2)}$	37.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JCtop }}$	Junction-to-case (top) thermal resistance ${ }^{(3)}$	30.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JB }}$	Junction-to-board thermal resistance ${ }^{(4)}$	7.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter ${ }^{(5)}$	0.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter ${ }^{(6)}$	7.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JCbot }}$	Junction-to-case (bottom) thermal resistance ${ }^{(7)}$	2.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, $\Psi_{J T}$, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, Ψ_{JB}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining $\theta_{J A}$, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{1}	Input voltage range for step-down converters, VINDCDC1/2	2.5		6	V
	Output voltage range for step-down converter, VDCDC1	0.6		VINDCDC1/2	V
V	Output voltage range for step-down converter, VDCDC2	0.6		VINDCDC1/2	V
V_{1}	Input voltage range for LDOs, VINLDO1, VINLDO2, VINLDO3/4	1.5		6.5	V
	Output voltage range for LDO1 and LDO2	1		3.6	V
Vo	Output voltage range for LDO3 and LDO4	1		3.6	V
	Output current at L1 (DCDC1) for TPS65051-Q1, TPS65052-Q1			1000	mA
	Output current at L1 (DCDC1) for TPS65050-Q1, TPS65054-Q1			600	mA
I_{0}	Output current at L1 (DCDC2)			600	mA
	Output current at VLDO1, VLDO2			400	mA
	Output current at VLDO3, VLDO4			200	mA
	Inductor at L1, L2 ${ }^{(1)}$	1.5	2.2		$\mu \mathrm{H}$
C	Output capacitor at VDCDC1, VDCDC2 ${ }^{(1)}$	10	22		$\mu \mathrm{F}$
O_{0}	Output capacitor at VLDO1, VLDO2, VLDO3, VLDO4 ${ }^{(1)}$	2.2			$\mu \mathrm{F}$
	Input capacitor at VCC ${ }^{(1)}$	1			$\mu \mathrm{F}$
Cl_{1}	Input capacitor at VINLDO1, VINLDO2 ${ }^{(1)}$	2.2			$\mu \mathrm{F}$
	Input capacitor at VINLDO3/4 ${ }^{(1)}$	2.2			$\mu \mathrm{F}$
T_{A}	Operating ambient temperature range	-40		125	${ }^{\circ} \mathrm{C}$
	Resistor from battery voltage to V_{CC} used for filtering ${ }^{(2)}$		1	10	Ω

(1) See the Application Information section of this data sheet for more details.
(2) Up to 2 mA can flow into V_{CC}; when both converters are running in PWM, this resistor causes the UVLO threshold to shift accordingly.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=\mathrm{VINDCDC} 1 / 2=3.6 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{GND}, \mathrm{L}=2.2 \mu \mathrm{H}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENT						
V_{1}	Input voltage range at VINDCDC1/2		2.5		6	V
I_{Q}	Operating quiescent current Total current into V_{CC}, VINDCDC1/2, VINLDO1, VINLDO2, VINLDO3/4	```One converter, I I = 0 mA. PFM mode enabled (Mode = GND) device not switching, EN_DCDC1 = V OR EN_DCDC2 = V ; EN_LDO1= EN_LDO2 = EN_LDO3 = EN_LDO = GND```		20	30	$\mu \mathrm{A}$
		```Two converters, \(\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\) PFM mode enabled (Mode \(=0\) ) device not switching, EN_DCDC1 = \(\mathrm{V}_{1}\) AND EN_DCDC2 \(=\mathrm{V}_{\mathrm{l}}\); EN_LDO1 \(=\) EN_LDO2 \(=\overline{\mathrm{E} N}\) LDO3 \(=\) EN_LDO4 \(=\) GND```		32	40	$\mu \mathrm{A}$
		```One converter, IO=0 mA. PFM mode enabled (Mode = GND) device not switching, EN_DCDC1 = V OR EN_DCDC2 = V ; EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = V ```		180	250	$\mu \mathrm{A}$
I_{Q}	Operating quiescent current into V_{CC}	One converter, $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$. Switching with no load (Mode = V_{l}), PWM operation EN_DCDC1 $=\mathrm{V}_{\mathrm{l}}$ OR EN_DCDC2 $=\mathrm{V}_{1}$; EN_LDO1 $=$ EN_LDO2 $=$ EN_LDŌ3 $=$ EN_LDO = GND		0.85		mA
		Two converters, $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ Switching with no load ($\mathrm{Mode}=\mathrm{V}_{1}$), PWM operation EN_DCDC1 $=\mathrm{V}_{\mathrm{l}}$ AND EN_DCDC2 = V_{l}; EN_LDO1 $=\mathrm{EN}$ LDO2 $=\mathrm{EN} _$LDO3 $=$ EN_LDO = GND		1.25		mA
$\mathrm{I}_{(S D)}$	Shutdown current	```EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND```		9	12	$\mu \mathrm{A}$
$\mathrm{V}_{\text {(UVLO) }}$	Undervoltage lockout threshold for DCDC converters and LDOs	Voltage at V_{CC}		1.8	2	V

