1 Features

- H-Bridge Motor Driver
 - Drives a DC Motor or Other Loads
 - Low MOSFET On-Resistance: HS + LS 1 Ω
- 1-A Maximum Drive Current
- 0- to 11-V Operating Supply-Voltage Range
- Standard PWM Interface (IN1/IN2)
- Low-Power Sleep Mode With 120-nA Maximum Sleep Current
 - nSLEEP pin
- Small Package and Footprint
 - 8 WSON (With Thermal Pad)
 - 2.0 × 2.0 mm
- Protection Features
 - VCC Undervoltage Lockout (UVLO)
 - Overcurrent Protection (OCP)
 - Thermal Shutdown (TSD)

2 Applications

- Cameras
- DSLR Lenses
- Consumer Products
- Toys
- Robotics
- Medical Devices

3 Description

The DRV8837C device provides an integrated motor driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The device can drive one DC motor or other devices like solenoids. The output driver block consists of N-channel power MOSFETs configured as an H-bridge to drive the motor winding. An internal charge pump generates needed gate drive voltages.

The DRV8837C device can supply up to 1 A of output current. The device operates on a motor power supply voltage from 0 to 11 V, and control logic can operate on 1.8-V to 5-V rails.

The DRV8837C device has a PWM (IN/IN) input interface.

Internal shutdown functions are provided for overcurrent protection, short circuit protection, undervoltage lockout, and overtemperature.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8837C</td>
<td>WSON (8)</td>
<td>2.00 mm × 2.00 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.
Table of Contents

1. Features .. 1
2. Applications ... 1
3. Description .. 1
4. Revision History .. 2
5. Pin Configuration and Functions 3
6. Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information .. 4
 6.5 Electrical Characteristics 5
 6.6 Timing Requirements 6
 6.7 Typical Characteristics 7
7. Detailed Description .. 8
 7.1 Overview ... 8
 7.2 Functional Block Diagram 8
 7.3 Feature Description .. 9
 7.4 Device Functional Modes 10
8. Application and Implementation 11
 8.1 Application Information 11
 8.2 Typical Application .. 11
9. Power Supply Recommendations 12
 9.1 Bulk Capacitance ... 12
10. Layout ... 14
 10.1 Layout Guidelines .. 14
 10.2 Layout Example ... 14
 10.3 Power Dissipation .. 14
11. Device and Documentation Support 15
 11.1 Documentation Support 15
 11.2 Receiving Notification of Documentation Updates 15
 11.3 Community Resources 15
 11.4 Trademarks .. 15
 11.5 Electrostatic Discharge Caution 15
 11.6 Glossary .. 15
12. Mechanical, Packaging, and Orderable Information 15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (July 2016) to Revision A

- Changed the device status from Product Preview to Production Data 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER AND GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>PWR</td>
</tr>
<tr>
<td>VCC</td>
<td>8</td>
<td>PWR</td>
</tr>
<tr>
<td>VM</td>
<td>1</td>
<td>PWR</td>
</tr>
<tr>
<td>CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN1</td>
<td>6</td>
<td>I</td>
</tr>
<tr>
<td>IN2</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>nSLEEP</td>
<td>7</td>
<td>I</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT1</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>OUT2</td>
<td>3</td>
<td>O</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
Over operating free-air temperature range (unless otherwise noted)\(^{(1)/(2)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor power-supply voltage, VM</td>
<td>–0.3</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Logic power-supply voltage, V(_{CC})</td>
<td>–0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Control pin voltage, IN1, IN2, nSLEEP</td>
<td>–0.5</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Peak drive current</td>
<td>Internally limited</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Operating virtual junction temperature, T(_J)</td>
<td>–40</td>
<td>150</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage temperature, T(_{stg})</td>
<td>–60</td>
<td>150</td>
<td>ºC</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground pin.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>ESD Condition</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>±4000</td>
<td>V</td>
</tr>
<tr>
<td>Charged-device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
Over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(_{VM})</td>
<td>0</td>
<td>11</td>
<td>V</td>
</tr>
<tr>
<td>V(_{DC})</td>
<td>1.8</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>I(_{OUT})</td>
<td>0</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>f(_{PWM})</td>
<td>0</td>
<td>250</td>
<td>kHz</td>
</tr>
<tr>
<td>V(_{LOGIC})</td>
<td>0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>T(_{A})</td>
<td>–40</td>
<td>85</td>
<td>ºC</td>
</tr>
</tbody>
</table>

