LM6118, LM6218

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

Literature Number: SNOS541B
LM6118/LM6218
Fast Settling Dual Operational Amplifiers

General Description
The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 mA output drive capability. The PNP input stage has a typical bias current of 200 nA, and the operating supply voltage is ±5V to ±20V.

These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.

The amplifiers are built on a junction-isolated VIP™ (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

Features
- Low offset voltage: 0.2 mV
- 0.01% settling time: 400 ns
- Slew rate $A_v = -1$: 140 V/µs
- Slew rate $A_v = +1$: 75 V/µs
- Gain bandwidth: 17 MHz
- Total supply current: 5.5 mA
- Output drives 50Ω load (±1V)

Applications
- D/A converters
- Fast integrators
- Active filters

Connection Diagrams and Order Information

Typical Applications

Single ended input to differential output
$A_v = 10$, BW = 3.2 MHz
40 Vpp Response = 1.4 MHz
$V_S = ±15V$

Wide-Band, Fast-Settling
40 Vpp Amplifier
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ 25°C Limits (Note 6)</th>
<th>LM6118 Limits (Note 6)</th>
<th>LM6218 Limits (Note 6)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Current (Note 2)</td>
<td>±10 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current (Note 4)</td>
<td>Internally Limited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 5)</td>
<td>500 mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Tolerance (C = 100 pF, R = 1.5 kΩ)</td>
<td></td>
<td>±2 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td>150°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>(Soldering, 10 sec.)</td>
<td>300°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Temp. Range

<table>
<thead>
<tr>
<th>Device</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM6118</td>
<td>−55°C to +125°C</td>
</tr>
<tr>
<td>LM6218</td>
<td>−40°C to +85°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics

±5V ≤ V_S ≤ ±20V, V_CCM = 0V, V_OUT = 0V, I_OUT = 0A, unless otherwise specified. Limits with standard type face are for T_J = 25°C, and Bold Face Type are for Temperature Extremes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ 25°C Limits (Note 6)</th>
<th>LM6118 Limits (Note 6)</th>
<th>LM6218 Limits (Note 6)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>V_S = ±15V</td>
<td>0.2</td>
<td>1</td>
<td>3</td>
<td>mV (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>V− + 3V ≤ V_CCM ≤ V+ − 3.5V</td>
<td>0.3</td>
<td>1.5</td>
<td>3.5</td>
<td>mV (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>V− + 3V ≤ V_CCM ≤ V+ − 3.5V</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>nA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>V− + 3V ≤ V_CDM ≤ V+ − 3.5V</td>
<td>200</td>
<td>350</td>
<td>500</td>
<td>nA (max)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Common Mode Rejection Ratio</td>
<td>V− + 3V ≤ V_CDM ≤ V+ − 3.5V</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td>V_S = ±20V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Power Supply Rejection Ratio</td>
<td>V− = −15V</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td>5V ≤ V+ ≤ 20V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Power Supply Rejection Ratio</td>
<td>V+ = 15V</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>dB (min)</td>
</tr>
<tr>
<td></td>
<td>−20V ≤ V− ≤ −5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V_out = ±15V</td>
<td>500</td>
<td>150</td>
<td>100</td>
<td>V/mV (min)</td>
</tr>
<tr>
<td></td>
<td>V_S = ±20V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>V_out = ±10V</td>
<td>200</td>
<td>50</td>
<td>40</td>
<td>V/mV (min)</td>
</tr>
<tr>
<td></td>
<td>V_S = ±15V</td>
<td>(±20 mA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_O Output Voltage Swing</td>
<td>Supply = ±20V</td>
<td>17.3</td>
<td>±17</td>
<td>±17</td>
<td>V (min)</td>
</tr>
<tr>
<td>Total Supply Current</td>
<td>V_S = ±15V</td>
<td>5.5</td>
<td>7</td>
<td>7</td>
<td>mA (max)</td>
</tr>
<tr>
<td>Output Current Limit</td>
<td>V_S = ±15V, Pulsed</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>mA (max)</td>
</tr>
<tr>
<td>Slew Rate, Av = −1</td>
<td>V_S = ±15V, V_out = ±10V R_S = R_f = 2k, C_f = 10 pF</td>
<td>140</td>
<td>100</td>
<td>100</td>
<td>V/µs (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate, Av = +1</td>
<td>V_S = ±15V, V_out = ±10V R_S = R_f = 2k, C_f = 10 pF</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>V/µs (min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain-Bandwidth Product</td>
<td>V_S = ±15V, f_o = 200 kHz</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>MHz (min)</td>
</tr>
<tr>
<td>0.01% Settling Time</td>
<td>ΔV_out = 10V, V_S = ±15V, R_S = R_f = 2k, C_f = 10 pF</td>
<td>400</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Inverter</td>
<td>5</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follower</td>
<td>3</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: Input voltage range is (V+ − IV) to (V−).

Note 3: The inputs are shunted with three series-connected diodes back-to-back for input differential clamping. Therefore differential input voltages greater than about 1.8V will cause excessive current to flow unless limited to less than 10 mA.
Electrical Characteristics (Continued)

Note 4: Current limiting protects the output from a short to ground or any voltage less than the supplies. With a continuous overload, the package dissipation must be taken into account and heat sinking provided when necessary.

Note 5: Devices must be derated using a thermal resistance of 90˚C/W for the N and WM packages.

Note 6: Limits are guaranteed by testing or correlation.

Typical Performance Characteristics

Input Bias Current

Input Noise Voltage

Common Mode Limits

Common Mode Rejection

Power Supply Rejection

Frequency Response

High Frequency

www.national.com
Typical Performance Characteristics (Continued)

Unity Gain Bandwidth

Unity Gain Bandwidth vs Output Load

Large Signal Response (Sine Wave)

Total Harmonic Distortion

Output Impedance

Output Saturation

LM6118/LM6218

www.national.com 4
Typical Performance Characteristics (Continued)

Output Current Limit

Supply Current (Both Amplifiers)

Slew Rate

Inverter Settling Time

Follower Settling Time

Typical Stability Range
Typical Performance Characteristics (Continued)

Amplifier to Amplifier Coupling

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Input Referred Coupling (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-80</td>
</tr>
<tr>
<td>1k</td>
<td>-100</td>
</tr>
<tr>
<td>10k</td>
<td>-120</td>
</tr>
<tr>
<td>100k</td>
<td>-140</td>
</tr>
<tr>
<td>1M</td>
<td>-160</td>
</tr>
</tbody>
</table>

Temperature: $T_a = 25°C$, $V_s = ±15V$
Source Amp Output: V_{pp}/R_L
Receive Amp: $A_V = 10$
$R_S = 10\Omega$, $R_L = 110\Omega$

$R_L = 600\Omega$

Settling Time, $V_s = ±15V$

Step Response, $A_V = +1$, $V_s = ±15V$

Step Response, $A_V = -1$, $V_s = ±15V$

Application Information

General
The LM6118/LM6218 are high-speed, fast-settling dual op-amps. To insure maximum performance, circuit board layout is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier’s input and output will minimize problems.

Supply Bypassing
To assure stability, it is recommended that each power supply pin be bypassed with a 0.1 µF low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation
These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an N package with large areas of copper on the pc board is recommended.

Amplifier Shut Down
If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the $V_{−}$ pin. This will reduce the power supply current by approximately 25%.

Capacitive Loading
Maximum capacitive loading is about 50 pF for a closed-loop gain of +1, before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains, is shown in the Typical Performance Characteristics section. To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with
Application Information (Continued)

50Ω. Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.

Examples of unity gain connections for a voltage follower, inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1–C1 time constants and capacitive loads will have an effect on settling times.

Input Bias Current Compensation

Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.

Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.
Application Information (Continued)

Bias Current Compensation

(a) Inverting Input Bias Compensation for Integrator Application

Amplifier/Parallel Buffer

*adjust for zero integrator drift

(a) Inverting Input Bias Compensation for Integrator Application

(b) Compensation to Both Inputs

*mount resistor close to input pin to minimize stray capacitance

A\textsubscript{v} = +5, I\textsubscript{OUT} \leq 80 \text{ mA}

V\textsubscript{S} = \pm 15V, C\textsubscript{L} \leq 0.01 \mu F

Large and small signal B.W. = 1.3 MHz (THD = 3%)
Application Information (Continued)

Constant-Voltage Crossover Network With 12 dB/Octave Slope

\[
V_s = \pm 15V, \quad -10 \leq V_{IN} \leq 10V
\]

\[
I_{OUT} = \frac{R_4}{R_2 R_6} \frac{1mA}{1V}
\]

Output dynamic range = 10V – R6 |I_{OUT}|

RL = 500Ω, small signal BW = 6 MHz

Large signal response = 800 kHz

\[
C_{out \; equiv.} = \frac{R_2 + R_4}{2\pi f_0 R_2 R_6} = 32 \text{ pF (} f_0 = 15 \text{ MHz)}
\]

Bilateral Current Source

Coaxial Cable Driver

Small signal (200 mV_{p-p}) BW = 5 MHz
Application Information (Continued)

Instrumentation Amplifier

R1 10k
10 pF
R2 1k
1k
R3 1k
1k
R4 10k
R5 1k
C1

1/2 LM6218

VOUT

R6

A_V = 10, V_S = ±15V, All resistors 0.01%
Small signal and large signal (20 V_p-p) B.W. = 800 kHz

150 MHz Gain-Bandwidth Amplifier

R3 2k
R4 2k
R5 2k

R2 220
220

1/2 LM6218

VOUT

R1

A_V = 100, V_S = ±15V,
Small signal BW = 1.5 MHz
Large signal BW (20 V_p-p) = 800 kHz

Schematic Diagram

1/2 LM6118 (Op Amp A)
Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Molded Small Outline Package (M)
Order Number LM6218WM or LM6218WMX
NS Package Number M14B

8-Lead Molded Small Outline Package (M)
NS Package Number J08A
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated TI products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated