1 Features

- Input Voltage Range: 1.8 V to 5.5 V, down to 1.6 V after Startup
- Output Voltage Up to 28 V
- Integrated Power Diode and Isolation Switch
- 980-mA (typical) Switch Current
- Up to 85% Efficiency at 3.6-V Input and 12-V Output
- ±2.5% Output Voltage Accuracy
- Power Save Operation Mode at Light Load
- Internal 7-ms Soft Start Time
- True Disconnection between Input and Output during Shutdown
- Output Short Circuit Protection
- Output Over-Voltage Protection
- Thermal Shutdown Protection
- 3-mm × 3-mm SOT23-6 Package

2 Applications

- PMOLED Power Supply
- LCD Panel
- Wearable Devices
- Portable Medical Equipment
- Sensor Power Supply

3 Description

The TLV61046A is a highly integrated boost converter designed for applications such as PMOLED panel, LCD bias supply and sensor module. The TLV61046A integrates a 30-V power switch, an input to output isolation switch, and a rectifier diode. It can output up to 28 V from input of a Li+ battery or two alkaline batteries in series.

The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external components. The TLV61046A has an internal default 12-V output voltage setting by connecting the FB pin to the VIN pin. Thus it only needs three external components to get 12-V output voltage. The TLV61046A has typical 980-mA switch current limit. It has 7-ms built-in soft start time to reduce the inrush current. When the TLV61046A is in shutdown mode, the isolation switch disconnects the output from input to minimize the leakage current. The TLV61046A also implements output short circuit protection, output over-voltage protection and thermal shutdown.

The TLV61046A is available in a 6-pin 3-mm × 3-mm SOT23-6 package.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV61046A</td>
<td>SOT23-6</td>
<td>2.9 mm × 1.6 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Copyright © 2017, Texas Instruments Incorporated

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
Table of Contents

1 Features ... 1
2 Applications ... 1
3 Description ... 1
4 Revision History 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information 4
 6.5 Electrical Characteristics 5
 6.6 Typical Characteristics 6
7 Detailed Description 8
 7.1 Overview .. 8
 7.2 Functional Block Diagram 8
 7.3 Feature Description 9
 7.4 Device Functional Modes 9
8 Application and Implementation 11
 8.1 Application Information 11
 8.2 Typical Application - 12-V Output Boost Converter 11
 8.3 System Examples 15
9 Power Supply Recommendations 16
10 Layout .. 17
 10.1 Layout Guidelines 17
 10.2 Layout Example 17
11 Device and Documentation Support 18
 11.1 Device Support 18
 11.2 Receiving Notification of Documentation Updates 18
 11.3 Community Resources 18
 11.4 Trademarks 18
 11.5 Electrostatic Discharge Caution 18
 11.6 Glossary .. 18
12 Mechanical, Packaging, and Orderable Information 18

4 Revision History

Changes from Original (April 2017) to Revision A

- Changed to Production Data ... 1
5 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>PWR</td>
<td>The switch pin of the converter. It is connected to the drain of the internal power MOSFET.</td>
</tr>
<tr>
<td>GND</td>
<td>PWR</td>
<td>Ground</td>
</tr>
<tr>
<td>FB</td>
<td>I</td>
<td>Voltage feedback of adjustable output voltage. Connected to the center tap of a resistor divider to program the output voltage. When it is connected to the VIN pin, the output voltage is set to 12 V by an internal feedback.</td>
</tr>
<tr>
<td>EN</td>
<td>I</td>
<td>Enable logic input. Logic high voltage enables the device. Logic low voltage disables the device and turns it into shutdown mode.</td>
</tr>
<tr>
<td>VOUT</td>
<td>PWR</td>
<td>Output of the boost converter</td>
</tr>
<tr>
<td>VIN</td>
<td>I</td>
<td>IC power supply input</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) \(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range at terminals (^{(2)})</td>
<td>– 0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>VIN, EN, FB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW, VOUT</td>
<td>–0.3</td>
<td>32</td>
<td>V</td>
</tr>
<tr>
<td>Operating junction temperature range, (T_J)</td>
<td>–40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range, (T_{stg})</td>
<td>–65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>ESD Type</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (^{(2)})</td>
<td>±2000</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (^{(3)})</td>
<td>±500</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.