6.4 Thermal Information
Over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>THERMAL METRIC (^{(1)})</th>
<th>DRV8837C</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-ambient thermal resistance, R(_{JA})</td>
<td>60.9</td>
<td>ºC/W</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance, R(_{JC(top)})</td>
<td>71.4</td>
<td>ºC/W</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance, R(_{JUB})</td>
<td>32.2</td>
<td>ºC/W</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter, ψ(_{JT})</td>
<td>1.6</td>
<td>ºC/W</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter, ψ(_{JB})</td>
<td>32.8</td>
<td>ºC/W</td>
</tr>
<tr>
<td>Junction-to-case (bottom) thermal resistance, R(_{JC(bot)})</td>
<td>9.8</td>
<td>ºC/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

\(T_A = 25^\circ C \), over recommended operating conditions unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLIES (VM, VCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{VM}) VM operating voltage</td>
<td>(V_{VM} = 5 \text{ V}; V_{CC} = 3 \text{ V}); No PWM</td>
<td>0</td>
<td>40</td>
<td>100</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{VM}) VM operating supply current</td>
<td>(V_{VM} = 5 \text{ V}; V_{CC} = 3 \text{ V}); 50 kHz PWM</td>
<td>0.8</td>
<td>1.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{VMO}) VM sleep mode supply current</td>
<td>(V_{VM} = 5 \text{ V}; V_{CC} = 3 \text{ V}); nSLEEP = 0</td>
<td>30</td>
<td>95</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>(V_{CC}) VCC operating voltage</td>
<td>VVM = 5 V; VCC = 3 V; No PWM</td>
<td>1.8</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{VCC}) VCC operating supply current</td>
<td>VVM = 5 V; VCC = 3 V; No PWM</td>
<td>300</td>
<td>500</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{VCCO}) VCC sleep mode supply current</td>
<td>VVM = 5 V; VCC = 3 V; nSLEEP = 0</td>
<td>5</td>
<td>25</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>CONTROL INPUTS (IN1/PH, IN2/EN, nSLEEP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IL}) Input logic-low voltage</td>
<td>(0.25 \times V_{CC})</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH}) Input logic-high voltage</td>
<td>(0.5 \times V_{CC})</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{HYS}) Input logic hysteresis</td>
<td>(0.08 \times V_{CC})</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{IL}) Input logic-low current</td>
<td>(V_{INx} = 0 \text{ V})</td>
<td>-5</td>
<td>5</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{IH}) Input logic-high current</td>
<td>(V_{INx} = 3.3 \text{ V})</td>
<td></td>
<td>50</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>(R_{PD}) Pulldown resistance</td>
<td>100</td>
<td></td>
<td></td>
<td>k(\Omega)</td>
<td></td>
</tr>
<tr>
<td>MOTOR DRIVER OUTPUTS (OUT1, OUT2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(ON)}) HS + LS FET on-resistance</td>
<td>(V_{VM} = 5 \text{ V}; V_{CC} = 3.3 \text{ V}); (I_O = 200 \text{ mA}; T_J = 25^\circ C)</td>
<td>1000</td>
<td>200</td>
<td>m(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(I_{OFF}) Off-state leakage current</td>
<td>(V_{OUTx} = 0 \text{ V})</td>
<td>-200</td>
<td>200</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>PROTECTION CIRCUITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{UVLO}) VCC undervoltage lockout</td>
<td>VCC falling</td>
<td>1.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VCC rising</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{OCP}) Overcurrent protection trip level</td>
<td>(I_{OCP}) Overcurrent protection trip level</td>
<td>1.2</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(t_{DEG}) Overcurrent deglitch time</td>
<td>(t_{DEG}) Overcurrent deglitch time</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>(t_{RETRY}) Overcurrent retry time</td>
<td>(t_{RETRY}) Overcurrent retry time</td>
<td>1</td>
<td></td>
<td></td>
<td>\text{ms}</td>
</tr>
<tr>
<td>(T_{TSD}) (^{(1)}) Thermal shutdown temperature</td>
<td>Die temperature (T_J)</td>
<td>150</td>
<td>160</td>
<td>180</td>
<td>(^\circ C)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Not tested in production; limits are based on characterization data.
6.6 Timing Requirements

$T_A = 25^\circ C, V_{VM} = 5 \, V, V_{CC} = 3 \, V, RL = 20 \, \Omega$

<table>
<thead>
<tr>
<th>NO.</th>
<th>t_7</th>
<th>Output enable time</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>300</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>t_8</td>
<td>Output disable time</td>
<td>300</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>t_9</td>
<td>Delay time, INx high to OUTx high</td>
<td>160</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>t_{10}</td>
<td>Delay time, INx low to OUTx low</td>
<td>160</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>t_{11}</td>
<td>Output rise time</td>
<td>20</td>
<td>188</td>
<td>ns</td>
</tr>
<tr>
<td>6</td>
<td>t_{12}</td>
<td>Output fall time</td>
<td>20</td>
<td>188</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>t_{wake}</td>
<td>Wake time, nSLEEP rising edge to part active</td>
<td>30</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

See Figure 1.

Figure 1. Input and Output Timing for DRV8837C
6.7 Typical Characteristics

Plots generated using characterization data.

Figure 2. VM Sleep Current vs Ambient Temperature

Figure 3. VCC Sleep Current vs Ambient Temperature

Figure 4. VM Operating Current vs Ambient Temperature

Figure 5. VCC Operating Current vs Ambient Temperature

Figure 6. HS + LS $R_{DS(ON)}$ vs Ambient Temperature
7 Detailed Description

7.1 Overview

The DRV8837C device is an H-bridge driver that can drive one DC motor or other devices like solenoids. The outputs are controlled using a PWM interface (IN1/IN2).

A low-power sleep mode is included, which can be enabled using the nSLEEP pin.

This device greatly reduces the component count of motor driver systems by integrating the necessary driver FETs and FET control circuitry into a single device. In addition, the DRV8837C device adds protection features beyond traditional discrete implementations: undervoltage lockout, overcurrent protection, and thermal shutdown.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Bridge Control

The DRV8837C device is controlled using a PWM input interface, also called an IN/IN interface. Each output is controlled by a corresponding input pin.

Table 1 shows the logic for the DRV8837C device.

<table>
<thead>
<tr>
<th>nSLEEP</th>
<th>IN1</th>
<th>IN2</th>
<th>OUT1</th>
<th>OUT2</th>
<th>FUNCTION (DC MOTOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td>Coast</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Coast</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>L</td>
<td>H</td>
<td>Reverse</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>H</td>
<td>L</td>
<td>Forward</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>L</td>
<td>L</td>
<td>Brake</td>
</tr>
</tbody>
</table>

7.3.2 Sleep Mode

If the nSLEEP pin is brought to a logic-low state, the DRV8837C device enters a low-power sleep mode. In this state, all unnecessary internal circuitry is powered down.

7.3.3 Power Supplies and Input Pins

The input pins can be driven within the recommended operating conditions with or without the VCC, VM, or both power supplies present. No leakage current path exists to the supply. Each input pin has a weak pulldown resistor (approximately 100 kΩ) to ground.

The VCC and VM supplies can be applied and removed in any order. When the VCC supply is removed, the device enters a low-power state and draws very little current from the VM supply. The VCC and VM pins can be connected together if the supply voltage is between 1.8 and 7 V.

The VM voltage supply does not have any undervoltage-lockout protection (UVLO). As long as V_{CC} > 1.8 V, the internal device logic remains active which means that the VM pin voltage can drop to 0 V, however, the load may not be sufficiently driven at low VM voltages.

7.3.4 Protection Circuits

The DRV8837C is fully protected against VCC undervoltage, overcurrent, and overtemperature events.

VCC undervoltage lockout If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all FETs in the H-bridge are disabled. Operation resumes when the VCC pin voltage rises above the UVLO threshold.

Overcurrent protection (OCP) An analog current-limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than t_{DEG}, all FETs in the H-bridge are disabled. Operation resumes automatically after t_{RETRY} has elapsed. Overcurrent conditions are detected on both the high-side and low-side devices. A short to the VM pin, GND, or from the OUT1 pin to the OUT2 pin results in an overcurrent condition.

Thermal shutdown (TSD) If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature falls to a safe level, operation automatically resumes.

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CONDITION</th>
<th>H-BRIDGE</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC undervoltage (UVLO)</td>
<td>VCC < 1.7 V</td>
<td>Disabled</td>
<td>VCC > 1.8 V</td>
</tr>
<tr>
<td>Overcurrent (OCP)</td>
<td>I_{OUT} > 1.2 A (MIN)</td>
<td>Disabled (retries automatically)</td>
<td>t_{RETRY} elapses</td>
</tr>
<tr>
<td>Thermal Shutdown (TSD)</td>
<td>T_{J} > 150°C (MIN)</td>
<td>Disabled (retries automatically)</td>
<td>T_{J} < 150°C</td>
</tr>
</tbody>
</table>
7.4 Device Functional Modes

The DRV8837C device is active unless the nSLEEP pin is brought logic low. In sleep mode the H-bridge FETs are disabled Hi-Z. The DRV8837C device is brought out of sleep mode automatically if nSLEEP is brought logic high.

The H-bridge outputs are disabled during undervoltage lockout, overcurrent, and overtemperature fault conditions.

<table>
<thead>
<tr>
<th>MODE</th>
<th>CONDITION</th>
<th>H-BRIDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>nSLEEP pin = 1</td>
<td>Operating</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>nSLEEP pin = 0</td>
<td>Disabled</td>
</tr>
<tr>
<td>Fault encountered</td>
<td>Any fault condition met</td>
<td>Disabled (retries automatically)</td>
</tr>
</tbody>
</table>
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The DRV8837C device is used to drive one DC motor or other devices like solenoids. The following design procedure can be used to configure the DRV8837C device.

8.2 Typical Application

![Schematic of DRV8837C Application](image)

Figure 7. Schematic of DRV8837C Application

8.2.1 Design Requirements
Table 4 lists the required parameters for a typical usage case.

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>REFERENCE</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor supply voltage</td>
<td>VM</td>
<td>9 V</td>
</tr>
<tr>
<td>Logic supply voltage</td>
<td>VCC</td>
<td>3.3 V</td>
</tr>
<tr>
<td>Target RMS current</td>
<td>I_{OUT}</td>
<td>0.8 A</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

8.2.2.1 Motor Voltage
The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed dc motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

8.2.2.2 Low-Power Operation
When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.
8.2.3 Application Curves

![Figure 8. 50% Duty Cycle, Forward Direction](image)

![Figure 9. 50% Duty Cycle, Reverse Direction](image)

![Figure 10. 20% Duty Cycle, Forward Direction](image)

![Figure 11. 20% Duty Cycle, Reverse Direction](image)

9 Power Supply Recommendations

9.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor-drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- The highest current required by the motor system
- The power-supply capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed dc, brushless dc, stepper)
- The motor braking method

The inductance between the power supply and motor drive system limits the rate at which current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate size of bulk capacitor.
Bulk Capacitance (continued)

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.
10 Layout

10.1 Layout Guidelines

The VM and VCC pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1 µF rated for the VM and VCC supplies. These capacitors should be placed as close to the VM and VCC pins as possible with a thick trace or ground plane connection to the device GND pin. In addition bulk capacitance is required on the VM pin.

10.2 Layout Example

![Simplified Layout Example](image)

Figure 13. Simplified Layout Example

10.3 Power Dissipation

Power dissipation in the DRV8837C device is dominated by the power dissipated in the output FET resistance, or $R_{DS(ON)}$. Use Equation 1 to estimate the average power dissipation when running a brushed-DC motor.

$$P_{TOT} = R_{DS(ON)} \times (I_{OUT(RMS)})^2$$

where
- P_{TOT} is the total power dissipation
- $R_{DS(ON)}$ is the resistance of the HS plus LS FETs
- $I_{OUT(RMS)}$ is the RMS or DC output current being supplied to the load

The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking.

NOTE

The value of $R_{DS(ON)}$ increases with temperature, so as the device heats, the power dissipation increases.

The DRV8837C device has thermal shutdown protection. If the die temperature exceeds approximately 150°C, the device is disabled until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.
11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation
For related documentation see the following:

- *Calculating Motor Driver Power Dissipation* (SLVA504)
- *Understanding Motor Driver Current Ratings* (SLVA505)

11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8837CDSGR</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>837C</td>
<td></td>
</tr>
<tr>
<td>DRV8837CDSGT</td>
<td>ACTIVE</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 85</td>
<td>837C</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

** OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines “RoHS” to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, “RoHS” products are suitable for use in specified lead-free processes. TI may reference these types of products as “Pb-Free”.

RoHS Exempt: TI defines “RoHS Exempt” to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines “Green” to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a “~” will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

REEL DIMENSIONS

![Diagram of reel dimensions](image)

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

![Diagram of quadrant assignments](image)

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8837CDSGR</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>2.3</td>
<td>2.3</td>
<td>1.15</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
<tr>
<td>DRV8837CDSGT</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>2.3</td>
<td>2.3</td>
<td>1.15</td>
<td>4.0</td>
<td>8.0</td>
<td>Q2</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8837CDSGR</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>DRV8837CDSGT</td>
<td>WSON</td>
<td>DSG</td>
<td>8</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated