TPS61097A-33 Low-Input Voltage Synchronous-Boost Converter With Low Quiescent Current

1 Features

- Up to 93% Efficiency at Typical Operating Conditions
- Connection from Battery to Load via Bypass Switch in Shutdown Mode
- Typical Shutdown Current Less Than 5 nA
- Typical Quiescent Current Less Than 5 μA
- Operating Input Voltage Range From 0.9 V to 5.5 V
- Power-Save Mode for Improved Efficiency at Low Output Power
- Overtemperature Protection
- Small 2.8-mm x 2.9-mm 5-Pin SOT-23 Package

2 Applications

- MSP430 Applications
- All Single-Cell, Two-Cell, and Three-Cell Alkaline, NiCd, NiMH, or Single-Cell Li-Battery Powered Products
- Personal Medical Products
- Fuel Cell and Solar Cell Powered Products
- PDAs
- Mobile Applications
- White LEDs

3 Description

The TPS61097A-33 provides a power supply solution for products powered by either a single-cell, two-cell, or three-cell alkaline, NiCd, or NiMH, or one-cell Li-lon or Li-polymer battery. They can also be used in fuel cell or solar cell powered devices where the capability of handling low input voltages is essential. Possible output currents depend on the input-to-output voltage ratio. The devices provide output currents up to 100 mA at a 3.3-V output while using a single-cell Li-lon or Li-Polymer battery. The boost converter is based on a current-mode controller using synchronous rectification to obtain maximum efficiency. The maximum average input current is limited to a value of 400 mA. The converter can be disabled to minimize battery drain. During shutdown, the battery is connected to the load to enable battery backup of critical functions on the load. The device is packaged in a 5-pin SOT-23 package (DBV) measuring 2.8 mm × 2.9 mm.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61097A-33</td>
<td>SOT-23 (5)</td>
<td>2.90 mm × 2.90 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the datasheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features .......................................................... 1
2 Applications ..................................................... 1
3 Description ....................................................... 1
4 Revision History ................................................ 2
5 Pin Configuration and Functions .......................... 3
6 Specifications .................................................... 3
   6.1 Absolute Maximum Ratings ......................... 3
   6.2 ESD Ratings ............................................... 3
   6.3 Recommended Operating Conditions ............... 3
   6.4 Thermal Information ..................................... 4
   6.5 Electrical Characteristics ............................ 4
   6.6 Typical Characteristics ................................ 5
7 Parameter Measurement Information ...................... 8
8 Detailed Description ........................................... 9
   8.1 Overview .................................................. 9
   8.2 Functional Block Diagram ............................ 9
9 Application and Implementation ......................... 12
   9.1 Application Information ............................... 12
   9.2 Typical Application ...................................... 13
10 Power Supply Recommendations .......................... 16
11 Layout .......................................................... 16
   11.1 Layout Guidelines ...................................... 16
   11.2 Layout Example ........................................ 16
12 Device and Documentation Support ....................... 17
   12.1 Device Support ......................................... 17
   12.2 Trademarks ............................................. 17
   12.3 Electrostatic Discharge Caution .................... 17
   12.4 Glossary ............................................... 17
13 Mechanical, Packaging, and Orderable Information .... 17

4 Revision History

Changes from Original (January 2014) to Revision A

• Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ........................................ 1
5 Pin Configuration and Functions

FIXED OUTPUT VOLTAGE
DBV PACKAGE
(TOP VIEW)

VIN 1 5 L
GND 2
EN 3 4 VOUT

Pin Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>PIN NAME</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN</td>
<td>I</td>
<td>Boost converter input voltage.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>–</td>
<td>Control / logic ground.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>I</td>
<td>Enable input (1 = enabled, 0 = disabled). EN must be actively terminated high or low.</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>O</td>
<td>Boost converter output.</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>I</td>
<td>Connection for inductor.</td>
</tr>
</tbody>
</table>

6 Specifications

6.1 Absolute Maximum Ratings
Over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>(-0.3)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{L}})</td>
<td>(-0.3)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{VOUT}})</td>
<td>(-0.3)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{EN}})</td>
<td>(-0.3)</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{MAX}})</td>
<td>400</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{J}})</td>
<td>(-40)</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{STG}})</td>
<td>(-65)</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{(ESD)}})</td>
<td>(\pm 2000)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{(ESD)}})</td>
<td>(\pm 1000)</td>
<td>V</td>
</tr>
</tbody>
</table>