(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN}) Input voltage range</td>
<td>1.8</td>
<td></td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage range</td>
<td></td>
<td>3.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>(L) Effective inductance range</td>
<td>10</td>
<td>10</td>
<td>22×1.3</td>
<td>µH</td>
</tr>
<tr>
<td>(C_{IN}) Effective input capacitance range</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td>µF</td>
</tr>
<tr>
<td>(C_{OUT}) Effective output capacitance range</td>
<td>1.0</td>
<td></td>
<td>0.22</td>
<td>µF</td>
</tr>
<tr>
<td>(T_J) Operating junction temperature</td>
<td>–40</td>
<td>125</td>
<td>10</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>TLV61046A DBV (SOT23)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JA}) Junction-to-ambient thermal resistance</td>
<td>177.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JC(top)}) Junction-to-case (top) thermal resistance</td>
<td>120.6</td>
<td></td>
</tr>
<tr>
<td>(R_{JB}) Junction-to-board thermal resistance</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>(R_{JC(bot)}) Junction-to-case (bottom) thermal resistance</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
6.5 Electrical Characteristics

\(T_A = -40^\circ C \) to \(85^\circ C \), \(V_{IN} = 3.6 \) V and \(V_{OUT} = 12 \) V. Typical values are at \(T_A = 25^\circ C \), unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IN}) Input voltage range</td>
<td></td>
<td>1.8</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN,UVLO}) Under voltage lockout threshold</td>
<td>(V_{IN}) rising</td>
<td>1.75</td>
<td>1.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(V_{IN}) falling</td>
<td>1.55</td>
<td>1.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN,HYS}) VIN UVLO hysteresis</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(I_{Q,VIN}) Quiescent current into VIN pin</td>
<td>IC enabled, no load, no switching, (V_{IN} = 1.8) V to 5.5 V, (V_{OUT} = 12) V</td>
<td>110</td>
<td>200</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{SD}) Shutdown current into VIN pin</td>
<td>IC disabled, (V_{IN} = 1.8) V to 5.5 V, (T_A = 25^\circ C)</td>
<td>0.1</td>
<td>1.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OUT}) Output voltage range</td>
<td></td>
<td>3.3</td>
<td>28</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT,12V}) 12-V output voltage accuracy</td>
<td>(V_{IN}) connected to VIN pin, (T_J = 0^\circ C) to 125°C</td>
<td>11.7</td>
<td>12.1</td>
<td>12.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{REF}) Feedback voltage</td>
<td>PWM mode, (T_A = 25^\circ C)</td>
<td>0.783</td>
<td>0.795</td>
<td>0.807</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PWM mode, (T_J = -40^\circ C) to 125°C</td>
<td>0.775</td>
<td>0.795</td>
<td>0.815</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>PFM mode, (T_A = 25^\circ C)</td>
<td>0.803</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OVP}) Output overvoltage protection threshold</td>
<td></td>
<td>26</td>
<td>29.2</td>
<td>30.4</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OVP,HYS}) Over voltage protection hysteresis</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{FB,LKG}) Leakage current into FB pin</td>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td>200</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{SW,LKG}) Leakage current into SW pin</td>
<td>IC disabled, (T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td>500</td>
<td>nA</td>
</tr>
<tr>
<td>POWER SWITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{DS(on)}) Isolation MOSFET on resistance</td>
<td>(V_{OUT} = 12) V</td>
<td>850</td>
<td></td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td></td>
<td>Low-side MOSFET on resistance</td>
<td>(V_{OUT} = 12) V</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{SW}) Switching frequency</td>
<td>(V_{IN} = 3.6) V, (V_{OUT} = 12) V, PWM mode</td>
<td>850</td>
<td>1050</td>
<td>1250</td>
<td>kHz</td>
</tr>
<tr>
<td>(t_{ON,min}) Minimal switch on time</td>
<td>(V_{IN} = 3.6) V, (V_{OUT} = 12) V</td>
<td>150</td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(i_{LM,SW}) Peak switch current limit</td>
<td>(V_{IN} = 3.6) V, (V_{OUT} = 12) V</td>
<td>680</td>
<td>980</td>
<td>1250</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{IN} = 2.4) V, (V_{OUT} = 3.3) V</td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{LM,CHG}) Pre-charge current</td>
<td>(V_{IN} = 3.6) V, (V_{OUT} = 0) V</td>
<td>30</td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(t_{STARTUP}) Startup time</td>
<td>(V_{OUT}) from (V_{IN}) to 12 V, (C_{OUT,effective} = 2.2 \mu F), (I_{OUT} = 0) A</td>
<td>2</td>
<td>5</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>LOGIC INTERFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{EN,H}) EN Logic high threshold</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN,L}) EN Logic Low threshold</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{SD}) Thermal shutdown threshold</td>
<td>(T_J) rising</td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{SD,HYS}) Thermal shutdown hysteresis</td>
<td>(T_J) falling below (T_{SD})</td>
<td>20</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
6.6 Typical Characteristics

\(V_{IN} = 3.6 \, V, \, V_{OUT} = 12 \, V, \, T_{A} = 25^\circ C, \) unless otherwise noted.

Figure 1. Efficiency vs Output Current

\(V_{IN} = 3.6 \, V, \, V_{OUT} = 12 \, V, \) FB pin connected to VIN pin, PWM mode

Figure 2. Efficiency vs Output Current

\(V_{IN} = 3.6 \, V, \, V_{OUT} = 12 \, V, \) PWM mode

Figure 3. 12-V Fixed Output Voltage vs Temperature

\(V_{IN} = 3.6 \, V, \, V_{OUT} = 12 \, V, \) No switching

Figure 4. FB Reference Voltage vs Temperature

\(V_{IN} = 1.8 \, V - 6 \, V, \, V_{OUT} = 12 \, V, \) No switching

Figure 5. Quiescent Current into VIN vs Temperature

Figure 6. Quiescent Current into VIN vs Input Voltage
Typical Characteristics (continued)

\(V_{\text{IN}} = 3.6 \, \text{V}, \, V_{\text{OUT}} = 12 \, \text{V}, \, T_A = 25^\circ \text{C}, \) unless otherwise noted.

\[V_{\text{IN}} = 3.6 \, \text{V} \]

\[V_{\text{IN}} = 3.6 \, \text{V}, \, V_{\text{OUT}} = 12 \, \text{V} \]

Figure 7. Shutdown Current vs Temperature

Figure 8. Current Limit vs Temperature

\[V_{\text{IN}} = 1.8 \, \text{V} \sim 6 \, \text{V}, \, V_{\text{OUT}} = 12 \, \text{V} \]

Figure 9. Current Limit vs Input Voltage
7 Detailed Description

7.1 Overview

The TLV61046A is a highly integrated boost converter designed for applications requiring high voltage and small solution size such as PMOLED panel power supply and sensor module. The TLV61046A integrates a 30-V power switch, an input to output isolation switch and a rectifier diode. It can output up to 28 V from input of a Li+ battery or two cell alkaline batteries in series.

One common issue with conventional boost regulators is the conduction path from input to output even when the power switch is turned off. It creates three problems, which are inrush current during start-up, output leakage current during shutdown and excessive over load current. In the TLV61046A, the isolation switch is turned off under shutdown mode and over load conditions, thereby opening the current path. Thus the TLV61046A can truely disconnect the load from the input voltage and minimize the leakage current during shutdown mode.