V_{IH}	High-level input voltage		MODE, EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, $\bar{D} E F L D O 3, ~ D E F L D O 4, ~ E N _L D O 1, ~ E N _L D O 2, ~ E N _L D O 3, ~$ EN_LDO4		1.2		$\mathrm{V}_{\text {cc }}$	V	
VIL	Low-level input voltage		MODE, EN_DCDC1, EN_DCDC2, DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4, DEFDCDC2		0		0.4	V	
I_{B}	Input bias current		MODE $=$ GND or V_{1} MODE, EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4			0.01	1	$\mu \mathrm{A}$	
			TPS65051-Q1 and TPS65052-Q1 only V_FB_LDOx = 1 V FB_LDO1, FB_LDO2, FB_LDO3, FB_LDO4				100	nA	
POWER SWITCH									
$\mathrm{r}_{\text {DS(on) }}$	P-channel MOSFET on-resistance		DCDC1	VINDCDC1/2 $=3.6 \mathrm{~V}$		280	630	$\mathrm{m} \Omega$	
			VINDCDC1/2 $=2.5 \mathrm{~V}$		400				
			DCDC2	VINDCDC1/2 $=3.6 \mathrm{~V}$		280	630		
			VINDCDC1/2 $=2.5 \mathrm{~V}$		400				
I_{kg}	P-channel leakage current			VDCDCx $=\mathrm{V}_{(\mathrm{DS})}=6 \mathrm{~V}$				1	$\mu \mathrm{A}$
$\mathrm{r}_{\text {DS(on) }}$	N-channel MOSFET on-resistance		DCDC1	VINDCDC1/2 $=3.6 \mathrm{~V}$		220	450	$\mathrm{m} \Omega$	
			VINDCDC1/2 $=2.5 \mathrm{~V}$		320				
			DCDC2	VINDCDC1/2 $=3.6 \mathrm{~V}$		220	450		
			VINDCDC1/2 $=2.5 \mathrm{~V}$		320				
$\mathrm{I}_{\text {kg }}$	N -channel leakage current			$\mathrm{VDCDCx}=\mathrm{V}_{(\mathrm{DS})}=6 \mathrm{~V}$			7	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(LIMF) }}$	Forward current limit PMOS (high side) and NMOS (low side)		$\begin{aligned} & \text { TPS65050-Q1, } \\ & \text { TPS65054-Q1 } \end{aligned}$	$2.5 \mathrm{~V} \leq \mathrm{VINDCDC} 1 / 2 \leq 6 \mathrm{~V}$	0.85	1	1.15	A	
		DCDC1:	TPS65051-Q1, TPS65052-Q1, TPS65056-Q1		1.19	1.4	1.65		
		DCDC2:	$\begin{aligned} & \text { TPS65050- } \\ & \text { Q1-TPS65056-Q1 } \end{aligned}$	$2.5 \mathrm{~V} \leq \mathrm{VINDCDC} 1 / 2 \leq 6 \mathrm{~V}$	0.85	1	1.15	A	
	Thermal shutdown		Increasing junction temperature			150		${ }^{\circ} \mathrm{C}$	
	Thermal shutdown hysteresis		Decreasing junction temperature			20		${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{CC}}=\mathrm{VINDCDC} 1 / 2=3.6 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{GND}, \mathrm{L}=2.2 \mu \mathrm{H}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
OSCILLATOR							
$\mathrm{f}_{\text {Sw }}$	Oscillator frequency			2.025	2.25	2.475	MHz
OUTPUT							
V_{0}	Output-voltage range for DCDC1, DCDC2		Externally adjustable versions	0.6	VINDC	DC1/2	V
$\mathrm{V}_{\text {ref }}$	Reference voltage		Externally adjustable versions		600		mV
V_{0}	DC output-voltage accuracy	$\begin{aligned} & \text { DCDC1, } \\ & \text { DCDC2 }^{(1)} \end{aligned}$	VINDCDC $1 / 2=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, 0 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}=<\mathrm{I}_{\mathrm{O}}$ (maximum) MODE $=$ GND, PFM operation	-2\%	0	2\%	
			VINDCDC1/2 $=2.5 \mathrm{~V}$ to $6 \mathrm{~V}, 0 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}=<\mathrm{I}_{\mathrm{O}}$ (maximum) MODE $=\mathrm{V}_{1}$, PWM operation	-1\%	0	1\%	
$\Delta \mathrm{V}_{\mathrm{O}}$	Power-save-mode ripple voltage ${ }^{(2)}$		$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{MODE}=\mathrm{GND}, \mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$, bandwith $=20 \mathrm{MHz}$		25		mV PP
$\mathrm{t}_{\text {Start }}$	Start-up time		Time from active EN to start switching		170		$\mu \mathrm{s}$
$\mathrm{t}_{\text {Ramp }}$	VOUT ramp-up time		Time to ramp from 5% to 95% of V_{O}		750		$\mu \mathrm{s}$
	RESET delay time		Input voltage at threshold pin rising	80	100	120	ms
	PB-ONOFF debounce time			26	32	38	ms
V_{OL}	RESET, PB_OUT output low voltage		$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, Vhysteresis $<1 \mathrm{~V}$, Vthreshold $<1 \mathrm{~V}$			0.2	V
l L	RESET, PB_OUT sink current				1		mA
	$\overline{\text { RESET, PB_OUT output leakage current }}$		After PB_IN has been pulled high once; Vthreshold > 1 V and Vhysteresis $>1 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=6 \mathrm{~V}$		10		nA
$\mathrm{V}_{\text {th }}$	Vthreshold, Vhysteresis threshold			0.98	1	1.02	V
VLDO1, VLDO2, VLDO3 and VLDO4 Low-Dropout Regulators							
V_{1}	Input-voltage range for LDO1, LDO2, LDO3, LDO4			1.5		6.5	V
V_{0}	LDO1 output-voltage range		TPS65050-Q1, TPS65052-Q1 only	1.2		3.3	
	LDO2 output-voltage range		TPS65050-Q1, TPS65052-Q1 only	1.8		3.3	V
	LDO3 output-voltage range		TPS65050-Q1, TPS65052-Q1 only	1.1		3.3	V
	LDO4 output-voltage range		TPS65050-Q1, TPS65052-Q1 only	1.2		2.85	
$\mathrm{V}_{(\mathrm{FB})}$	Feedback voltage for FB_LDO1, FB_LDO2, FB_LDO3, and FB_LDO4		TPS65051-Q1, TPS65054-Q1, and TPS65056-Q1 only		1		V
I_{0}	Maximum output current for LDO1, LDO2			400			
	Maximum output current for LDO3, LDO4			200			
$\mathrm{I}_{(\mathrm{SC})}$	LDO1 short-circuit current limit		VLDO1 = GND			750	
	LDO2 short-circuit current limit		VLDO2 = GND			850	mA
	LDO3 and LDO4 short-circuit current limit		VLDO3 = GND, VLDO4 = GND			420	
	Dropout voltage at LDO1		$\mathrm{I}_{\mathrm{O}}=400 \mathrm{~mA}, \mathrm{~V}$ INLDO $=3.4 \mathrm{~V}$			400	
	Dropout voltage at LDO2		$\mathrm{I}_{\mathrm{O}}=400 \mathrm{~mA}, \mathrm{~V}$ INLDO $=1.8 \mathrm{~V}$			280	mV
	Dropout voltage at LDO3, LDO4		$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{VINLDO}=1.8 \mathrm{~V}$			280	
$\mathrm{I}_{\text {kg }}$	Leakage current from VinLDOx to VLDOx		LDO enabled, V INLDO $=6.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=140^{\circ} \mathrm{C}$		3		$\mu \mathrm{A}$
V_{O}	Output voltage accuracy for LDO1, LDO2, LDO3, LDO4		$\mathrm{l}_{0}=10 \mathrm{~mA}$	-2\%		1\%	
	Line regulation for LDO1, LDO2, LDO3, LDO4		VINLDO1,2 = VLDO1,2 + 0.5 V (minimum 2.5 V) to 6.5 V , VINLDO3,4 = VLDO3,4 + 0.5 V (minimum 2.5 V) to 6.5 V , $\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-1\%		1\%	
	Load regulation for LDO1, LDO2, LDO3, LDO4		$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ to 400 mA for LDO1, LDO2 $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$ to 200 mA for LDO3, LDO4	-1\%		1\%	
	Regulation time for LDO1, LDO2, LDO3, LDO4		Load change from 10\% to 90\%		10		$\mu \mathrm{s}$
PSRR	Power-supply rejection ratio		$\mathrm{f}=10 \mathrm{kHz} ; \mathrm{l}_{\mathrm{O}}=50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}}+1 \mathrm{~V}$		70		dB

[^0](2) In power-save mode, device typically enters operation at $\mathrm{I}_{\mathrm{PSM}}=\mathrm{V}_{\mathrm{I}} / 32 \Omega$.

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{CC}}=\mathrm{VINDCDC} 1 / 2=3.6 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{GND}, \mathrm{L}=2.2 \mu \mathrm{H}, \mathrm{C}_{\mathrm{O}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP
$R_{\text {(DIS) }}$	Internal discharge resistor at VLDO1, VLDO2, VLDO3, VLDO4	Active when LDO is disabled	UNIT
Thermal shutdown	Increasing junction temperature	350	
Thermal shutdown hysteresis	Decreasing junction temperature	140	
	${ }^{\circ} \mathrm{C}$		

PIN ASSIGNMENTS

TERMINAL FUNCTIONS

TERMINAL						1/0	DESCRIPTION
NAME	$\begin{gathered} \text { TPS65050 } \\ \text {-Q1 } \end{gathered}$	$\begin{aligned} & \text { TPS65051 } \\ & \text {-Q1 } \end{aligned}$	$\begin{gathered} \text { TPS65052 } \\ \text {-Q1 } \end{gathered}$	$\begin{aligned} & \text { TPS65054 } \\ & \text {-Q1 } \end{aligned}$	$\begin{gathered} \text { TPS65056- } \\ \text { Q1 } \end{gathered}$		
AGND	2	2	2	2	2	1	Analog GND, connect to PGND and thermal pad
BP	1	1	1	1	1	1	Input for bypass capacitor for internal reference
DEFDCDC2	17	17	17	17	17	1	TPS65050-Q1 and TPS65051-Q1: Feedback pin for converter 2. Connect DEFDCDC2 to the center of the external resistor divider. TPS65052-Q1 and TPS65056-Q1: Select pin of converter 2 output voltage. High = 1.3 V , Low $=1 \mathrm{~V}$ TPS65054-Q1: Select pin of converter 2 output voltage. $\text { High }=1.05 \mathrm{~V} \text {, Low }=1.3 \mathrm{~V}$
DEFLDO1	31	--	31	--	--	1	Digital input, used to set the default output voltage of LDO1 to LDO4; LSB
DEFLDO2	6	--	6	--	--	1	Digital input, used to set the default output voltage of LDO1 to LDO4
DEFLDO3	9	--	9	--	--	1	Digital input, used to set the default output voltage of LDO1 to LDO4
DEFLDO4	13	--	13	--	--	1	Digital input, used to set the default output voltage of LDO1 to LDO4; MSB
EN_DCDC1	25	25	25	25	25	1	Enable input for converter 1, active-high
EN_DCDC2	26	26	26	26	26	1	Enable input for converter 2, active-high
EN_LDO1	27	27	27	27	27	1	Enable input for LDO1. Logic high enables the LDO, logic low disables the LDO.
EN_LDO2	28	28	28	28	28	1	Enable input for LDO2. Logic high enables the LDO, logic low disables the LDO.
EN_LDO3	15	15	15	15	15	1	Enable input for LDO3. Logic high enables the LDO, logic low disables the LDO.
EN_LDO4	16	16	16	16	16	1	Enable input for LDO4. Logic high enables the LDO, logic low disables the LDO.
FB1	--	31	--	31	31	1	Feedback input for the external voltage divider
FB2	--	6	--	6	6	1	Feedback input for the external voltage divider
FB3	--	9	--	9	9	1	Feedback input for the external voltage divider
FB4	--	13	--	13	13	1	Feedback input for the external voltage divider
FB_DCDC1	24	24	24	24	24	1	Input to adjust output voltage of converter 1 between 0.6 V and V_{1}. Connect an external resistor divider between VOUT1, this pin, and GND.
GND	8	--	--	--	--	-	Connect to GND
HYSTERESIS	--	8	8	8	8	1	Input for hysteresis on reset threshold
L1	22	22	22	22	22	0	Switch pin of converter 1. Connected to inductor
L2	20	20	20	20	20	0	Switch pin of converter 2. Connected to inductor
MODE	32	32	32	32	32	1	Select between power-safe mode and forced-PWM mode for DCDC1 and DCDC2. In power-safe mode, the device uses PFM at light loads, PWM for higher loads. Setting this pin to high level selects forced-PWM mode. If this pin has low level, then the device operates in power-safe mode.
PB_IN	7	--	--	--	--	1	Input for the pushbutton ON-OFF function
PB_OUT	14	--	--	--	--	0	Open-drain output. Active-low after the supply voltage (V_{CC}) exceeds the undervoltage-lockout threshold. Toggle the pin by pulling PB_IN high.
PGND1	23	23	23	23	23	1	GND for converter 1
PGND2	19	19	19	19	19	1	GND for converter 2
RESET	--	14	14	14	14	0	Open-drain active-low reset output, 100-ms reset-delay time
THRESHOLD	--	7	7	7	7	1	Reset input
V_{CC}	3	3	3	3	3	1	Power supply for digital and analog circuitry of DCDC1, DCDC2 and LDOs. Connect this pin to the same voltage supply as VINDCDC1/2.
VDCDC2	18	18	18	18	18	1	Feedback voltage-sense input, connect directly to the output of converter 2.
VINDCDC1/2	21	21	21	21	21	1	Input voltage for VDCDC1 and VDCDC2 step-down converters. Connect this pin to the same voltage supply as V_{Cc}.
VINLDO1	29	29	29	29	29	1	Input voltage for LDO1

TERMINAL FUNCTIONS (continued)

TERMINAL							
NAME	TPS65050 $-\mathbf{Q 1}$	TPS65051 $-\mathbf{Q 1}$	TPS65052 $-\mathbf{Q 1}$	TPS65054 $-\mathbf{Q 1}$	TPS65056- Q1	I/O	
VINLDO2	4	4	4	4	4	I	Input voltage for LDO2
VINLDO3/4	11	11	11	11	11	I	Input voltage for LDO3 and LDO4
VLDO1	30	30	30	30	30	O	Output voltage of LDO1
VLDO2	5	5	5	5	5	O	Output voltage of LDO2
VLDO3	10	10	10	10	10	O	Output voltage of LDO3
VLDO4	12	12	12	12	12	O	Output voltage of LDO4
Thermal pad	--	--	--	--	--		Connect to GND.

FUNCTIONAL BLOCK DIAGRAM

TPS65051-Q1

TPS65052-Q1

TPS65054-Q1

TPS65056-Q1

TYPICAL CHARACTERISTICS

Table of Graphs

		versus Output current	FIGURE
	Efficiency converter 1	versus Output current	Figure 1
	Efficiency converter 2	versus Output current	Figure 2
	Efficiency converter 1	versus Output current	Figure 3
	Efficiency converter 2	PWM or PFM mode = low	Figure 4
	Output voltage ripple	PWM mode $=$ high	Figure 5
	Output voltage ripple		Figure 6
	DCDC1 startup timing		Figure 7
	LDO1 to LDO4 startup timing	PWM mode = high	Figure 8
	DCDC1 load transient response	PFM mode = low	Figure 9
	DCDC1 load transient response	PWM mode = high	Figure 10
	DCDC2 load transient response	PFM mode = low	Figure 11
	DCDC2 load transient response		Figure 12
	DCDC1 line transient response		Figure 13
	DCDC2 line transient response		Figure 14
	LDO1 load transient response		Figure 15
	LDO4 load transient response		Figure 16
	LDO1 line transient response	vesus Frequency	Figure 17
	Power supply rejection ratio	Figure 18	

Figure 1

Figure 2.

Figure 4.

Figure 6.

TYPICAL CHARACTERISTICS (continued)

Figure 7.

Figure 9.

Figure 8.

Figure 10.

Figure 11.

Figure 13.

TYPICAL CHARACTERISTICS (continued)

Figure 12.

Figure 14.

TYPICAL CHARACTERISTICS (continued)

Figure 15.

Figure 17.

Figure 16.

Figure 18.

DETAILED DESCRIPTION

Operation

The TPS6505x-Q1 devices each include two synchronous step-down converters. The converters operate with $2.25-\mathrm{MHz}$ (typical) fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. At light load currents, the converters automatically enter power-save mode and operate with PFM (pulse-frequency modulation).

During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input voltage feed-forward to achieve good line and load regulation, allowing the use of small ceramic input and output capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch turns on, the inductor current ramps up until the current comparator trips, and the control logic turns off the switch. The current-limit comparator turns off the switch if the current exceeds the limit of the P-channel switch. After the adaptive dead time, which prevents shoot-through current, the N-channel MOSFET rectifier turns on, and the inductor current ramps down. The clock signal turning off the N -channel rectifier and turning on the on the P channel switch initiates the next cycle.

The two dc-dc converters operate synchronized to each other, with converter 1 as the master. A 180° phase shift between converter 1 and converter 2 decreases the input rms current, allowing the use of smaller input capacitors.

DCDC1 Converter

An external resistor divider connected to FB_DCDC1 pin for TPS65050-Q1, TPS65051-Q1, and TPS65054-Q1 sets the converter 1 output voltage. For TPS65052-Q1, with its output voltage fixed to 3.3 V , connect this pin directly to the output. See the Application Information section for more details. The maximum output current on DCDC1 is 600 mA for TPS65050-Q1 and TPS65054-Q1. For TPS65051-Q1, TPS65052-Q1, and TPS65056-Q1, the maximum output current is 1 A .

DCDC2 Converter

Connect he VDCDC2 pin directly to the DCDC2 converter output voltage. The DEFDCDC2 pin selects the DCDC2 converter output voltage.

TPS65050-Q1 and TPS65051-Q1: An external resistor divider sets the output voltage. Connect the DEFDCDC2 pin to the external resistor divider.
TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1: Connect the DEFDCDC2 pin either to GND, or to V_{Cc}. The converter 2 output voltage defaults to:

Device	DEFDCDC2 = Low	DEFDCDC2 $=$ High
TPS65052-Q1, TPS65056-Q1	1 V	1.3 V
TPS65054-Q1	1.3 V	1.05 V

Power-Save Mode

Setting the MODE pin to 0 enables the power-save mode. If the load current decreases, the converters enter the power-save mode of operation automatically. During power-save mode, the converters operate with reduced switching frequency in PFM mode, and with a minimum quiescent current to maintain high efficiency. The converters position the output voltage 1% above the nominal output voltage. This voltage-positioning feature minimizes voltage drops caused by a sudden load step.
To optimize the converter efficiency at light load, the TPS6505x-Q1 monitors average current. If in PWM mode, the inductor current remains below a certain threshold, then the device enters power-save mode. Use Equation 1 to calculate the typical threshold:

$$
I_{(\text {PFM_enter })}=\frac{\text { VINDCDC }}{32 \Omega}
$$

A. Average output current threshold to enter PFM mode.

$$
\begin{equation*}
I_{(\text {PSMDCDC_leave })}=\frac{\text { VINDCDC }}{24 \Omega} \tag{1}
\end{equation*}
$$

B. Average output current threshold to leave PFM mode.

During power-save mode, a comparator monitors the output voltage. As the output voltage falls below the skipcomparator (skip comp) threshold, the P-channel switch turns on, and the converter effectively delivers a constant current. If the load is below the delivered current, the output voltage rises until it crosses the skip comp threshold again; then all switching activity ceases, reducing the quiescent current to a minimum until the output voltage has dropped below the threshold. If the load current is greater than the delivered current, the output voltage falls until it crosses the skip-comparator-low (skip comp low) threshold set to 1% below nominal V_{O}; then the device exits power-save mode, and the converter returns to the PWM mode.
These control methods reduce the quiescent current to $12 \mu \mathrm{~A}$ per converter and the switching frequency to a minimum, achieving the highest converter efficiency. The PFM mode operates with low output-voltage ripple. The ripple depends on the comparator delay and the size of the output capacitor; increasing capacitor value decreases the output ripple voltage.
Disable the power-save mode by driving the MODE pin high. In forced-PWM mode, both converters operate with fixed-frequency PWM mode regardless of the load.

Dynamic Voltage Positioning

This feature reduces the voltage under- and overshoots at load steps from light to heavy load and vice versa. It is activated In the power-save mode of operation, running the converter in PFM mode activates dynamic voltage positioning. Dynamic voltage positioning provides more headroom for both the voltage drop at a load step and the voltage increase at a load throw-off, thereby improving load-transient behavior.
At light loads, in which the converters operate in PFM mode, the typical output-voltage regulation is 1% higher than the nominal value. In the event of a load transient from light load to heavy load, the output voltage drops until it reaches the skip-comparator-low threshold, set to 1% below the nominal value, and enters PWM mode. During a release from heavy load to light load, active regulation turning on the N -channel switch minimizes the voltage overshoot.

Figure 19. Dynamic Voltage Positioning

Soft Start

The two converters have an internal soft-start circuit that limits the inrush current during start-up. During soft start, control of the output-voltage ramp-up is as shown in Figure 20.

Figure 20. Soft Start

100\% Duty-Cycle Low-Dropout Operation

The converters offer a low input-to-output voltage difference while still maintaining operation with the use of the 100% duty-cycle mode. In this mode, the P-channel switch is constantly on. This operational mode is useful in battery-powered applications to achieve longest operation time by taking full advantage of the whole battery voltage range, (that is, the minimum input voltage to maintain regulation depends on the load current and output voltage) and can be calculated as:

$$
\begin{equation*}
V_{I}(\min)=V_{O}(\max)+I_{O}(\max) \times\left(r_{D S(\text { on })}(\max)+R_{L}\right) \tag{3}
\end{equation*}
$$

with:

- I_{0} max $=$ maximum output current plus inductor ripple current
- $r_{D S(o n)} m a x=$ maximum P-channel switch $r_{D S(o n)}$
- $R_{L}=d c$ resistance of the inductor
- $\mathrm{V}_{\mathrm{O}}(\max)=$ nominal output voltage plus maximum output-voltage tolerance

Undervoltage Lockout

The undervoltage-lockout circuit prevents the device from malfunctioning at low input voltages and from excessive discharge of the battery, and disables all internal circuitry. The undervoltage-lockout threshold, sensed at the V_{CC} pin, is typically 1.8 V , maximum 2 V .

Mode Selection

The MODE pin allows mode selection between forced PWM mode and power-save mode for both converters. Connecting this pin to GND enables the automatic PWM and power-save mode of operation. The converters operate in fixed-frequency PWM mode at moderate-to-heavy loads and in the PFM mode during light loads, maintaining high efficiency over a wide load-current range.
www.ti.com
Pulling the MODE pin high forces both converters to operate constantly in the PWM mode even at light load currents. The advantage is the converters operate with a fixed frequency that allows simple filtering of the switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the powersave mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forcedPWM mode during operation. This allows efficient power management by adjusting the operation of the converters to the specific system requirements.

Enable

To start up each converter independently, the device has a separate enable pin for each dc-dc converter and for each LDO. If EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, or EN_LDO4 is set to high, the corresponding converter starts up with soft start as previously described.
Pulling the enable pin low forces the device into shutdown, with a shutdown quiescent current as defined in the electrical characteristics. In this mode, the P- and N-Channel MOSFETs turn off, and the entire internal control circuitry switches off. If disabled, internal $350-\Omega$ resistors pull the outputs of the LDOs low, actively discharging the output capacitor. Proper operation requires termination of the enable pins. Do not leave them unconnected.

RESET

The TPS65051-Q1, TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1 contain circuitry that can generate a reset pulse for a processor with a $100-\mathrm{ms}$ delay time. The device senses the input voltage for a comparator at the THRESHOLD pin. When the voltage exceeds the threshold, the output goes high with a $100-\mathrm{ms}$ delay time. An external resistor connected to the HYSTERESIS input defines the hysteresis. This circuitry is functional as soon as the supply voltage at V_{CC} exceeds the undervoltage-lockout threshold. The TPS6505x-Q1 has a shutdown current (all dc-dc converters and LDOs are off) of $9 \mu \mathrm{~A}$.

Figure 21. $\overline{\text { RESET Pulse Circuit }}$

Push-Button ON-OFF (PB-ON-OFF)

The TPS65050-Q1 provides a PB-ON-OFF functionality instead of supervising a voltage with the threshold and hysteresis inputs. The device holds the output at PB_OUT low after application of voltage at V_{CC}. Only after pulling the input at PB_IN high once, the output driver at PB_OUT goes to its inactive state, driven high with its external pullup resistor. Further low-high pulses at PB_IN toggle the status of the PB_OUT output. Connecting the PB_OUT output to the enable input of the converters allows shutdown and start-up of the converters with a single push on a button.

Figure 22. Push-Button Circuit

Short-Circuit Protection

All outputs are short-circuit protected with a maximum output current as defined in the Electrical Characteristics.

Thermal Shutdown

As soon as the junction temperature, T_{J}, exceeds $150^{\circ} \mathrm{C}$ (typically) for the dc-dc converters, the device goes into thermal shutdown. In this mode, the P- and N-channel MOSFETs turn off. The device continues its operation when the junction temperature falls below the thermal shutdown hysteresis again. A thermal shutdown for one of the dc-dc converters disables both converters simultaneously.
The thermal shutdown temperature for the LDOs is typically $140^{\circ} \mathrm{C}$. Therefore, an LDO used to power an external voltage never heats up the chip high enough to turn off the dc-dc converters. If one LDO exceeds the thermal shutdown temperature, all LDOs turn off simultaneously.
www.ti.com

Low Dropout Voltage Regulators

The design of the low-dropout voltage regulators allows them to operate well with small ceramic input and output capacitors. They operate with input voltages down to 1.5 V . The LDOs offer a maximum dropout voltage of 280 mV at rated output current. Each LDO supports a current-limit feature. The EN_LDO1, ENLDO2, EN_LDO3, and EN_LDO4 pins enable the LDOs. In TPS65050-Q1 and TPS65052-Q1, the the use of four pins sets the output voltage of the LDOs. Connect the DEFLDO1 to DEFLDO4 pins either to GND or Vbat (V_{CC}) to define a set of output voltages for LDO1 to LDO4 according to Table 1. Connecting the DEFLDOx pins to a voltage different from GND or V_{CC} causes increased leakage current into V_{CC}. In TPS65051-Q1 and TPS65054-Q1, the use of external resistor dividers sets the output voltage of the LDOs .
TPS65050-Q1 and TPS65052-Q1 default voltage options are adjustable with DEFLDO4...DEFLDO1 according to Table 1.

Table 1. Default Options

DEFLDO1	DEFLDO2	DEFLDO3	DEFLDO4	VLDO1	VLDO2	VLDO3	VLDO4
				$400-\mathrm{mA}$ LDO $1.8 \mathrm{~V}-5.5 \mathrm{~V}$ Input	$400-\mathrm{mA}$ LDO $1.8 \mathrm{~V}-5.5 \mathrm{~V}$ Input	$200-\mathrm{mA}$ LDO $1.5 \mathrm{~V}-5.5 \mathrm{~V}$ Input	$200-\mathrm{mA}$ LDO $1.5 \mathrm{~V}-5.5 \mathrm{~V}$ Input
0	0	0	0	3.3 V	3.3 V	1.85 V	1.85 V
0	0	0	1	3.3 V	3.3 V	1.5 V	1.5 V
0	0	1	0	3.3 V	2.85 V	2.85 V	2.7 V
0	0	1	1	3.3 V	2.85 V	2.85 V	2.5 V
0	1	0	0	3.3 V	2.85 V	2.85 V	1.85 V
0	1	0	1	3.3 V	2.85 V	1.85 V	1.85 V
0	1	1	0	3.3 V	2.85 V	1.5 V	1.5 V
0	1	1	1	3.3 V	2.85 V	1.5 V	1.3 V
1	0	0	0	3.3 V	2.85 V	1.1 V	1.3 V
1	0	0	1	2.85 V	2.85 V	1.85 V	1.85 V
1	0	1	0	2.7 V	3.3 V	1.2 V	1.2 V
1	0	1	1	2.5 V	3.3 V	1.5 V	1.5 V
1	1	0	0	2.5 V	3.3 V	1.5 V	1.3 V
1	1	0	1	1.85 V	1.85 V	1.35 V	1.35 V
1	1	1	0	1.8 V	2.5 V	3.3 V	2.85 V
1	1	1	1	1.2 V	1.8 V	1.1 V	1.3 V

APPLICATION INFORMATION

Output-Voltage Setting

Converter 1 (DCDC1)

An external resistor network can set the output voltage of converter 1. Calculate the output voltage using Equation 4,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{ref}} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \tag{4}
\end{equation*}
$$

with an internal reference voltage $\mathrm{V}_{\text {ref }}, 0.6 \mathrm{~V}$.
Tl recommends setting the total resistance of $R 1+R 2$ to less than $1 \mathrm{M} \Omega$. The resistor network connects to the input of the feedback amplifier, therefore requiring a small feed-forward capacitor in parallel with R1. A typical value of 47 pF is sufficient.

Converter 2 (DCDC2)

Select the output voltage of converter 2 as follows:

- Adjustable output voltage defined with external resistor network on pin DEFDCDC2. This option is available for TPS65050-Q1 and TPS65051-Q1.
- Two default fixed output voltages selectable by pin DEFDCDC2, see Table 2. This option is available for TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1.

Table 2. Default Fixed Output Voltages

Converter 2	DEFDCDC2 = Low	DEFDCDC2 $\mathbf{=}$ High
TPS65050-Q1	-	-
TPS65051-Q1	-	-
TPS65052-Q1	1 V	1.3 V
TPS65054-Q1	1.3 V	1.05 V
TPS65056-Q1	1 V	1.3 V

Calculation of the adjustable output voltage is similar to that for the DCDC1 converter. Tl recommends setting the total resistance of $R 3+R 4$ to less than $1 \mathrm{M} \Omega$. Route the DEFDCDC2 line separate from noise sources, such as the inductor or the L2 line. Connect the VDCDC2 line directly to the output capacitor. As VDCDC2 is the sense pin for the output of L2, there is no need for a feedforward capacitor in conjunction with R3.

Using an external resistor divider at DEFDCDC2:

Figure 23. External Resistor Divider
$\mathrm{V}_{\text {(DEFDCDC2) }}=0.6 \mathrm{~V}$

$$
v_{\mathrm{O}}=\mathrm{V}_{(\mathrm{DEFDCDC} 2)} \times \frac{R 3+R 4}{R 4}
$$

$$
\begin{equation*}
R 3=R 4 \times\left(\frac{V_{O}}{V_{(D E F D C D C 2)}}\right)-R 4 \tag{5}
\end{equation*}
$$

See Table 3 for typical resistor values:
Table 3. Typical Resistor Values

OUTPUT VOLTAGE	$\mathbf{R 3}$	$\mathbf{R 4}$	NOMINAL VOLTAGE	Typical CFF
3.3 V	$680 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	3.32 V	47 pF
3 V	$510 \mathrm{k} \Omega$	$130 \mathrm{k} \Omega$	2.95 V	47 pF
2.85 V	$560 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	2.84 V	47 pF
2.5 V	$510 \mathrm{k} \Omega$	$160 \mathrm{k} \Omega$	2.51 V	47 pF
1.8 V	$300 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	1.8 V	47 pF
1.6 V	$200 \mathrm{k} \Omega$	$120 \mathrm{k} \Omega$	1.6 V	47 pF
1.5 V	$300 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	1.5 V	47 pF
1.2 V	$330 \mathrm{k} \Omega$	$330 \mathrm{k} \Omega$	1.2 V	47 pF

Output Filter Design (Inductor and Output Capacitor)

Inductor Selection

The two converters operate with a $2.2-\mu \mathrm{H}$ output inductor. A designer can use larger or smaller inductor values to optimize the performance of the device for specific operation conditions. The selected inductor must be rated for its dc resistance and saturation current. The dc resistance of the inductance directly influences the efficiency of the converters. Therefore, select an inductor with lowest dc resistance for highest efficiency. The minimum inductor value is $1.5 \mu \mathrm{H}$, but the circuit requires an output capacitor of $22 \mu \mathrm{~F}$ minimum in this case. For an output voltage above 2.8 V , TI recommends an inductor value of $3.3 \mu \mathrm{H}$ minimum. Lower values result in an increased output-voltage ripple in PFM mode.

Equation 6 calculates the maximum inductor current under static load conditions. The saturation-current rating of the inductor should be higher than the maximum inductor current as calculated with Equation 6. This recommendation is because during heavy load transient the inductor current rises above the calculated value.

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{O}} \times \frac{1-\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{I}}}}{\mathrm{~L} \times f} \quad \quad \mathrm{I}_{\mathrm{L}}(\max)=\mathrm{I}_{\mathrm{O}}(\max)+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \tag{6}
\end{equation*}
$$

with:

- $\mathrm{f}=$ Switching frequency ($2.25-\mathrm{MHz}$ typical)
- $\mathrm{L}=$ Inductor value
- $\Delta I_{L}=$ Peak-to-peak inductor ripple current
- I $\mathrm{Lmax}^{\text {= Maximum inductor current }}$

The highest inductor current occurs at maximum V_{1}. Open-core inductors have a soft saturation characteristic, and they can normally handle higher inductor currents versus a comparable shielded inductor.
A more-conservative approach is to select the inductor current rating just for the maximum switch current of the corresponding converter. Give consideration to the difference in the core material from inductor to inductor, which has an impact on the efficiency, especially at high switching frequencies. See Table 4 and the typical applications for possible inductors.

Table 4. Tested Inductors

Inductor Type	Inductor Value	Supplier
LPS3010	$2.2 \mu \mathrm{H}$	Coilcraft
LPS3015	$3.3 \mu \mathrm{H}$	Coilcraft
LPS4012	$2.2 \mu \mathrm{H}$	Coilcraft
VLF4012	$2.2 \mu \mathrm{H}$	TDK

Output-Capacitor Selection

The advanced fast-response voltage-mode control scheme of the two converters allows the use of small ceramic capacitors with a value of $22-\mu \mathrm{F}$ (typical), without having large output-voltage undershoots and overshoots during heavy load transients. TI recommends ceramic capacitors having low ESR values, which result in the lowest output-voltage ripple.

If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application requirements. For completeness, the RMS ripple current is calculated as:

$$
\begin{equation*}
\mathrm{I}_{\text {(RMSCout) }}=\mathrm{V}_{\mathrm{O}} \times \frac{1-\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{I}}}}{\mathrm{~L} \times f} \times \frac{1}{2 \times \sqrt{3}} \tag{7}
\end{equation*}
$$

At nominal load current, the inductive converters operate in PWM mode, and the overall output voltage ripple is the sum of the voltage spike caused by the output-capacitor ESR plus the voltage ripple caused by charging and discharging the output capacitor:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{O}} \times \frac{1-\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{I}}}}{\mathrm{~L} \times f} \times\left(\frac{1}{8 \times \mathrm{C}_{\mathrm{O}} \times f}+\mathrm{ESR}\right) \tag{8}
\end{equation*}
$$

where the highest output voltage ripple occurs at the highest input voltage V_{1}.
At light load currents, the converters operate in power-save mode and the output-voltage ripple depends on the output-capacitor value. The internal comparator delay and the external capacitor set the output-voltage ripple. The typical output-voltage ripple is less than 1% of the nominal output voltage.

Input-Capacitor Selection

The nature of the buck converters having a pulsating input current requires a low-ESR input capacitor for best input-voltage filtering and minimizing the interference with other circuits caused by high input-voltage spikes. The converters require a ceramic input capacitor of $10 \mu \mathrm{~F}$. Increase the input capacitor as desired for better inputvoltage filtering, without any limit.

Table 5. Possible Capacitors

Capacitor Value	Size	Supplier	Type
$2.2 \mu \mathrm{~F}$	0805	TDK C2012X5R0J226MT	Ceramic
$2.2 \mu \mathrm{~F}$	0805	Taiyo Yuden JMK212BJ226MG	Ceramic
$10 \mu \mathrm{~F}$	0805	Taiyo Yuden JMK212BJ106M	Ceramic
$10 \mu \mathrm{~F}$	0805	TDK C2012X5R0J106M	Ceramic
$10 \mu \mathrm{~F}$	0603	Taiyo Yuden JMK107BJ106MA	Ceramic

Low-Dropout Voltage Regulators (LDOs)

An external resistor network sets the output voltage of all four LDOs in TPS65051-Q1, TPS65054-Q1, and TPS65056-Q1. Calculate the output voltage using Equation 9:

$$
\begin{equation*}
V_{O}=V_{\text {ref }} \times\left(1+\frac{R 5}{R 6}\right) \tag{9}
\end{equation*}
$$

with an internal reference voltage, $\mathrm{V}_{\text {ref }}$, of 1 V (typical).
TI recommends setting the total resistance of R5 + R6 to less than $1 \mathrm{M} \Omega$. Typically, there is no feedforward capacitor needed at the voltage dividers for the LDOs.

$$
\begin{equation*}
V_{\mathrm{O}}=\mathrm{V}_{\left(\mathrm{FB} _L D O s\right)} \times \frac{R 5+R 6}{R 6} \quad R 5=R 6 \times\left(\frac{V_{O}}{V_{\left(F B _L D O s\right)}}\right)-R 6 \tag{10}
\end{equation*}
$$

Typical resistor values:
Table 6. Typical Resistor Values

OUTPUT VOLTAGE	$\mathbf{R 5}$	$\mathbf{R 6}$	NOMINAL VOLTAGE
3.3 V	$300 \mathrm{k} \Omega$	$130 \mathrm{k} \Omega$	3.31 V
3 V	$300 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	3 V
2.85 V	$240 \mathrm{k} \Omega$	$130 \mathrm{k} \Omega$	2.85 V
2.8 V	$360 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	2.8 V
2.5 V	$300 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	2.5 V
1.8 V	$240 \mathrm{k} \Omega$	$300 \mathrm{k} \Omega$	1.8 V
1.5 V	$150 \mathrm{k} \Omega$	$300 \mathrm{k} \Omega$	1.5 V
1.3 V	$36 \mathrm{k} \Omega$	$120 \mathrm{k} \Omega$	1.3 V
1.2 V	$100 \mathrm{k} \Omega$	$510 \mathrm{k} \Omega$	1.19 V
1.1 V	$33 \mathrm{k} \Omega$	$330 \mathrm{k} \Omega$	1.1 V

LAYOUT CONSIDERATIONS

Application Circuits

PB_IN and Sequencing

One can use the PB_OUT pin to enable one or several converters. After power up, the PB_OUT pin is low, and pulls down the enable pins connected to PB_OUT; EN_DCDC1, and EN_LDO1 in Figure 24. Pulling PB_IN to V_{cc} for longer than 32 ms turns off the PB_OUT pin. Hence, a pullup resistor to V_{cc} pulls the enable pins high, enabling the DCDC1 converter and LDO1. The enable signal for DCDC2 and LDO2 to LDO4 is the output voltage of DCDC1 ($\mathrm{V}_{\text {OUT }} 1$). The battery $\left(\mathrm{V}_{(\text {bat }}\right)$ directly powers LDO1 with its output voltage of 3.3 V and LDO2 for an output voltage of 2.5 V . To save power, the input voltage for the lower voltage rails at LDO3 and LDO4 derives from the output of the step-down converters, keeping the voltage drop at the LDOs low to increase efficiency. Because the output of DCDC1 powers LDO3 and LDO4, the total output current on Vout1, LDO3, and LDO4 must not exceed the maximum rating of DCDC1.
Figure 25 shows the power up timing for this application.

Figure 24. PB_OUT Circuit

Figure 25. Power-Up Timing

RESET

TPS65051-Q1, TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1 contain a comparator for supervising a voltage connected to an external voltage divider, and generating a reset signal if the voltage is lower than the threshold. The rising-edge delay is 100 ms at the open-drain RESET output. Calculate the values for the external resistors R3 to R5 as follows:
$\mathrm{V}_{\mathrm{L}}=$ lower voltage threshold
$\mathrm{V}_{\mathrm{H}}=$ higher voltage threshold
$\mathrm{V}_{\text {REF }}=$ reference voltage (1 V)
Example:

- $\mathrm{V}_{\mathrm{L}}=3.3 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{H}}=3.4 \mathrm{~V}$

Set R5 $=100 \mathrm{k} \Omega$
$\rightarrow \mathrm{R} 3+\mathrm{R} 4=240 \mathrm{k} \Omega$
$\rightarrow \mathrm{R} 4=3.03 \mathrm{k} \Omega$
$\rightarrow \mathrm{R} 3=237 \mathrm{k} \Omega$

$$
\begin{align*}
R 3+R 4 & =R 5 \times\left(\frac{V_{H}}{V_{\text {ref }}}-1\right) \\
R 4 & =R 5 \times \frac{V_{H}-V_{L}}{V_{L}} \tag{11}
\end{align*}
$$

Figure 26. $\overline{\text { RESET }}$ Circuit

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Top-Side Markings (4)	Samples
TPS65051QRSMRQ1	ACTIVE	VQFN	RSM	32	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 125	TPS 65051Q	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS65051-Q1 :

- Catalog: TPS65051
- Catalog - TI's standard catalog product

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TPS65051QRSMRQ1	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65051QRSMRQ1	VQFN	RSM	32	3000	367.0	367.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) Package configuration.
(1) The package thermal pad must be soldered to the board for thermal and mechanical performance.

See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
RSM (S-PVQFN-N32) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
Exposed Thermal Pad Dimensions

NOTE: All linear dimensions are in millimeters

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

[^0]: (1) Output voltage specification does not include tolerance of external voltage-programming resistors.

