LMT85 1.8-V, SC70/TO-92/TO-92S, Analog Temperature Sensors

1 Features
- LMT85LPG (TO-92S package) has a Fast Thermal Time Constant, 10-s Typical (1.2 m/s Airflow)
- Very Accurate: ±0.4°C Typical
- Low 1.8-V Operation
- Average Sensor Gain of -8.2 mV/°C
- Low 5.4-μA Quiescent Current
- Wide Temperature Range: –50°C to 150°C
- Output is Short-Circuit Protected
- Push-Pull Output With ±50-μA Drive Capability
- Footprint Compatible With the Industry-Standard LM20/19 and LM35 Temperature Sensors
- Cost-Effective Alternative to Thermistors

2 Applications
- Automotive
- Infotainment and Cluster
- Powertrain Systems
- Smoke and Heat Detectors
- Drones
- Appliances

3 Description
The LMT85 is a precision CMOS temperature sensor with ±0.4°C typical accuracy (±2.7°C maximum) and a linear analog output voltage that is inversely proportional to temperature. The 1.8-V supply voltage operation, 5.4-μA quiescent current, and 0.7-ms power-on time enable effective power-cycling architectures to minimize power consumption for battery-powered applications such as drones and sensor nodes. The LMT85LPG through-hole TO-92S package fast thermal time constant supports off-board time-temperature sensitive applications such as smoke and heat detectors. The accuracy over the wide operating range and other features make the LMT85 an excellent alternative to thermistors.

For devices with different average sensor gains and comparable accuracy, refer to Comparable Alternative Devices for alternative devices in the LMT8x family.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT85</td>
<td>SOT (5)</td>
<td>2.00 mm × 1.25 mm</td>
</tr>
<tr>
<td></td>
<td>TO-92 (3)</td>
<td>4.30 mm × 3.50 mm</td>
</tr>
<tr>
<td></td>
<td>TO-92S (3)</td>
<td>4.00 mm × 3.15 mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum addendum at the end of the data sheet.

Output Voltage vs Temperature

* Fast thermal response NTC
Table of Contents

1 Features .. 1
2 Applications ... 1
3 Description .. 1
4 Revision History .. 2
5 Device Comparison Tables .. 3
6 Pin Configuration and Functions 4
7 Specifications ... 5
 7.1 Absolute Maximum Ratings 5
 7.2 ESD Ratings .. 5
 7.3 Recommended Operating Conditions 5
 7.4 Thermal Information .. 5
 7.5 Accuracy Characteristics 6
 7.6 Electrical Characteristics 6
 7.7 Typical Characteristics 7
8 Detailed Description ... 9
 8.1 Overview .. 9
 8.2 Functional Block Diagram 9
8.3 Feature Description .. 9
8.4 Device Functional Modes 11
9 Application and Implementation 13
 9.1 Application Information 13
 9.2 Typical Applications ... 13
10 Power Supply Recommendations 14
11 Layout .. 15
 11.1 Layout Guidelines .. 15
 11.2 Layout Example .. 15
12 Device and Documentation Support 16
 12.1 Receiving Notification of Documentation Updates 16
 12.2 Community Resources 16
 12.3 Trademarks .. 16
 12.4 Electrostatic Discharge Caution 16
 12.5 Glossary .. 16
13 Mechanical, Packaging, and Orderable Information 16

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (June 2017) to Revision E Page

• Moved the automotive device to a standalone data sheet (SNIS200) ... 1
• Changed TO-92 GND pin number from: 1 to: 3 .. 4
• Changed TO-92 V_DD pin number from: 3 to: 1 .. 4

Changes from Revision C (October 2015) to Revision D Page

• Updated data sheet text to the latest documentation and translations standards .. 1
• Added AEC-Q100 automotive qualification bullets to Features ... 1
• Added Time Constant graph .. 1
• Removed disk drivers, games, wireless transceivers, and cell phones from Applications .. 1
• Added LPG (TO-92S) package .. 4
• Added Figure 10 to Typical Characteristics ... 7

Changes from Revision B (May 2014) to Revision C Page

• Deleted all mentions of TO-126 package .. 1
• Added TO-92 LPM pin configuration graphic .. 4
• Changed Handling Ratings to ESD Ratings and moved Storage Temperature to Absolute Maximum Ratings table 5
• Changed KV to V .. 5
• Added TO-92 LP and LPM layout recommendations .. 15

Changes from Revision A (June 2013) to Revision B Page

• Changed data sheet flow and layout to conform with new TI standards. Added the following sections: Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, Mechanical, Packaging, and Orderable Information ... 1
• Added TO-92 and TO-126 package information throughout document .. 1

Submit Documentation Feedback Copyright © 2013–2017, Texas Instruments Incorporated
• Changed from 450°C/W to 275 °C/W. New specification is derived using TI ’ s latest methodology. 5
• Changed Temperature Accuracy Conditions from 70°C to 20°C and V_{DD} from 1.9V to 1.8V.. 6
• Deleted Note: The input current is leakage only and is highest at high temperature. It is typically only 0.001 μA. The
 1 μA limit is solely based on a testing limitation and does not reflect the actual performance of the part....................... 6

5 Device Comparison Tables

Table 1. Available Device Packages

<table>
<thead>
<tr>
<th>ORDER NUMBER(1)</th>
<th>PACKAGE</th>
<th>PIN</th>
<th>BODY SIZE (NOM)</th>
<th>MOUNTING TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT85DCK</td>
<td>SOT (AKA (2): SC70, DCK)</td>
<td>5</td>
<td>2.00 mm × 1.25 mm</td>
<td>Surface Mount</td>
</tr>
<tr>
<td>LMT85LP</td>
<td>TO-92 (AKA (2): LP)</td>
<td>3</td>
<td>4.30 mm × 3.50 mm</td>
<td>Through-hole; straight leads</td>
</tr>
<tr>
<td>LMT85LPG</td>
<td>TO-92S (AKA (2): LPG)</td>
<td>3</td>
<td>4.00 mm × 3.15 mm</td>
<td>Through-hole; straight leads</td>
</tr>
<tr>
<td>LMT85LPM</td>
<td>TO-92 (AKA (2): LPM)</td>
<td>3</td>
<td>4.30 mm × 3.50 mm</td>
<td>Through-hole; formed leads</td>
</tr>
<tr>
<td>LMT85DCK-Q1</td>
<td>SOT (AKA (2): SC70, DCK)</td>
<td>5</td>
<td>2.00 mm × 1.25 mm</td>
<td>Surface Mount</td>
</tr>
</tbody>
</table>

(1) For all available packages and complete order numbers, see the Package Option addendum at the end of the data sheet.
(2) AKA = Also Known As

Table 2. Comparable Alternative Devices

<table>
<thead>
<tr>
<th>DEVICE NAME</th>
<th>AVERAGE OUTPUT SENSOR GAIN</th>
<th>POWER SUPPLY RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT84</td>
<td>−5.5 mV/°C</td>
<td>1.5 V to 5.5 V</td>
</tr>
<tr>
<td>LMT85</td>
<td>−8.2 mV/°C</td>
<td>1.8 V to 5.5 V</td>
</tr>
<tr>
<td>LMT86</td>
<td>−10.9 mV/°C</td>
<td>2.2 V to 5.5 V</td>
</tr>
<tr>
<td>LMT87</td>
<td>−13.6 mV/°C</td>
<td>2.7 V to 5.5 V</td>
</tr>
</tbody>
</table>
6 Pin Configuration and Functions

Pin Functions

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>TYPE</th>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GND</td>
<td>Ground</td>
<td>2(1) , 5</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>Analog Output</td>
<td>3</td>
<td>Outputs a voltage that is inversely proportional to temperature</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>Power</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) Direct connection to the back side of the die
7 Specifications

7.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>−0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage at output pin</td>
<td>−0.3</td>
<td>(V_{DD} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>−7</td>
<td>7</td>
<td>mA</td>
</tr>
<tr>
<td>Input current at any pin (3)</td>
<td>−5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum junction temperature (T_{JMAX})</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature, T_{STG}</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.

(3) When the input voltage (V_I) at any pin exceeds power supplies (V_I < GND or V_I > V), the current at that pin should be limited to 5 mA.

7.2 ESD Ratings

<table>
<thead>
<tr>
<th>ESD Voltage</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ESD}</td>
<td>±2500</td>
<td>V</td>
</tr>
<tr>
<td>LMT85LP</td>
<td>±1000</td>
<td>V</td>
</tr>
</tbody>
</table>

7.3 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified temperature</td>
<td>T_{MIN} ≤ T_A ≤ T_{MAX}</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Supply voltage (V_{DD})</td>
<td>−50</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
</tr>
</tbody>
</table>

7.4 Thermal Information (1)

<table>
<thead>
<tr>
<th>Thermal Metric</th>
<th>LMT85/ LMT85-Q1</th>
<th>LMT85LP</th>
<th>LMT85LPG</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCK (SOT/SC70)</td>
<td>LP/LPM (TO-92)</td>
<td>LPG (TO-92S)</td>
<td></td>
</tr>
<tr>
<td>Junction-to-ambient thermal resistance (R_{JA})</td>
<td>275</td>
<td>167</td>
<td>106.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-case (top) thermal resistance (R_{JC(top)})</td>
<td>84</td>
<td>90</td>
<td>64.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board thermal resistance</td>
<td>56</td>
<td>146</td>
<td>106.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-top characterization parameter (ψ_{JT})</td>
<td>1.2</td>
<td>35</td>
<td>14.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-board characterization parameter (ψ_{JB})</td>
<td>55</td>
<td>146</td>
<td>106.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For information on self-heating and thermal response time, see section Mounting and Thermal Conductivity.

(2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

(3) The junction to ambient thermal resistance (R_{JA}) under natural convection is obtained in a simulation on a JEDEC-standard, High-K board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are included in the PCB, per JESD 51-5.

(4) Changes in output due to self-heating can be computed by multiplying the internal dissipation by the thermal resistance.
7.5 Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 3.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN(1)</th>
<th>TYP(2)</th>
<th>MAX(1)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature accuracy (3)</td>
<td>$T_A = T_J = 20^\circ C$ to $150^\circ C$; $V_{DD} = 1.8$ V to 5.5 V</td>
<td>-2.7</td>
<td>± 0.4</td>
<td>2.7</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = 0^\circ C$ to $150^\circ C$; $V_{DD} = 1.9$ V to 5.5 V</td>
<td>-2.7</td>
<td>± 0.7</td>
<td>2.7</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = 0^\circ C$ to $150^\circ C$; $V_{DD} = 2.6$ V to 5.5 V</td>
<td>-0.3</td>
<td></td>
<td>-0.3</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = -50^\circ C$ to $0^\circ C$; $V_{DD} = 2.3$ V to 5.5 V</td>
<td>-2.7</td>
<td>± 0.7</td>
<td>2.7</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = -50^\circ C$ to $0^\circ C$; $V_{DD} = 2.9$ V to 5.5 V</td>
<td></td>
<td>± 0.25</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at $T_J = T_A = 25^\circ C$ and represent most likely parametric norm.
(3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

7.6 Electrical Characteristics

Unless otherwise noted, these specifications apply for $V_{DD} = +1.8$ V to $+5.5$ V. MIN and MAX limits apply for $T_A = T_J = T_{\text{MIN}}$ to T_{MAX}, unless otherwise noted; typical values apply for $T_A = T_J = 25^\circ C$.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN(1)</th>
<th>TYP(2)</th>
<th>MAX(1)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average sensor gain (output transfer function slope)</td>
<td>$-30^\circ C$ and $90^\circ C$ used to calculate average sensor gain</td>
<td>-8.2</td>
<td></td>
<td></td>
<td>mV/°C</td>
</tr>
<tr>
<td>Load regulation (3)</td>
<td>Source ≤ 50 μA, $(V_{DD} - V_{OUT}) \geq 200$ mV</td>
<td>-1</td>
<td>-0.22</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Sink ≤ 50 μA, $V_{OUT} \geq 200$ mV</td>
<td>0.26</td>
<td></td>
<td>1</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Line regulation (4)</td>
<td>200</td>
<td></td>
<td></td>
<td>μV/V</td>
</tr>
<tr>
<td>IS</td>
<td>Supply current</td>
<td>≤ 50 μA, $(V_{DD} - V_{OUT}) \geq 100$ mV</td>
<td>5.4</td>
<td>8.1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = 30^\circ C$ to $150^\circ C$; $(V_{DD} - V_{OUT}) \geq 100$ mV</td>
<td>5.4</td>
<td>9</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_A = T_J = -50^\circ C$ to $150^\circ C$; $(V_{DD} - V_{OUT}) \geq 100$ mV</td>
<td>5.4</td>
<td>9</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>C_L</td>
<td>Output load capacitance</td>
<td>1100</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td>Power-on time (5)</td>
<td>$C_L = 0$ pF to 1100 pF</td>
<td>0.7</td>
<td>1.9</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>Output drive</td>
<td>$T_A = T_J = 25^\circ C$</td>
<td>-50</td>
<td>$+50$</td>
<td>μA</td>
</tr>
</tbody>
</table>

(1) Limits are specific to TI's AOQL (Average Outgoing Quality Level).
(2) Typicals are at $T_J = T_A = 25^\circ C$ and represent most likely parametric norm.
(3) Source currents are flowing out of the LMT85. Sink currents are flowing into the LMT85.
(4) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift.
(5) Specified by design and characterization.
7.7 Typical Characteristics

Figure 1. Temperature Error vs Temperature

Figure 2. Minimum Operating Temperature vs Supply Voltage

Figure 3. Supply Current vs Temperature

Figure 4. Supply Current vs Supply Voltage

Figure 5. Load Regulation, Sourcing Current

Figure 6. Load Regulation, Sinking Current
Typical Characteristics (continued)

Figure 7. Change in Vout vs Overhead Voltage

Figure 8. Supply-Noise Gain vs Frequency

Figure 9. Output Voltage vs Supply Voltage

Figure 10. LMT85LPG Thermal Response vs Common Leaded Thermistor With 1.2-m/s Airflow
8 Detailed Description

8.1 Overview
The LMT85 is an analog output temperature sensor. The temperature sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature-sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple push-pull output stage thus providing a low impedance output source.

8.2 Functional Block Diagram
Full-Range Celsius Temperature Sensor (−50°C to 150°C).

8.3 Feature Description

8.3.1 LMT85 Transfer Function
The output voltage of the LMT85, across the complete operating temperature range, is shown in Table 3. This table is the reference from which the LMT85 accuracy specifications (listed in the Accuracy Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at the LMT85 product folder under Tools and Software Models.

<table>
<thead>
<tr>
<th>TEMP (°C)</th>
<th>V_{OUT} (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>1955</td>
<td>-10</td>
<td>1648</td>
<td>30</td>
<td>1324</td>
<td>70</td>
<td>991</td>
<td>110</td>
<td>651</td>
</tr>
<tr>
<td>-49</td>
<td>1949</td>
<td>-9</td>
<td>1639</td>
<td>31</td>
<td>1316</td>
<td>71</td>
<td>983</td>
<td>111</td>
<td>642</td>
</tr>
<tr>
<td>-48</td>
<td>1942</td>
<td>-8</td>
<td>1631</td>
<td>32</td>
<td>1308</td>
<td>72</td>
<td>974</td>
<td>112</td>
<td>634</td>
</tr>
<tr>
<td>-47</td>
<td>1935</td>
<td>-7</td>
<td>1623</td>
<td>33</td>
<td>1299</td>
<td>73</td>
<td>966</td>
<td>113</td>
<td>625</td>
</tr>
<tr>
<td>-46</td>
<td>1928</td>
<td>-6</td>
<td>1615</td>
<td>34</td>
<td>1291</td>
<td>74</td>
<td>957</td>
<td>114</td>
<td>617</td>
</tr>
<tr>
<td>-45</td>
<td>1921</td>
<td>-5</td>
<td>1607</td>
<td>35</td>
<td>1283</td>
<td>75</td>
<td>949</td>
<td>115</td>
<td>608</td>
</tr>
<tr>
<td>-44</td>
<td>1915</td>
<td>-4</td>
<td>1599</td>
<td>36</td>
<td>1275</td>
<td>76</td>
<td>941</td>
<td>116</td>
<td>599</td>
</tr>
<tr>
<td>-43</td>
<td>1908</td>
<td>-3</td>
<td>1591</td>
<td>37</td>
<td>1267</td>
<td>77</td>
<td>932</td>
<td>117</td>
<td>591</td>
</tr>
<tr>
<td>-42</td>
<td>1900</td>
<td>-2</td>
<td>1583</td>
<td>38</td>
<td>1258</td>
<td>78</td>
<td>924</td>
<td>118</td>
<td>582</td>
</tr>
<tr>
<td>-41</td>
<td>1892</td>
<td>-1</td>
<td>1575</td>
<td>39</td>
<td>1250</td>
<td>79</td>
<td>915</td>
<td>119</td>
<td>573</td>
</tr>
<tr>
<td>-40</td>
<td>1885</td>
<td>0</td>
<td>1567</td>
<td>40</td>
<td>1242</td>
<td>80</td>
<td>907</td>
<td>120</td>
<td>565</td>
</tr>
<tr>
<td>-39</td>
<td>1877</td>
<td>1</td>
<td>1559</td>
<td>41</td>
<td>1234</td>
<td>81</td>
<td>898</td>
<td>121</td>
<td>556</td>
</tr>
<tr>
<td>-38</td>
<td>1869</td>
<td>2</td>
<td>1551</td>
<td>42</td>
<td>1225</td>
<td>82</td>
<td>890</td>
<td>122</td>
<td>547</td>
</tr>
</tbody>
</table>
Although the LMT85 is very linear, its response does have a slight umbrella parabolic shape. This shape is very accurately reflected in Table 3. The Transfer Table can be calculated by using the parabolic equation (Equation 1).

\[V_{\text{TEMP}} (\text{mV}) = 1324.0 \text{mV} \cdot \left[8.194 \frac{\text{mV}}{^\circ \text{C}} (T - 30^\circ \text{C}) \right] - \left[0.00262 \frac{\text{mV}}{^\circ \text{C}^2} (T - 30^\circ \text{C})^2 \right] \]

The parabolic equation is an approximation of the transfer table and the accuracy of the equation degrades slightly at the temperature range extremes. Equation 1 can be solved for T resulting in:

\[T = \frac{8.194 - \sqrt{(8.194)^2 + 4 \times 0.00262 \times (1324 - V_{\text{TEMP}} \text{ (mV)})}}{2 \times -0.00262} + 30 \]

For an even less accurate linear transfer function approximation, a line can easily be calculated over the desired temperature range using values from the Table and a two-point equation (Equation 3):

\[V = V_1 \cdot \frac{T - T_1}{T_2 - T_1} \times (T - T_1) \]

where

- \(V \) is in mV,
- \(T \) is in °C,
- \(T_1 \) and \(V_1 \) are the coordinates of the lowest temperature,
- and \(T_2 \) and \(V_2 \) are the coordinates of the highest temperature.

Table 3. LMT85 Transfer Table (continued)

<table>
<thead>
<tr>
<th>TEMP (°C)</th>
<th>(V_{\text{OUT}}) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-37</td>
<td>1861</td>
<td>3</td>
<td>1543</td>
<td>43</td>
<td>1217</td>
<td>83</td>
<td>881</td>
<td>123</td>
<td>539</td>
</tr>
<tr>
<td>-36</td>
<td>1853</td>
<td>4</td>
<td>1535</td>
<td>44</td>
<td>1209</td>
<td>84</td>
<td>873</td>
<td>124</td>
<td>530</td>
</tr>
<tr>
<td>-35</td>
<td>1845</td>
<td>5</td>
<td>1527</td>
<td>45</td>
<td>1201</td>
<td>85</td>
<td>865</td>
<td>125</td>
<td>521</td>
</tr>
<tr>
<td>-34</td>
<td>1838</td>
<td>6</td>
<td>1519</td>
<td>46</td>
<td>1192</td>
<td>86</td>
<td>856</td>
<td>126</td>
<td>513</td>
</tr>
<tr>
<td>-33</td>
<td>1830</td>
<td>7</td>
<td>1511</td>
<td>47</td>
<td>1184</td>
<td>87</td>
<td>848</td>
<td>127</td>
<td>504</td>
</tr>
<tr>
<td>-32</td>
<td>1822</td>
<td>8</td>
<td>1502</td>
<td>48</td>
<td>1176</td>
<td>88</td>
<td>839</td>
<td>128</td>
<td>495</td>
</tr>
<tr>
<td>-31</td>
<td>1814</td>
<td>9</td>
<td>1494</td>
<td>49</td>
<td>1167</td>
<td>89</td>
<td>831</td>
<td>129</td>
<td>487</td>
</tr>
<tr>
<td>-30</td>
<td>1806</td>
<td>10</td>
<td>1486</td>
<td>50</td>
<td>1159</td>
<td>90</td>
<td>822</td>
<td>130</td>
<td>478</td>
</tr>
<tr>
<td>-29</td>
<td>1798</td>
<td>11</td>
<td>1478</td>
<td>51</td>
<td>1151</td>
<td>91</td>
<td>814</td>
<td>131</td>
<td>469</td>
</tr>
<tr>
<td>-28</td>
<td>1790</td>
<td>12</td>
<td>1470</td>
<td>52</td>
<td>1143</td>
<td>92</td>
<td>805</td>
<td>132</td>
<td>460</td>
</tr>
<tr>
<td>-27</td>
<td>1783</td>
<td>13</td>
<td>1462</td>
<td>53</td>
<td>1134</td>
<td>93</td>
<td>797</td>
<td>133</td>
<td>452</td>
</tr>
<tr>
<td>-26</td>
<td>1775</td>
<td>14</td>
<td>1454</td>
<td>54</td>
<td>1126</td>
<td>94</td>
<td>788</td>
<td>134</td>
<td>443</td>
</tr>
<tr>
<td>-25</td>
<td>1767</td>
<td>15</td>
<td>1446</td>
<td>55</td>
<td>1118</td>
<td>95</td>
<td>779</td>
<td>135</td>
<td>434</td>
</tr>
<tr>
<td>-24</td>
<td>1759</td>
<td>16</td>
<td>1438</td>
<td>56</td>
<td>1109</td>
<td>96</td>
<td>771</td>
<td>136</td>
<td>425</td>
</tr>
<tr>
<td>-23</td>
<td>1751</td>
<td>17</td>
<td>1430</td>
<td>57</td>
<td>1101</td>
<td>97</td>
<td>762</td>
<td>137</td>
<td>416</td>
</tr>
<tr>
<td>-22</td>
<td>1743</td>
<td>18</td>
<td>1421</td>
<td>58</td>
<td>1093</td>
<td>98</td>
<td>754</td>
<td>138</td>
<td>408</td>
</tr>
<tr>
<td>-21</td>
<td>1735</td>
<td>19</td>
<td>1413</td>
<td>59</td>
<td>1084</td>
<td>99</td>
<td>745</td>
<td>139</td>
<td>399</td>
</tr>
<tr>
<td>-20</td>
<td>1727</td>
<td>20</td>
<td>1405</td>
<td>60</td>
<td>1076</td>
<td>100</td>
<td>737</td>
<td>140</td>
<td>390</td>
</tr>
<tr>
<td>-19</td>
<td>1719</td>
<td>21</td>
<td>1397</td>
<td>61</td>
<td>1067</td>
<td>101</td>
<td>728</td>
<td>141</td>
<td>381</td>
</tr>
<tr>
<td>-18</td>
<td>1711</td>
<td>22</td>
<td>1389</td>
<td>62</td>
<td>1059</td>
<td>102</td>
<td>720</td>
<td>142</td>
<td>372</td>
</tr>
<tr>
<td>-17</td>
<td>1703</td>
<td>23</td>
<td>1381</td>
<td>63</td>
<td>1051</td>
<td>103</td>
<td>711</td>
<td>143</td>
<td>363</td>
</tr>
<tr>
<td>-16</td>
<td>1695</td>
<td>24</td>
<td>1373</td>
<td>64</td>
<td>1042</td>
<td>104</td>
<td>702</td>
<td>144</td>
<td>354</td>
</tr>
<tr>
<td>-15</td>
<td>1687</td>
<td>25</td>
<td>1365</td>
<td>65</td>
<td>1034</td>
<td>105</td>
<td>694</td>
<td>145</td>
<td>346</td>
</tr>
<tr>
<td>-14</td>
<td>1679</td>
<td>26</td>
<td>1356</td>
<td>66</td>
<td>1025</td>
<td>106</td>
<td>685</td>
<td>146</td>
<td>337</td>
</tr>
<tr>
<td>-13</td>
<td>1671</td>
<td>27</td>
<td>1348</td>
<td>67</td>
<td>1017</td>
<td>107</td>
<td>677</td>
<td>147</td>
<td>328</td>
</tr>
<tr>
<td>-12</td>
<td>1663</td>
<td>28</td>
<td>1340</td>
<td>68</td>
<td>1008</td>
<td>108</td>
<td>668</td>
<td>148</td>
<td>319</td>
</tr>
<tr>
<td>-11</td>
<td>1656</td>
<td>29</td>
<td>1332</td>
<td>69</td>
<td>1000</td>
<td>109</td>
<td>660</td>
<td>149</td>
<td>310</td>
</tr>
</tbody>
</table>

V \cdot T = \left(\frac{V_2 - V_1}{T_2 - T_1} \right) \times (T - T_1)
For example, if the user wanted to resolve this equation, over a temperature range of 20°C to 50°C, they would proceed as follows:

\[V \cdot 1405 \text{ mV} = \left(\frac{1159 \text{ mV} \cdot 1405 \text{ mV}}{50^\circ \text{C} \cdot 20^\circ \text{C}} \right) \times (T - 20^\circ \text{C}) \]
\[V \cdot 1405 \text{ mV} = (-8.20 \text{ mV/}^\circ \text{C}) \times (T - 20^\circ \text{C}) \]
\[V = (-8.20 \text{ mV/}^\circ \text{C}) \times T + 1569 \text{ mV} \]

Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.

8.4 Device Functional Modes

8.4.1 Mounting and Thermal Conductivity

The LMT85 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good thermal conductivity, the backside of the LMT85 die is directly attached to the GND pin. The temperatures of the lands and traces to the other leads of the LMT85 will also affect the temperature reading.

Alternatively, the LMT85 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT85 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or \(V_{DD} \), the output from the LMT85 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The thermal resistance junction to ambient (\(R_{\text{JA}} \) or \(\theta_{\text{JA}} \)) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. Use Equation 7 to calculate the rise in the LMT85 die temperature:

\[T_J = T_A + \theta_{\text{JA}} \left[(V_{DD} - V_{OUT}) I_L \right] \]

where
- \(T_A \) is the ambient temperature,
- \(I_S \) is the supply current,
- \(I_L \) is the load current on the output,
- and \(V_O \) is the output voltage.

For example, in an application where \(T_A = 30^\circ \text{C}, V_{DD} = 5 \text{ V}, I_S = 5.4 \mu \text{A}, V_{OUT} = 1324 \text{ mV}, \) and \(I_L = 2 \mu \text{A}, \) the junction temperature would be 30.014°C, showing a self-heating error of only 0.014°C. Because the junction temperature of the LMT85 is the actual temperature being measured, take care to minimize the load current that the LMT85 is required to drive. Thermal Information shows the thermal resistance of the LMT85.

8.4.2 Output and Noise Considerations

A push-pull output gives the LMT85 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. The LMT85 device is ideal for this and other applications which require strong source or sink current.

The LMT85 supply-noise gain (the ratio of the AC signal on \(V_{OUT} \) to the AC signal on \(V_{DD} \)) was measured during bench tests. The typical attenuation is shown in Figure 8 found in the Typical Characteristics. A load capacitor on the output can help to filter noise.

For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 5 centimeters of the LMT85.
Device Functional Modes (continued)

8.4.3 Capacitive Loads

The LMT85 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LMT85 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 11. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 12.

![Figure 11. LMT85 No Decoupling Required for Capacitive Loads Less Than 1100 pF](image1)

![Figure 12. LMT85 with Series Resistor for Capacitive Loading Greater Than 1100 pF](image2)

Table 4. Recommended Series Resistor Values

<table>
<thead>
<tr>
<th>C_LOAD</th>
<th>MINIMUM R_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 nF to 99 nF</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>100 nF to 999 nF</td>
<td>1.5 kΩ</td>
</tr>
<tr>
<td>1 μF</td>
<td>800 Ω</td>
</tr>
</tbody>
</table>

8.4.4 Output Voltage Shift

The LMT85 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of \(V_{DD} \) and \(V_{OUT} \). The shift typically occurs when \(V_{DD} - V_{OUT} = 1 \, V \).

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in \(V_{DD} \) or \(V_{OUT} \). Because the shift takes place over a wide temperature change of 5°C to 20°C, \(V_{OUT} \) is always monotonic. The accuracy specifications in the Accuracy Characteristics table already include this possible shift.
9 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information
The LMT85 features make it suitable for many general temperature-sensing applications. It can operate down to 1.8-V supply with 5.4-µA power consumption, making it ideal for battery powered devices. Package options like the through-hole TO-92 package allow the LMT85 to be mounted onboard, off-board, to a heat sink, or on multiple unique locations in the same application.

9.2 Typical Applications
9.2.1 Connection to an ADC

9.2.1.1 Design Requirements
Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT85 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (C$_{FILTER}$).

9.2.1.2 Detailed Design Procedure
The size of C$_{FILTER}$ depends on the size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.

9.2.1.3 Application Curve

Figure 13. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage

Figure 14. Analog Output Transfer Function
Typical Applications (continued)

9.2.2 Conserving Power Dissipation With Shutdown

![Simple Shutdown Connection of the LMT85](image)

Figure 15. Simple Shutdown Connection of the LMT85

9.2.2.1 Design Requirements

Because the power consumption of the LMT85 is less than 9 µA, it can simply be powered directly from any logic gate output and therefore not require a specific shutdown pin. The device can even be powered directly from a micro controller GPIO. In this way, it can easily be turned off for cases such as battery-powered systems where power savings are critical.

9.2.2.2 Detailed Design Procedure

Simply connect the V_{DD} pin of the LMT85 directly to the logic shutdown signal from a microcontroller.

9.2.2.3 Application Curves

![Output Turnon Response Time Without Capacitive Load and $V_{DD} = 3.3$ V](image)

Figure 16. Output Turnon Response Time Without a Capacitive Load and $V_{DD} = 3.3$ V

![Output Turnon Response Time Without Capacitive Load and $V_{DD} = 5$ V](image)

Figure 17. Output Turnon Response Time Without a Capacitive Load and $V_{DD} = 5$ V

![Output Turnon Response Time With 1.1-nF Capacitive Load and $V_{DD} = 3.3$ V](image)

Figure 18. Output Turnon Response Time With 1.1-nF Capacitive Load and $V_{DD} = 3.3$ V

![Output Turnon Response Time With 1.1-nF Capacitive Load and $V_{DD} = 5$ V](image)

Figure 19. Output Turnon Response Time With 1.1-nF Capacitive Load and $V_{DD} = 5$ V

10 Power Supply Recommendations

The low supply current and supply range (1.8 V to 5.5 V) of the LMT85 allow the device to easily be powered from many sources. Power supply bypassing is optional and is mainly dependent on the noise on the power supply used. In noisy systems it may be necessary to add bypass capacitors to lower the noise that is coupled to the output of the LMT85.
11 Layout

11.1 Layout Guidelines
The LMT85 is extremely simple to layout. If a power-supply bypass capacitor is used, it should be connected as shown in the Layout Example.

11.2 Layout Example

- VIA to ground plane
- VIA to power plane

![Figure 20. SC70 Package Recommended Layout](image)

![Figure 21. TO-92 LP Package Recommended Layout](image)

![Figure 22. TO-92 LPM Package Recommended Layout](image)
12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided “AS IS” by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI’s views; see TI’s Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT85DCKR</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-50 to 150</td>
<td>BPA</td>
<td></td>
</tr>
<tr>
<td>LMT85DCKT</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-50 to 150</td>
<td>BPA</td>
<td></td>
</tr>
<tr>
<td>LMT85LP</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>-50 to 150</td>
<td>LMT85</td>
<td></td>
</tr>
<tr>
<td>LMT85LPG</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>-50 to 150</td>
<td>LMT85</td>
<td></td>
</tr>
<tr>
<td>LMT85LPGM</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LPG</td>
<td>3</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>-50 to 150</td>
<td>LMT85</td>
<td></td>
</tr>
<tr>
<td>LMT85LPM</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>-50 to 150</td>
<td>LMT85</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMT85:

• Automotive: LMT85-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
TAPE AND REEL INFORMATION

TAPE DIMENSIONS

- **K0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

PACKAGE MATERIALS INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT85DCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>2.25</td>
<td>2.45</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMT85DCKT</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>250</td>
<td>178.0</td>
<td>8.4</td>
<td>2.25</td>
<td>2.45</td>
<td>1.2</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMT85DCKR</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMT85DCKT</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>250</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal"
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
EXAMPLE BOARD LAYOUT

TO-92 - 5.05 mm max height

TRANSISTOR OUTLINE

LPG0003A

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE:20X
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Lead dimensions are not controlled within this area.
4. Reference JEDEC TO-226, variation AA.
5. Shipping method:
 a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 c. Specific products can be offered in limited combinations of shipping medium and lead options.
 d. Consult product folder for more information on available options.
FOR FORMED LEAD OPTION PACKAGE
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designers represents that, with respect to their applications, Designers has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designers agrees that prior to using or distributing any applications that include TI products, Designers will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNICAL, TRADE SECRET, PROPRIETARY OR PATENT RIGHTS IN OR TO ANY TECHNOLOGY, KnowHow, INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implants). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designers will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.