\(^{(1)}\) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

\(^{(2)}\) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>0.9</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{EN}})</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(T_{\text{A}})</td>
<td>(-40)</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{J}})</td>
<td>(-40)</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>
6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(1)</th>
<th>TPS61097A-33</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>θJA</td>
<td>Junction-to-ambient thermal resistance</td>
<td>208.7</td>
</tr>
<tr>
<td>θJCtop</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>124.5</td>
</tr>
<tr>
<td>θJB</td>
<td>Junction-to-board thermal resistance</td>
<td>36.9</td>
</tr>
<tr>
<td>ψJT</td>
<td>Junction-to-top characterization parameter</td>
<td>14.7</td>
</tr>
<tr>
<td>ψJB</td>
<td>Junction-to-board characterization parameter</td>
<td>36</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/DC STAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_IN</td>
<td>Input voltage</td>
<td>0.9</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_OUT</td>
<td>Output voltage</td>
<td>V_IN = 1.2 V, I_OUT = 10 mA</td>
<td>3.20</td>
<td>3.30</td>
<td>3.40</td>
</tr>
<tr>
<td>I_SW</td>
<td>Switch current limit</td>
<td>V_OUT = 3.3 V</td>
<td>200</td>
<td>400</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Rectifying switch on resistance</td>
<td>V_OUT = 3.3 V</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main switch on resistance</td>
<td>V_OUT = 3.3 V</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bypass switch on resistance</td>
<td>V_IN = 1.2 I_OUT = 100 mA</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>V_IN &lt; V_OUT, V_IN = 1.2 V to 1.8 V, I_OUT = 10 mA</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>V_IN &lt; V_OUT, I_OUT = 10 mA to 50 mA, V_IN = 1.8 V</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent current</td>
<td>V_IN, V_OUT = 0 mA, V_EN = V_IN = 1.2 V, V_OUT = 3.5 V</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>I_SD</td>
<td>Shutdown current</td>
<td>V_IN = 0 V, V_IN = 1.2 V, I_OUT = 0 mA</td>
<td>0.005</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leakage current into L</td>
<td>V_EN = 0 V, V_IN = 1.2 V, V_L = 1.2 V</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CONTROL STAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN input current</td>
<td>EN = 0 V or EN = V_IN</td>
<td>0.01</td>
<td>0.1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_IL</td>
<td>Logic low level, EN falling edge</td>
<td></td>
<td>0.58</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_IH</td>
<td>Logic high level, EN rising edge</td>
<td>V_IN + 1.0 V</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTP</td>
<td>Overtemperature protection</td>
<td></td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>OTP_HYST</td>
<td>Overtemperature hysteresis</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_UVLO</td>
<td>Undervoltage lock-out threshold for turn off</td>
<td>V_IN decreasing</td>
<td>0.6</td>
<td>0.8</td>
<td>V</td>
</tr>
</tbody>
</table>
6.6 Typical Characteristics

Refer to Figure 19 for reference designators.

Figure 1. Maximum Output Current vs Input Voltage

Figure 2. Efficiency vs Output current

Figure 3. Efficiency vs Input Voltage

Figure 4. Input Current vs Input Voltage

Figure 5. Input Current vs Input Voltage

Figure 6. \( V_{IH} \) vs Temperature
Typical Characteristics (continued)

Figure 7. $V_{IH}$ vs Output Current

Figure 8. Output Voltage vs Output Current

Figure 9. Output Voltage vs Input Voltage

Figure 10. Output Voltage Ripple

Figure 11. Load Transient Response

Figure 12. Line Transient Response
Typical Characteristics (continued)

Figure 13. Switching Waveform, Continuous Mode

Figure 14. Switching Waveform, Discontinuous Mode
7 Parameter Measurement Information

Figure 15. Measurement Test Circuit

Table 1. List of Components

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>MANUFACTURER</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Murata</td>
<td>GRM319R61A106KE19 10μF 10V X5R 1206 20%</td>
</tr>
<tr>
<td>C3</td>
<td>Murata</td>
<td>GRM319R61A106KE19 10μF 10V X5R 1206 20%</td>
</tr>
<tr>
<td>L1</td>
<td>Coilcraft</td>
<td>DO3314-103MLC</td>
</tr>
</tbody>
</table>
8 Detailed Description

8.1 Overview
The TPS61097A-33 is a high performance, high efficiency switching boost converter. To achieve high efficiency the power stage is realized as a synchronous boost topology. For the power switching, two actively controlled low $R_{\text{DSon}}$ power MOSFETs are implemented.