The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external components. The TLV61046A has an internal default 12-V output voltage setting by connecting the FB pin to the VIN pin. Thus it only needs three external components to get 12-V output voltage. The TLV61046A has typical 980-mA switch current limit. It has 7-ms built-in soft start time to minimize the inrush current. The TLV61046A also implements output short circuit protection, output over-voltage protection and thermal shutdown.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Under-Voltage Lockout
An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 1.55 V. A hysteresis of 200 mV is added so that the device cannot be enabled again until the input voltage goes up to 1.75 V. This function is implemented in order to prevent malfunctioning of the device when the input voltage is between 1.55 V and 1.75 V.

7.3.2 Enable and Disable
When the input voltage is above maximal UVLO rising threshold of 1.8 V and the EN pin is pulled high, the TLV61046A is enabled. When the EN pin is pulled low, the TLV61046A goes into shutdown mode. The device stops switching and the isolation switch is turned off providing the isolation between input and output. In shutdown mode, less than 1-µA input current is consumed.

7.3.3 Soft Start
The TLV61046A begins soft start when the EN pin is pulled high. at the beginning of the soft start period, the isolation FET is turned on slowly to charge the output capacitor with 30-mA current for about 2 ms. This is called the pre-charge phase. After the pre-charge phase, the TLV61046A starts switching. This is called switching soft start phase. An internal soft start circuit limits the peak inductor current according to the output voltage. When the output voltage is below 3 V, the peak inductor current is limited to 140 mA. Along with the output voltage going up from 3 V to 5 V, the peak current limit is gradually increased to the normal value of 980 mA. The switching soft start phase is about 5 ms typically. The soft start function reduces the inrush current during startup.

7.3.4 Over-voltage Protection
The TLV61046A has internal output over-voltage protection (OVP) function. When the output voltage exceeds the OVP threshold of 29.2 V, the device stops switching. Once the output voltage falls 0.9 V below the OVP threshold, the device resumes operation again.

7.3.5 Output Short Circuit Protection
The TLV61046A starts to limit the output current whenever the output voltage drops below 4 V. The lower output voltage, the smaller output current limit. When the VOUT pin is shorted to ground, the output current is limited to less than 200 mA. This function protects the device from being damaged when the output is shorted to ground.

7.3.6 Thermal Shutdown
The TLV61046A goes into thermal shutdown once the junction temperature exceeds the thermal shutdown temperature threshold of 150°C typically. When the junction temperature drops below 130°C typically, the device starts operating again.

7.4 Device Functional Modes
The TLV61046A has two operation modes, PWM mode and power save mode.

7.4.1 PWM Mode
The TLV61046A uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate to heavy load current. Based on the input voltage to output voltage ratio, a circuit predicts the required off-time. At the beginning of the switching cycle, the NMOS switching FET, shown in the functional block diagram, is turned on. The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the inductor current hits the current threshold that is set by the output of the error amplifier, the PWM switch is turned off, and the power diode is forward-biased. The inductor transfers its stored energy to replenish the output capacitor and supply the load. When the off-time is expired, the next switching cycle starts again. The error amplifier compares the FB pin voltage with an internal reference voltage, and its output determines the inductor peak current.

The TLV61046A has a built-in compensation circuit that can accommodate a wide range of input voltage, output voltage, inductor value and output capacitor value for stable operation.
Device Functional Modes (continued)

7.4.2 Power Save Mode

The TLV61046A implements a power save mode with pulse frequency modulation (PFM) to improve efficiency at light load. When the load current decreases, the inductor peak current set by the output of the error amplifier declines to regulate the output voltage. When the inductor peak current hits the low limit of 200 mA, the output voltage will exceed the setting voltage as the load current decreases further. When the FB voltage hits the PFM reference voltage, the TLV61046A goes into the power save mode. In the power save mode, when the FB voltage rises and hits the PFM reference voltage, the device continues switching for several cycles because of the delay time of the internal comparator. Then it stops switching. The load is supplied by the output capacitor and the output voltage declines. When the FB voltage falls below the PFM reference voltage, after the delay time of the comparator, the device starts switching again to ramp up the output voltage.

![Output Voltage in PWM Mode and PFM Mode](image)

Figure 10. Output Voltage in PWM Mode and PFM Mode
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
The TLV61046A is a boost DC-DC converter integrating a power switch, an input to output isolation switch and a rectifier diode. The device supports up to 28-V output with the input voltage range from 1.8 V to 5.5 V. The TLV61046A adopts the current-mode control with adaptive constant off-time. The switching frequency is quasi-constant at 1.0 MHz. The isolation switch disconnects the output from the input during shutdown to minimize leakage current.

The following design procedure can be used to select component values for the TLV61046A.

8.2 Typical Application - 12-V Output Boost Converter

![Diagram of 12-V Boost Converter]

Figure 11. 12-V Boost Converter

8.2.1 Design Requirements

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>2.7 V ~ 4.2 V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Output Current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Output Voltage Ripple</td>
<td>±50mV</td>
</tr>
</tbody>
</table>
8.2.2 Detailed Design Procedure

8.2.2.1 Programming the Output Voltage

There are two ways to set the output voltage of the TLV61046A. When the FB pin is connected to the input voltage, the output voltage is fixed to 12 V. This function makes the TLV61046A only need three external components to minimize the solution size. The second way is to use an external resistor divider to set the desired output voltage.

By selecting the external resistor divider R1 and R2, as shown in Equation 1, the output voltage is programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is V_{REF} of 795 mV.

$$R1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R2$$

where
- V_{OUT} is the desired output voltage
- V_{REF} is the internal reference voltage at the FB pin

For best accuracy, R2 should be kept smaller than 80 kΩ to ensure the current flowing through R2 is at least 100 times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity against noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving higher efficiency at low load currents.

8.2.2.2 Inductor Selection

Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and dc resistance (DCR).

The TLV61046A is designed to work with inductor values between 2.2 µH and 22 µH. Follow Equation 2 to Equation 4 to calculate the inductor’s peak current for the application. To calculate the peak current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough design margin, choose the inductor value with -30% tolerance, and a low power-conversion efficiency for the calculation.

In a boost regulator, the inductor dc current can be calculated with Equation 2.

$$I_{L(DC)} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta}$$

where
- V_{OUT} = output voltage
- I_{OUT} = output current
- V_{IN} = input voltage
- η = power conversion efficiency, use 80% for most applications

The inductor ripple current is calculated with the Equation 3 for an asynchronous boost converter in continuous conduction mode (CCM).

$$\Delta I_{L(P-P)} = \frac{V_{IN} \times (V_{OUT} + 0.8V - V_{IN})}{L \times f_{SW} \times (V_{OUT} + 0.8V)}$$

where
- $\Delta I_{L(P-P)}$ = inductor ripple current
- L = inductor value
- f_{SW} = switching frequency
- V_{OUT} = output voltage
- V_{IN} = input voltage

Therefore, the inductor peak current is calculated with Equation 4.
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic hysteresis losses in the inductor, and EMI. But in the same way, load transient response time is increased. Because the TLV61046A is for relatively small output current application, the inductor peak-to-peak current could be as high as 200% of the average current with a small inductor value, which means the TLV61046A always works in DCM mode. Table 2 lists the recommended inductors for the TLV61046A.

Table 2. Recommended Inductors for the TLV61046A

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>L(µH)</th>
<th>DCR MAX (mΩ)</th>
<th>SATURATION CURRENT (A)</th>
<th>SIZE (LxWxH)</th>
<th>VENDOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDSD0420-H-100M</td>
<td>10</td>
<td>200</td>
<td>2.5</td>
<td>4.2x4.2x2.0</td>
<td>Toko</td>
</tr>
<tr>
<td>CDRH3D23/HP</td>
<td>10</td>
<td>198</td>
<td>1.02</td>
<td>4.0x4.0x2.5</td>
<td>Sumida</td>
</tr>
<tr>
<td>7443836100</td>
<td>10</td>
<td>322</td>
<td>2.35</td>
<td>3.2x3.2x2.0</td>
<td>Wurth</td>
</tr>
<tr>
<td>VLS4012-4R7M</td>
<td>4.7</td>
<td>132</td>
<td>1.1</td>
<td>4.0x4.0x1.2</td>
<td>TDK</td>
</tr>
</tbody>
</table>

1. See Third-party Products Disclaimer

8.2.2.3 Input and Output Capacitor Selection

The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. This ripple voltage is related to the capacitor’s capacitance and its equivalent series resistance (ESR). Assuming a ceramic capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by:

$$C_{OUT} = \frac{I_{OUT} \times D_{MAX}}{f_{SW} \times V_{RIPPLE}}$$

where

- $D_{MAX} =$ maximum switching duty cycle
- $V_{RIPPLE} =$ peak to peak output voltage ripple

The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are used.

Care must be taken when evaluating a ceramic capacitor’s derating under dc bias, aging, and ac signal. For example, the dc bias can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate capacitance at the required output voltage.

It is recommended to use the output capacitor with effective capacitance in the range of 0.47 µF to 10 µF. The output capacitor affects loop stability of the boost regulator. If the output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output capacitor makes the output voltage ripple smaller in PWM mode.

For input capacitor, a ceramic capacitor with more than 1.0 µF is enough for most applications.
8.2.3 Application Performance Curves

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$, $I_{OUT} = 50\ mA$

Figure 12. Switching Waveforms in PWM CCM Mode

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$, $I_{OUT} = 18\ mA$

Figure 13. Switching Waveforms in PWM DCM Mode

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$, $I_{OUT} = 3\ mA$

Figure 14. Switching Waveforms in Power Save Mode

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$, $I_{OUT} = 50\ mA$

Figure 15. Soft Startup Waveforms

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$, $I_{OUT} = 50\ mA$

Figure 16. Shutdown Waveforms

$V_{IN} = 3.6\ V$, $V_{OUT} = 12\ V$

Figure 17. 30-mA to 70-mA Load Transient Response
8.3 System Examples

8.3.1 Fixed 12-V Output Voltage with Three External Components

The TLV61046A can output fixed 12-V voltage by connecting the FB pin to the VIN pin to save the external resistor divider. The Figure 19 shows the application circuit.

![Figure 19. Fixed 12-V Output Voltage by Connecting the FB Pin to VIN Pin](image-url)
9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 1.8 V to 5.5 V. This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or tantalum capacitor with a value of 47 µF. The input power supply's output current needs to be rated according to the supply voltage, output voltage and output current of the TLV61046A.
10 Layout

10.1 Layout Guidelines

As for all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also to the GND pin in order to reduce input supply ripple.

The most critical current path for all boost converters is from the switching FET, through the rectifier diode, then the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise and fall time and should be kept as short as possible. Therefore, the output capacitors need not only to be close to the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.

10.2 Layout Example

A large ground plane on the bottom layer connects the ground pins of the components on the top layer through vias.

Figure 20. PCB Layout Example
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks
E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish (6)</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV61046ADBVR</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1C4F</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV61046ADBVT</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>1C4F</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV61046ADBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>TLV61046ADBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>250</td>
<td>180.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV61046ADBVR</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV61046ADBVT</td>
<td>SOT-23</td>
<td>DBV</td>
<td>6</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
E. Falls within JEDEC MO-178 Variation AB, except minimum lead width.
NOTE:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO OWN OR USE ANY PATENT, PATENT RIGHT OR ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.