8.2 Functional Block Diagram
8.3 Feature Description

8.3.1 Controller Circuit

The device is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 200 mA and adjusting the offset of this inductor current depending on the output load. If the required average input current is lower than the average inductor current defined by this constant ripple the inductor current goes discontinuous to keep the efficiency high at low load conditions.

![Hysteretic Current Operation](image)

The output voltage $V_{OUT}$ is monitored via the feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly.

8.3.2 Device Enable and Shutdown Mode

The device is enabled when $EN$ is set high and shut down when $EN$ is low. During shutdown, the converter stops switching and all internal control circuitry is turned off.

8.3.3 Bypass Switch

The TPS61097A-33 contains a P-channel MOSFET (Bypass Switch) in parallel with the synchronous rectifying MOSFET. When the IC is enabled ($V_{EN} > V_{IH}$), the Bypass Switch is turned off to allow the IC to work as a standard boost converter. When the IC is disabled ($V_{EN} < V_{IL}$) the Bypass Switch is turned on to provide a direct, low impedance connection from the input voltage (at the $L$ pin) to the load ($VOUT$). The Bypass Switch is not impacted by Undervoltage lockout, Overvoltage or Thermal shutdown.

8.3.4 Startup

After the $EN$ pin is tied high, the device starts to operate. If the input voltage is not high enough to supply the control circuit properly a startup oscillator starts to operate the switches. During this phase the switching frequency is controlled by the oscillator and the maximum switch current is limited. As soon as the device has built up the output voltage to about 1.8 V, high enough for supplying the control circuit, the device switches to its normal hysteretic current mode operation. The startup time depends on input voltage and load current.

8.3.5 Operation at Output Overload

If in normal boost operation the inductor current reaches the internal switch current limit threshold the main switch is turned off to stop further increase of the input current. In this case the output voltage will decrease since the device can not provide sufficient power to maintain the set output voltage.

If the output voltage drops below the input voltage the backgate diode of the rectifying switch gets forward biased and current starts flow through it. Because this diode cannot be turned off, the load current is only limited by the remaining DC resistances. As soon as the overload condition is removed, the converter automatically resumes normal operation and enters the appropriate soft start mode depending on the operating conditions.

8.3.6 Undervoltage Lockout

An undervoltage lockout function stops the operation of the converter if the input voltage drops below the typical undervoltage lockout threshold. This function is implemented in order to prevent malfunctioning of the converter. The undervoltage lockout function has no control of the Bypass Switch. If the Bypass Switch is enabled ($V_{EN} < V_{IL}$) there is no impact during an undervoltage condition, and the Bypass Switch remains on.
Feature Description (continued)

8.3.7 Overtemperature Protection

The device has a built-in temperature sensor which monitors the internal IC temperature. If the temperature exceeds the programmed threshold (OTP), the device stops operating. As soon as the IC temperature has decreased below the programmed threshold (OTP - OTP_{HYST}), it starts operating again. There is a built-in hysteresis to avoid unstable operation at IC temperatures at the overtemperature threshold.

8.4 Device Functional Modes

<table>
<thead>
<tr>
<th>EN</th>
<th>DEVICE STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Boost Converter</td>
</tr>
<tr>
<td>L</td>
<td>Bypass Switch</td>
</tr>
</tbody>
</table>
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Adjustable Bypass Switching

The EN pin can be set up as a low voltage control for the bypass switch. By setting the desired ratio of R1 and R2, the TPS61097A-33 can be set to switch on the bypass at a defined voltage level on VIN. For example, setting R1 and R2 to 200 KΩ would set \( V_{EN} \) to half of VIN. The voltage level of VIN engaging the bypass switch is based on the \( V_{IL} \) level of EN (0.58 V). If VIN is less than 1.16 V then the bypass switch will be enabled. For VIN values above 1.56 V (50% of \( V_{IH} \)) the bypass switch is disabled.

![Figure 17. Adjustable Bypass Switching](image)

9.1.2 Managing Inrush Current

Upon startup, the output capacitor of the boost converter can act as a virtual short circuit. The amount of inrush current is dependent on the rate of increase of the input voltage, the inductance used with the converter, the output capacitance and the parasitic circuit resistance. One method to reduce the inrush current is to use a load switch with controlled turn-on. Texas Instruments has a large offering of controlled slew rate load switches which can be found at [www.ti.com/loadswitches](http://www.ti.com/loadswitches). Below is an example circuit that has a load switch with controlled turn-on.

![Figure 18. Example Circuit with Load Switch](image)
Application Information (continued)

9.1.3 Thermal Considerations

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below.
- Improving the power dissipation capability of the PCB design
- Improving the thermal coupling of the component to the PCB
- Introducing airflow in the system

The maximum recommended junction temperature \( T_J \) of the TPS61097A-33 devices is 125°C. Specified regulator operation is assured to a maximum ambient temperature \( T_A \) of 85°C. Therefore, the maximum power dissipation is about 191.7 mW. More power can be dissipated if the maximum ambient temperature of the application is lower.

9.2 Typical Application

![Figure 19. Typical Application Schematic](image)

9.2.1 Design Requirements

<table>
<thead>
<tr>
<th>DESIGN PARAMETERS</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (( V_{\text{IN}} ))</td>
<td>1.2 V to 1.8 V</td>
</tr>
<tr>
<td>Output Voltage (( V_{\text{OUT}} ))</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Output Current (( I_{\text{OUT}} ))</td>
<td>10 mA</td>
</tr>
</tbody>
</table>

9.2.2 Detailed Design Procedure

9.2.2.1 Inductor Selection

To make sure that the TPS61097A-33 devices can operate, a suitable inductor must be connected between pin \( V_{\text{IN}} \) and pin \( L \). Inductor values of 4.7 \( \mu \text{H} \) show good performance over the whole input and output voltage range. Choosing other inductance values affects the switching frequency \( f \) proportional to \( 1/L \) as shown in Equation 1.

\[
L = \frac{1}{f \times 200 \text{ mA}} \times \frac{V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}})}{V_{\text{OUT}}}
\]  

(1)
Choosing inductor values higher than 4.7 \( \mu \)H can improve efficiency due to reduced switching frequency and therefore with reduced switching losses. Using inductor values below 2.2 \( \mu \)H is not recommended.

Having selected an inductance value, the peak current for the inductor in steady state operation can be calculated. Equation 2 gives the peak current estimate.

\[
I_{L,\text{MAX}} = \begin{cases} 
\frac{V_{\text{OUT}} \times I_{\text{OUT}}}{0.8 \times V_{\text{IN}}} + 100 \text{ mA}; & \text{continuous current operation} \\
200 \text{ mA}; & \text{discontinuous current operation}
\end{cases}
\]

(2)

\( I_{L,\text{MAX}} \) is the inductor's required minimum current rating. Note that load transient or over current conditions may require an even higher current rating.

Equation 3 provides an easy way to estimate whether the device is operating in continuous or discontinuous operation. As long as the equation is true, continuous operation is typically established. If the equation becomes false, discontinuous operation is typically established.

\[
\frac{V_{\text{OUT}} \times I_{\text{OUT}}}{V_{\text{IN}}} > 0.8 \times 100 \text{ mA}
\]

(3)

Due to the use of current hysteretic control in the TPS61097A-33, the series resistance of the inductor can impact the operation of the main switch. There is a simple calculation that can ensure proper operation of the TPS61097A-33 boost converter. The relationship between the series resistance (\( R_{\text{IN}} \)), the input voltage (\( V_{\text{IN}} \)) and the switch current limit (\( I_{\text{SW}} \)) is shown in Equation 4.

\[
R_{\text{IN}} < \frac{V_{\text{IN}}}{I_{\text{SW}}}
\]

(4)

Examples:

\( I_{\text{SW}} = 400 \text{ mA}, V_{\text{IN}} = 2.5 \text{ V} \)  
\( I_{\text{SW}} = 400 \text{ mA}, V_{\text{IN}} = 1.8 \text{ V} \)

In Equation 5, \( R_{\text{IN}} < 2.5 \text{ V} / 400 \text{ mA} \); therefore, \( R_{\text{IN}} \) must be less than 6.25 \( \Omega \).

In Equation 6, \( R_{\text{IN}} < 1.8 \text{ V} / 400 \text{ mA} \); therefore, \( R_{\text{IN}} \) must be less than 4.5 \( \Omega \).

The following inductor series from different suppliers have been used with TPS61097A-33 converters:

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>INDUCTOR SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coilcraft</td>
<td>DO3314</td>
</tr>
<tr>
<td>TDK</td>
<td>NLC565050T</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>CBC2012T</td>
</tr>
</tbody>
</table>

### Capacitor Selection

#### Input Capacitor

The input capacitor should be at least 10-\( \mu \)F to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. The input capacitor should be a ceramic capacitor and be placed as close as possible to the VIN and GND pins of the IC.

#### Output Capacitor

For the output capacitor \( C_2 \), it is recommended to use small ceramic capacitors placed as close as possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can not be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of around 2.2 \( \mu \)F in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.

A minimum capacitance value of 4.7 \( \mu \)F should be used, 10 \( \mu \)F are recommended. If the inductor exceeds 4.7 \( \mu \)H, the value of the output capacitance value needs to be half the inductance value or higher for stability reasons, see Equation 7.
\[ C_0 \geq \frac{L}{2} \times \frac{\mu F}{\mu H} \]  

(7)

Using low ESR capacitors, such as ceramic capacitors, is recommended to minimize output voltage ripple. If heavy load changes are expected, the output capacitor value should be increased to avoid output voltage drops during fast load transients.

**Table 3. Recommended Output Capacitors**

<table>
<thead>
<tr>
<th>VENDOR</th>
<th>CAPACITOR SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>GRM188R60J106M47D 10μF 6.3V X5R 0603</td>
</tr>
<tr>
<td>Murata</td>
<td>GRM319R61A106KE19 10μF 10V X5R 1206</td>
</tr>
</tbody>
</table>

### 9.2.3 Application Curves

**Figure 20. Startup After Enable**

\[ V_{IH} = 1.2 \text{ V} \]
\[ I_{OUT} = 10 \text{ mA} \]

**Figure 21. Startup After Enable**

\[ V_{IH} = 1.8 \text{ V} \]
\[ I_{OUT} = 1.8 \text{ mA} \]
10 Power Supply Recommendations

The TPS61097A-33 DC-DC converters are intended for systems powered by a single up to triple cell Alkaline, NiCd, NiMH battery with a typical terminal voltage between 0.9 V and 5.5 V. They can also be used in systems powered by one-cell Li-Ion or Li-Polymer with a typical voltage between 2.5 V and 4.2 V. Additionally, any other voltage source like solar cells or fuel cells with a typical output voltage between 0.9 V and 5.5 V can power systems where the TPS61097A-33 is used. The TPS61097A-33 does not down-regulate VIN; therefore, if VIN is greater than VOUT, VOUT tracks VIN.

11 Layout

11.1 Layout Guidelines

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.

The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current.

11.2 Layout Example

![Layout Example](image-url)
12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer
TI's publication of information regarding third-party products or services does not constitute an endorsement regarding the suitability of such products or services or a warranty, representation or endorsement of such products or services, either alone or in combination with any TI product or service.

12.2 Trademarks
All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
### PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PIns</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61097A-33DBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>40 to 85</td>
<td>NG5F ~ NG5K</td>
</tr>
<tr>
<td>TPS61097A-33DBVT</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU NIPDAU</td>
<td></td>
<td>Level-1-260C-UNLIM</td>
<td>40 to 85</td>
<td>NG5K</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Addendum-Page 1
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
**TAPE AND REEL INFORMATION**

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin 1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61097A-33DBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.23</td>
<td>3.17</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TPS61097A-33DBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.23</td>
<td>3.17</td>
<td>1.37</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.*

- **Reel Diameter**: Diameter of the reel in millimeters.
- **Reel Width W1**: Width of the reel in millimeters.
- **A0**: Dimension designed to accommodate the component width.
- **B0**: Dimension designed to accommodate the component length.
- **K0**: Dimension designed to accommodate the component thickness.
- **W**: Overall width of the carrier tape.
- **P1**: Pitch between successive cavity centers.

---

*www.ti.com 8-Feb-2018*
### TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPS61097A-33DBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>183.0</td>
<td>183.0</td>
<td>20.0</td>
</tr>
<tr>
<td>TPS61097A-33DBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>250</td>
<td>183.0</td>
<td>183.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal.*
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRET, TRADE NAME, TRADE MARK, TRADE PRACTICE, OR OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated