

SNOSAI3D - OCTOBER 2006-REVISED SEPTEMBER 2015

LMV951

LMV951 1-V, 2.7-MHz, Zero Crossover Rail-to-Rail Input and Output Amplifier With Shutdown

Features

- (Typical 1-V Supply, Unless Otherwise Noted)
- Ensured 1-V, 380-µA Single-Supply Operation
- Shutdown to 50-nA Supply Current
- Wide 2.7-MHz Bandwidth
- Rail-to-Rail Input With Zero Crossover
- No Input I_{BIAS} Current Reversal Over V_{CM} Range
- 1000-pF Output Drive Capability
- High-Output Drive Capability
 - Sink Current: 35 mA
 - Source Current: 45 mA
- Rail-to-Rail Buffered Output
 - At 600-Ω Load, 32 mV from Either Rail
 - At 2-kΩ Load, 12 mV from Either Rail
- Temperature Range -40°C to 125°C

Applications

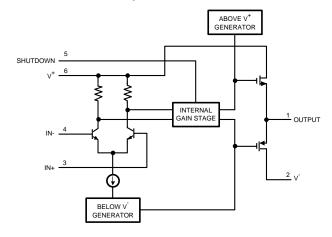
- **Battery Operated Systems**
- **Battery Monitoring**
- Supply Current Monitoring

3 Description

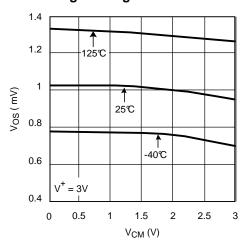
The LMV951 amplifier is capable of operating at supply voltages from 0.9 V to 3 V with specified specs at 1-V and 1.8-V single supply.

The input common-mode range extends to both power supply rails without the offset transition zone and input bias current reversal inherent to most railto-rail input amplifiers.

Contrary to a conventional rail-to-rail output amplifier, the LMV951 has a buffered output stage, providing an open-loop gain which is relatively unaffected by resistive output loading. At 1-V supply voltage, the LMV951 is able to source and sink in excess of 35 mA and offers a gain bandwidth product of 2.7 MHz.


In shutdown mode, the LMV951 consumes less than 50 nA of supply current.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)
LMV951	SOT (6)	2.90 mm × 1.60 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Offset Voltage Change vs Common Mode

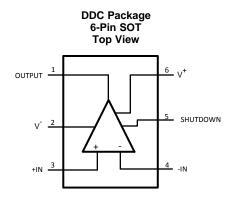
Table of Contents

2 Applications 1 8 Application and Implementation 18 3 Description 1 8.1 Application Information 18 4 Revision History 2 8.2 Typical Applications 18 5 Pin Configuration and Functions 3 9 Power Supply Recommendations 20 6 Specifications 3 10 Layout 20 6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 2 6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 20 6.4 Thermal Information 4 11.1 Device Support 20 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 20 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 20 6.7 Typical Characteristics 7 11.4 Trademarks 20 7.1 Overview 15 11.5 Electrostatic Discharge Caution 21 7.2 Functional Block Diagram 15 16 Glossary 20 7.3 Feature Description 15 15 Mechanical, Packaging, and Orderable Information 20	1	Features 1		7.4 Device Functional Modes	15
3 Description 1 8.1 Application Information 18 4 Revision History 2 8.2 Typical Applications 18 5 Pin Configuration and Functions 3 9 Power Supply Recommendations 2 6 Specifications 3 10 Layout 2 6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 2 6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 2 6.4 Thermal Information 4 11.1 Device Support 2 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 2 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 2 6.7 Typical Characteristics 7 11.4 Trademarks 2 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 2 7.1 Overview 15 15 16 Glossary 2 7.2 Functional Block Diagram 15 11 Mechanical, Packaging, and Orderable 10 Device Packaging 10 Device Packaging 8.2 Typical Applications 16 17 Device Pa	2	Applications 1	8	Application and Implementation	18
4 Revision History 2 8.2 Typical Applications 16 5 Pin Configuration and Functions 3 9 Power Supply Recommendations 2 6 Specifications 3 10 Layout 2 6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 2 6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 2 6.4 Thermal Information 4 11.1 Device Support 2 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 2 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 2 6.7 Typical Characteristics 7 11.4 Trademarks 2 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 2 7.1 Overview 15 11.6 Glossary 2 7.2 Functional Block Diagram 15 16 Mechanical, Packaging, and Orderable Information 20 20 20 20 10.2 Layout Example 20 20 20 11.1 Device Support 20 <th>3</th> <th></th> <th></th> <th>8.1 Application Information</th> <th>18</th>	3			8.1 Application Information	18
5 Pin Configuration and Functions 3 9 Power Supply Recommendations 2 6 Specifications 3 10 Layout 2 6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 2 6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 2 6.4 Thermal Information 4 11.1 Device Support 2 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 2 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 2 6.7 Typical Characteristics 7 11.4 Trademarks 2 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 2 7.1 Overview 15 11.6 Glossary 2 7.2 Functional Block Diagram 15 15 Mechanical, Packaging, and Orderable	4			8.2 Typical Applications	18
6 Specifications 3 10 Layout 27 6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 22 6.2 ESD Ratings 3 10.2 Layout Example 22 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 22 6.4 Thermal Information 4 11.1 Device Support 22 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 22 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 22 6.7 Typical Characteristics 7 11.4 Trademarks 22 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 25 7.1 Overview 15 11.6 Glossary 25 7.2 Functional Block Diagram 15 Mechanical, Packaging, and Orderable 16		-	9	Power Supply Recommendations	21
6.1 Absolute Maximum Ratings 3 10.1 Layout Guidelines 2 6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 26 6.4 Thermal Information 4 11.1 Device Support 26 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 26 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 26 6.7 Typical Characteristics 7 11.4 Trademarks 26 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 26 7.1 Overview 15 11.6 Glossary 27 7.2 Functional Block Diagram 15 15 16 Mechanical, Packaging, and Orderable 16 <td< td=""><td>_</td><td>-</td><td>10</td><td>Layout</td><td> 21</td></td<>	_	-	10	Layout	21
6.2 ESD Ratings 3 10.2 Layout Example 2 6.3 Recommended Operating Conditions 4 11 Device and Documentation Support 22 6.4 Thermal Information 4 11.1 Device Support 22 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 22 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 22 6.7 Typical Characteristics 7 11.4 Trademarks 23 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 25 7.1 Overview 15 11.6 Glossary 25 7.2 Functional Block Diagram 15 16 Mechanical, Packaging, and Orderable 26 15 Incommunity 15 15 15 16 16 15 Incommunity 15 11.5 Electrostatic Discharge Caution 26 27 27 27 28 28 29 29 29 29 20	•	•		10.1 Layout Guidelines	21
6.3 Recommended Operating Conditions 4 6.4 Thermal Information 4 6.5 Electrical Characteristics: 1 V 4 6.6 Electrical Characteristics: 1.8 V 5 6.7 Typical Characteristics 7 7 Detailed Description 15 7.1 Overview 15 7.2 Functional Block Diagram 15 11 Device and Documentation Support 2 11.1 Device Support 2 11.2 Documentation Support 2 11.3 Community Resources 2 11.4 Trademarks 2 11.5 Electrostatic Discharge Caution 2 11.6 Glossary 2 Mechanical, Packaging, and Orderable Information 2		3		10.2 Layout Example	<mark>2</mark> 1
6.4 Thermal Information 4 11.1 Device Support 22 6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 22 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 22 6.7 Typical Characteristics 7 11.4 Trademarks 23 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 25 7.1 Overview 15 11.6 Glossary 25 7.2 Functional Block Diagram 15 12 Mechanical, Packaging, and Orderable Information 26		-	11	Device and Documentation Support	22
6.5 Electrical Characteristics: 1 V 4 11.2 Documentation Support 2 6.6 Electrical Characteristics: 1.8 V 5 11.3 Community Resources 2 6.7 Typical Characteristics 7 11.4 Trademarks 2 7 Detailed Description 15 11.5 Electrostatic Discharge Caution 2 7.1 Overview 15 11.6 Glossary 2 7.2 Functional Block Diagram 15 12 Mechanical, Packaging, and Orderable		,		11.1 Device Support	22
6.7 Typical Characteristics				11.2 Documentation Support	22
7 Detailed Description		6.6 Electrical Characteristics: 1.8 V		11.3 Community Resources	<mark>2</mark> 2
7 Detailed Description		6.7 Typical Characteristics		11.4 Trademarks	22
7.1 Overview	7	**		11.5 Electrostatic Discharge Caution	22
7.2 Functional Block Diagram				11.6 Glossary	22
7.3 Feature Description		7.2 Functional Block Diagram	12		21
		7.3 Feature Description		inomation	22

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (April 2013) to Revision D


Page

Changes from Revision B (April 2013) to Revision C

Page

5 Pin Configuration and Functions

Pin Functions

	i iii i diiotiolio					
PIN		I/O	DESCRIPTION			
NAME	NO.	1/0	DESCRIPTION			
+IN	3	I	Noninverting Input			
-IN	4	I	Inverting Input			
Output	1	0	Output			
Shutdown	5	1	Shutdown Input			
V+	6	Р	Positive Supply Voltage			
V-	2	Р	Negative Supply Voltage			

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)

000			
	MIN	MAX	UNIT
Supply Voltage (V ⁺ – V ⁻)		3.1	V
V _{IN} Differential		±0.3	V
Voltage at Input and Output Pin	$(V^+) + 0.3$	$(V^{-}) - 0.3$	V
Current at Input Pin		±10	mA
Junction Temperature (3)	-40	150	°C
Mounting Temperature, Infrared or Convection (20 s)		235	°C
Storage temperature	-60	150	°C

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

6.2 ESD Ratings

	•			
			VALUE	UNIT
V	Electroptotic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)(2)	±2000	V
V _(ESD)	Electrostatic discharge	Machine model	±200	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

⁽³⁾ The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$. The maximum allowable power dissipation at any ambient temperature is $P_D = T_{J(MAX)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC Board.

Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

6.3 Recommended Operating Conditions

	MIN	MAX	UNIT
Temperature Range ⁽¹⁾	-40	125	°C
Supply Voltage	0.9	3	V

(1) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$. The maximum allowable power dissipation at any ambient temperature is $P_D = T_{J(MAX)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC Board.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		LMV951	
		DDC (SOT)	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	170	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 1 V

Unless otherwise specified, all limits specified for at $T_A = 25^{\circ}C$, $V^+ = 1$, $V^- = 0$ V, $V_{CM} = 0.5$ V, Shutdown = 0 V, and $R_L = 1$ M Ω . (1)

	PARAMETER		TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT	
.,		T _A = 25°C			1.5	2.8		
Vos	Input Offset Voltage	At the temperature ext	remes			3	mV	
TC V _{OS}	Input Offset Average Drift				0.15		μV/°C	
		T _A = 25°C			32	80		
IB	Input Bias Current	At the temperature ext	remes			85	nA	
I _{os}	Input Offset Current				0.2		nA	
		01/41/4	T _A = 25°C	67	77			
OMBB	0 11 5 7 5 7	0 V ≤ V _{CM} ≤ 1 V	At the temperature extremes	55			15	
CMRR	Common-Mode Rejection Ratio	0.4.1/ -1.1/	T _A = 25°C	76	85		dB	
		0.1 V ≤ V _{CM} ≤ 1 V	At the temperature extremes	73				
		1 V ≤ V ⁺ ≤ 1.8 V, V _{CM}	T _A = 25°C	70	92			
DCDD	Davis Comple Dais stire Datis	= 0.5 V	At the temperature extremes	67			-10	
PSRR	Power Supply Rejection Ratio		1 V ≤ V ⁺ ≤ 3 V, V _{CM} =	T _A = 25°C	68	85		dB
		0.5 V	At the temperature extremes	65				
\/	Input Common-Mode Voltage	CMRR ≥ 67 dB		0		1.2	V	
V _{CM}	Range	CMRR ≥ 55 dB	At the temperature extremes	0		1.2	V	
		V _{OUT} = 0.1 V to 0.9 V	T _A = 25°C	90	106			
٨	Larga Signal Valtaga Cain	$R_L = 600 \Omega \text{ to } 0.5 \text{ V}$	At the temperature extremes	85			dB	
A_V	Large Signal Voltage Gain	V _{OUT} = 0.1 V to 0.9 V	T _A = 25°C	90	112			
		$R_L = 2 k\Omega$ to 0.5 V	At the temperature extremes	86				
		D 600 0 to 0 5 V	T _A = 25°C	50	25			
	Output Voltage Swing High	$R_L = 600 \Omega \text{ to } 0.5 \text{ V}$	At the temperature extremes	62				
	Output Voltage Swing High	D 240 to 0 5 V	T _A = 25°C	25	12			
.,		$R_L = 2 k\Omega$ to 0.5 V	At the temperature extremes	36			mV from	
V _{OUT}		D 600 O to 0.5 \	T _A = 25°C	70	32		rail	
	Output Voltage Swing Law	$R_L = 600 \Omega \text{ to } 0.5 \text{ V}$	At the temperature extremes	85				
	Output Voltage Swing Low	D 240 to 0 5 V	T _A = 25°C	35	10			
		$R_L = 2 k\Omega$ to 0.5 V	At the temperature extremes	40			İ	

⁽¹⁾ Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions is very limited self-heating of the device.

⁽²⁾ The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$. The maximum allowable power dissipation at any ambient temperature is $P_D = T_{J(MAX)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC Board.

⁽²⁾ All limits are specified by testing or statistical analysis.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.

Electrical Characteristics: 1 V (continued)

Unless otherwise specified, all limits specified for at $T_A = 25^{\circ}C$, $V^+ = 1$, $V^- = 0$ V, $V_{CM} = 0.5$ V, Shutdown = 0 V, and $R_L = 1$ M Ω .

	PARAMETER		TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT	
		Sourcing	T _A = 25°C	20	45			
1	Output Short-Circuit Current (4)	$V_O = 0 V$, $V_{IN(DIFF)} = \pm 0.2 V$	At the temperature extremes	15			mA	
I _{OUT}	Output Short-Circuit Current	Sinking	T _A = 25°C	20	35		IIIA	
		$V_O = 1 V$, $V_{IN(DIFF)} = \pm 0.2 V$	At the temperature extremes	13				
		Active Mode V _{SD} <0.4			370	480		
	Supply Current	V				520		
I _S Supply Current	Supply Current	Shutdown Mode V _{SD}	T _A = 25°C		0.01	1	μA	
		>0.6 V	>0.6 V	At the temperature extremes			3	
SR	Slew Rate	See (5)			1.4		V/µs	
GBWP	Gain Bandwidth Product				2.7		MHz	
e _n	Input-Referred Voltage Noise	f = 1 kHz			25		nV/√ Hz	
in	Input-Referred Current Noise	f = 1 kHz			0.2		pA/√Hz	
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = 1, R_L =$	1 kΩ		0.02%			
	Object desires Die Organist	Active Mode, V _{SD} = 0 V	/		.001	1		
I _{SD}	Shutdown Pin Current	Shutdown Mode, V _{SD} =	: 1 V		.001	1	μA	
V	Active Mode	0		0.4	V			
V _{SD}	Shutdown Pin Voltage Range Shutdown Mode			0.65		1	V	

⁽⁴⁾ The short-circuit test is a momentary test, the short-circuit duration is 1.5 ms.

6.6 Electrical Characteristics: 1.8 V

Unless otherwise specified, all limits specified for at $T_A = 25$ °C, $V^+ = 1.8$ V, $V^- = 0$ V, $V_{CM} = 0.9$ V, Shutdown = 0 V, and $R_L = 1$ M Ω . (1)

	PARAMETER	TE	ST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
V	Innut Offact Valtage	T _A = 25°C			1.5	2.8	mV
Vos	Input Offset Voltage	At the temperature ext	remes			3	IIIV
TC V _{OS}	Input Offset Average Drift				0.15		μV/°C
	Innut Diag Current	T _A = 25°C			36	80	~ ^
IB	Input Bias Current	At the temperature ext	remes			85	nA
Ios	Input Offset Current				0.2		nA
CMDD	Common-Mode Rejection Ratio	0.1/ - 1/ - 1/ 0.1/	T _A = 25°C	82	93		-10
CMRR			$0 \text{ V} \le \text{V}_{\text{CM}} \le 1.8 \text{ V}$	At the temperature extremes	80		
		1 V ≤ V ⁺ ≤ 1.8V, V _{CM}	T _A = 25°C	70	92		
DODD	Power Supply Rejection	= 0.5 V	At the temperature extremes	67			ı.D
PSRR	Ratio	1 V ≤ V ⁺ ≤ 3 V, V _{CM} =	T _A = 25°C	68	85		dB
		0.5 V	At the temperature extremes	65			ı
.,	Input Common-Mode	CMRR ≥ 82 dB		-0.2		2	V
V _{CM}	Voltage Range	CMRR ≥ 80 dB	At the temperature extremes	-0.2		2	V
		V _{OUT} = 0.2 to 1.6 V	T _A = 25°C	86	110		
	1 O' 1 \/ - O-'-	$R_L = 600 \Omega \text{ to } 0.9 \text{ V}$	At the temperature extremes	83			ı.D
A _V	Large Signal Voltage Gain	V _{OUT} = 0.2 to 1.6 V	T _A = 25°C	86	116		dB
		$R_L = 2 k\Omega$ to 0.9 V	At the temperature extremes	83			

⁽¹⁾ Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions is very limited self-heating of the device.

⁽⁵⁾ Number specified is the average of the positive and negative slew rates.

⁽²⁾ All limits are specified by testing or statistical analysis.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.

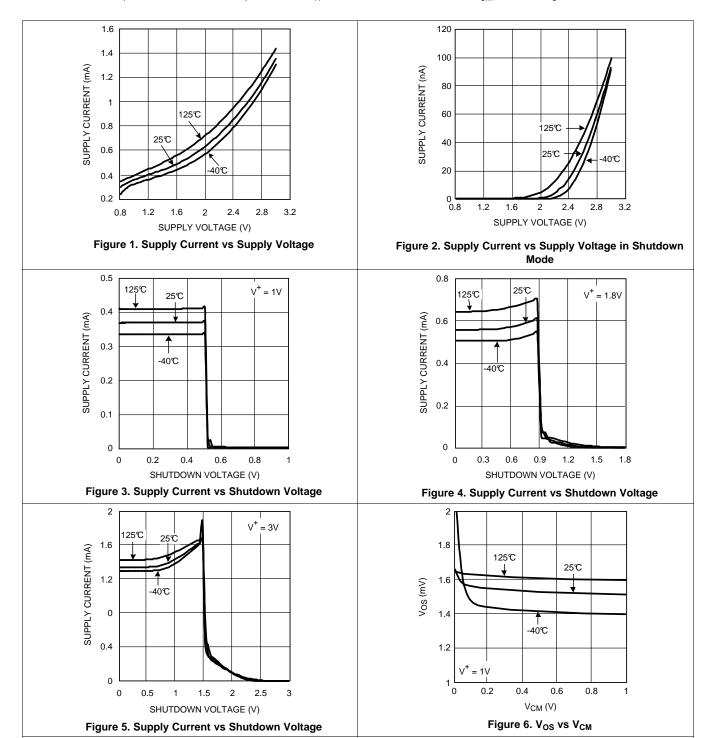
Electrical Characteristics: 1.8 V (continued)

Unless otherwise specified, all limits specified for at $T_A = 25^{\circ}C$, $V^+ = 1.8$ V, $V^- = 0$ V, $V_{CM} = 0.9$ V, Shutdown = 0 V, and $R_L = 1$ M Ω .

	PARAMETER	TE	ST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		D 600 0 to 0.0 V	T _A = 25°C	50	33		
	Outrout Valta as Coria a High	$R_L = 600 \Omega \text{ to } 0.9 \text{ V}$	At the temperature extremes	60			
	Output Voltage Swing High	D 2 k0 to 0 0 V	T _A = 25°C	25	13		
\ <i>/</i>		$R_L = 2 k\Omega$ to 0.9 V	At the temperature extremes	34			mV from
V _{OUT}		B - 600 O to 0.0 V	T _A = 25°C	80	54		rail
	Output Valtage Suring Law	$R_L = 600 \Omega \text{ to } 0.9 \text{ V}$	At the temperature extremes	105			
	Output Voltage Swing Low	D 010 to 00 V	T _A = 25°C	35	17		
		$R_L = 2 k\Omega$ to 0.9 V	At the temperature extremes	44			
		Sourcing	T _A = 25°C	50	85		
	Output Short-Circuit	$V_O = 0 \text{ V}, V_{IN(DIFF)} = \pm 0.2 \text{ V}$	At the temperature extremes	35			A
I _{OUT} Output Short-Circuit Current ⁽⁴⁾	Sinking	T _A = 25°C	45	80		mA	
			$V_O = 1.8 \text{ V}, V_{IN(DIFF)} = \pm 0.2 \text{ V}$	At the temperature extremes	25		
		Active Mode V _{SD} <0.5	T _A = 25°C		570	780	
	Committee Comment	V	At the temperature extremes			880	
I _S	Supply Current	Shutdown Mode V _{SD}	T _A = 25°C		0.3	2.2	μA
		>1.3 V	At the temperature extremes			10	
SR	Slew Rate	See (5)			1.4		V/µs
GBWP	Gain Bandwidth Product				2.8		MHz
e _n	Input-Referred Voltage Noise	f = 1 kHz			25		nV/√ Hz
i _n	Input-Referred Current Noise	f = 1 kHz			0.2		pA/Hz
THD	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = 1, R_L = 1 \text{ k}Ω$			0.02%		
	Active Mode, $V_{SD} = 0$		V		.001	1	
I _{SD}	Shutdown Pin Current	Shutdown Mode, V _{SD} =	= 1.8 V		.001	1	μA
.,	Shutdown Pin Voltage	Active Mode		0		0.5	.,
V_{SD}	Range	Shutdown Mode		1.45		1.8	V

⁴⁾ The short-circuit test is a momentary test, the short-circuit duration is 1.5 ms.

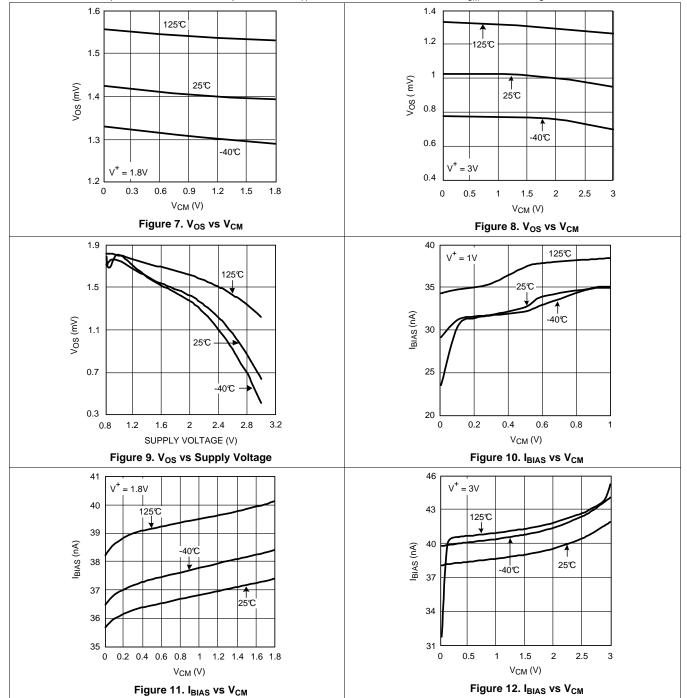
Submit Documentation Feedback


Copyright © 2006–2015, Texas Instruments Incorporated

⁽⁵⁾ Number specified is the average of the positive and negative slew rates.

6.7 Typical Characteristics

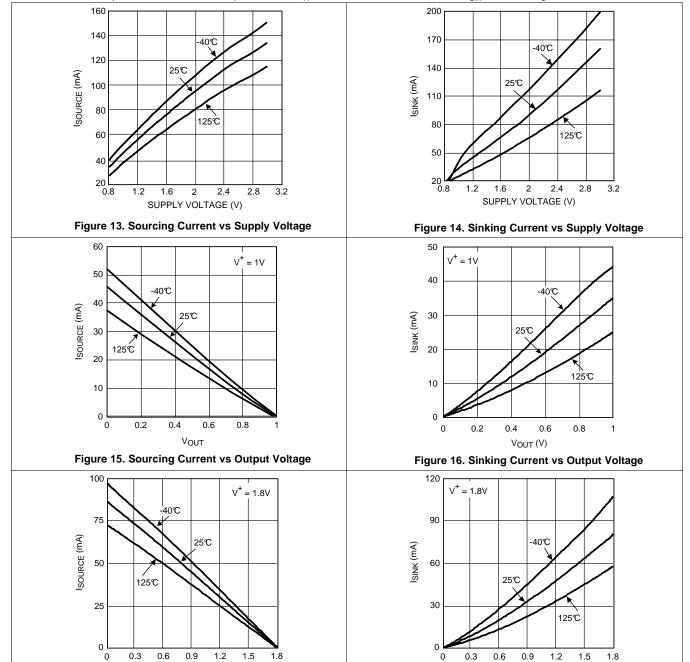
Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.



Copyright © 2006–2015, Texas Instruments Incorporated Submit Documentation Feedback

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.



Submit Documentation Feedback

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.

Copyright © 2006–2015, Texas Instruments Incorporated

Vout (V)

Figure 17. Sourcing Current vs Output Voltage

Submit Documentation Feedback

V_{OUT} (V)

Figure 18. Sinking Current vs Output Voltage

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.

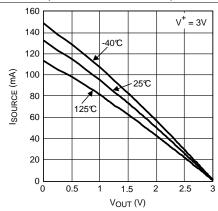


Figure 19. Sourcing Current vs Output Voltage

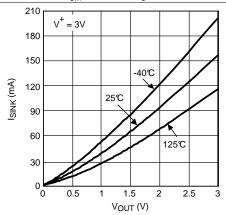


Figure 20. Sinking Current vs Output Voltage

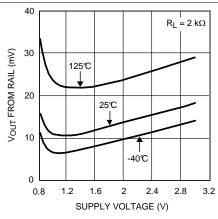


Figure 21. Positive Output Swing vs Supply Voltage

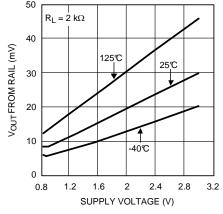


Figure 22. Negative Output Swing vs Supply Voltage

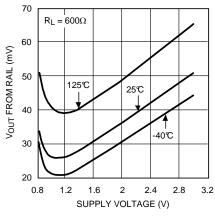


Figure 23. Positive Output Swing vs Supply Voltage

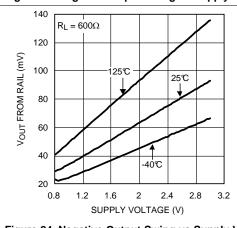
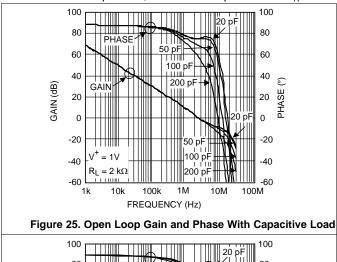


Figure 24. Negative Output Swing vs Supply Voltage


Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.

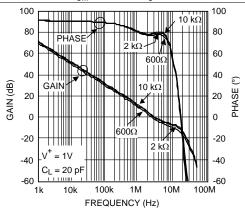
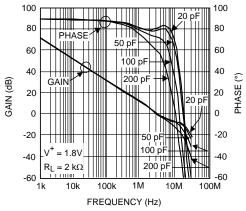



Figure 26. Open Loop Gain and Phase With Resistive Load

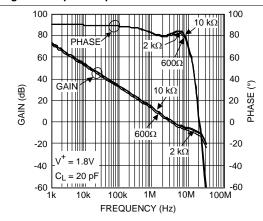
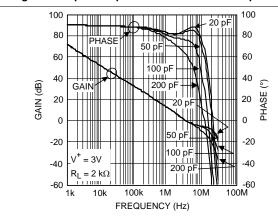



Figure 27. Open Loop Gain and Phase With Capacitive Load

Figure 28. Open Loop Gain and Phase With Resistive Load

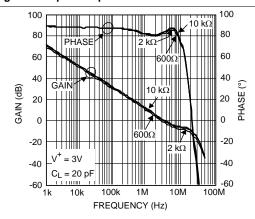


Figure 29. Open Loop Gain and Phase With Capacitive Load

Figure 30. Open Loop Gain and Phase With Resistive Load

RUMENTS

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.

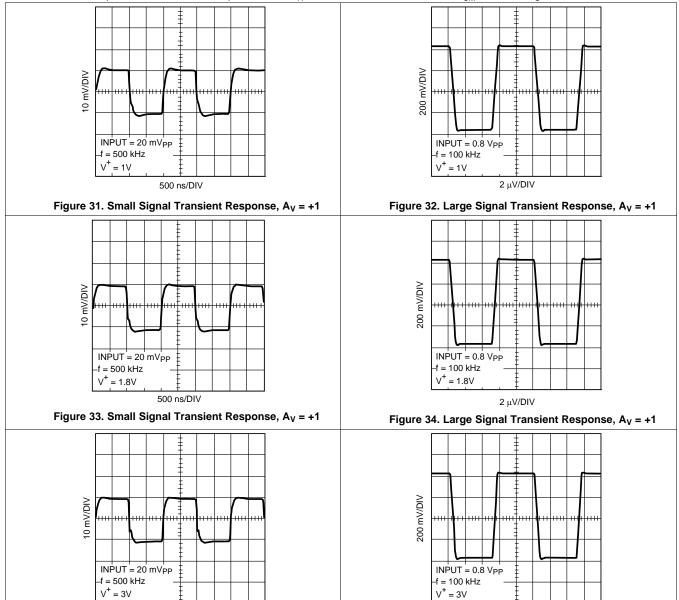
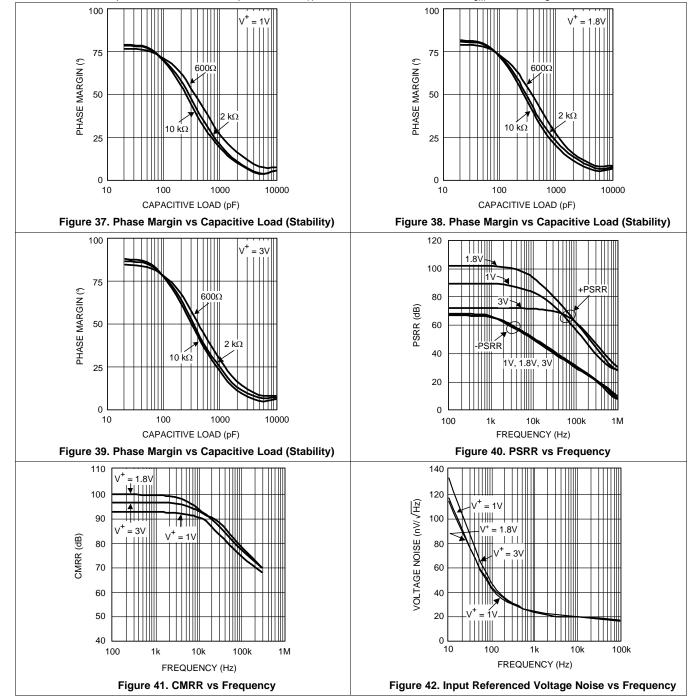


Figure 35. Small Signal Transient Response, $A_V = +1$ Figure 36. Large Signal Transient Response, $A_V = +1$

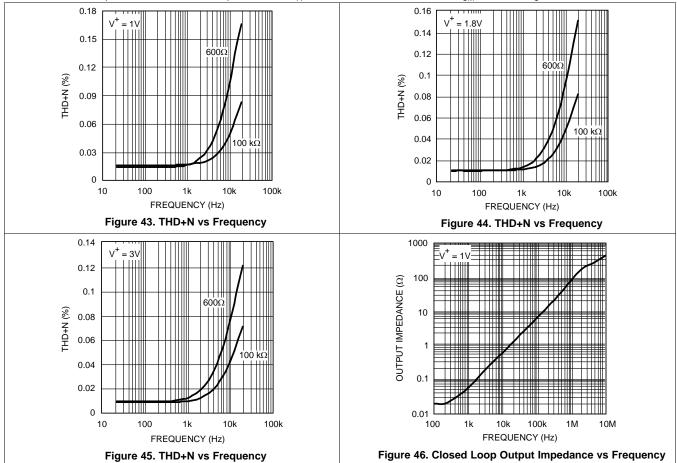
 $V^+ = 3V$


 $2 \mu V/DIV$

500 ns/DIV

Typical Characteristics (continued)

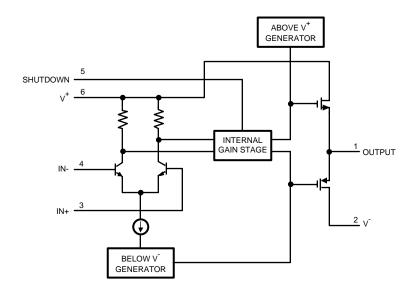
Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.


Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Typical Characteristics (continued)

Unless otherwise specified, all limits are specified for $T_A = 25$ °C, $V^+ = 1$ V, $V^- = 0$ V, $V_{CM} = V^+/2 = V_O$.



7 Detailed Description

7.1 Overview

The LMV951 device is low-voltage operational amplifier that utilizes an internal charge pump which allows for full rail-to-rail input and output operation from 1-V to 3-V supplies. An internal switching frequency from 10 MHz to 15 MHz is used for generating the internal voltages.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Battery Operated Systems

The maximum operating voltage is 3 V and the operating characteristics are ensured down to 1 V which makes the LMV951 an excellent choice for battery operated systems using one or two NiCd or NiMH cells. The LMV951 is also functional at 0.9 V making it an appropriate choice for a single cell alkaline battery.

7.3.2 Small Size

The small footprint of the LMV951 package is ideal for high density board systems. By using the small 6-pin SOT package, the amplifier can be placed closer to the signal source, reducing noise pickup and increasing signal integrity.

7.4 Device Functional Modes

7.4.1 Shutdown Capability

While in shutdown mode, the LMV951 typically consumes less than 50 nA of supply current making it ideal for power conscious applications. Full functionality is restored within 3 µs of enable.

The output is in a high impedance state during shutdown. Voltages may be applied to the inputs and output during shutdown provided they are within the legal V+ to V- range.

7.4.2 Rail-to-Rail Input

The bipolar input stage provides rail-to-rail input operation with no input bias current reversal and a constant input offset voltage over the entire input common-mode range.

Device Functional Modes (continued)

The input contains protection diodes between the inputs to limit the differential voltage (voltage between the input pins). The LMV951 should NOT be used for comparator applications as the diodes will clamp the inputs together. These diodes may also cause issues with follower configurations during shutdown as crosstalk may occur between the input pins through these diodes.

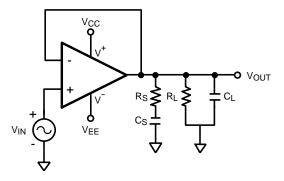
7.4.3 Rail-to-Rail Output

The CMOS output stage provides a gain that is virtually independent of resistive loads and an output drive current in excess of 35 mA at 1 V. A further benefit of the output stage is that the LMV951 is stable in positive unity gain at capacitive loads in excess of 1000 pF.

The internal charge pumps are used to provide the needed headroom for the internal gate drive circuitry and does not enable the output to swing beyond the rails. The output swing is still bound by the V+ and V- rails.

7.4.4 Driving Capacitive Load

The unity gain follower is the most sensitive op amp configuration to capacitive loading. The LMV951 can drive up to 10,000 pF in this configuration without oscillation. If the application requires a phase margin greater than those shown in the datasheet graphs, a snubber network is recommended. The snubber offers the advantage of reducing the output signal ringing while maintaining the output swing which ensures a wider dynamic range; this is especially important at lower supply voltages.



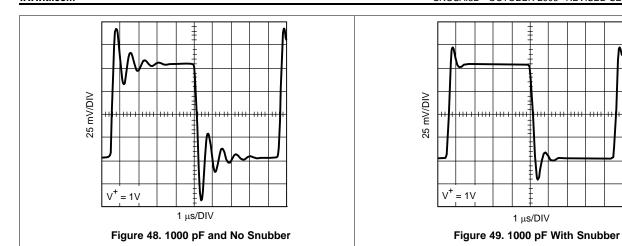

Figure 47. Snubber Network to Improve Phase Margin

Table 1 gives recommended values for some common values of large capacitors. For these values $R_1 = 2 k\Omega$.

Table 1. Recommended Values for Snubbing Network

C _L	R _S	C _s
500 pF	330Ω	6800 pF
680 pF	270Ω	8200 pF
1000 pF	220Ω	.015 μF

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The unique internal charge pumps allows the LMV951 to fully function at supply voltages as low as 0.9 V. This opens up new possibilities for unique low-voltage circuits that are not possible with standard amplifiers.

8.2 Typical Applications

8.2.1 Two Wire Line Transmission

The circuit shown in Figure 50 can drive a long cable using only two wires; a combined single signal and power wire and ground. The robust output stage and low operating voltage of the LMV951 makes it an excellent choice for driving long cables.

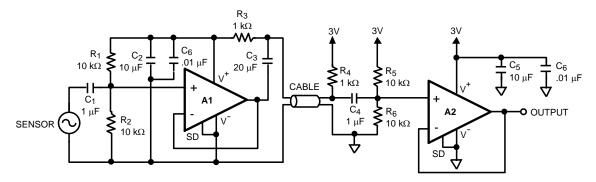


Figure 50. Two Wire Line Driver

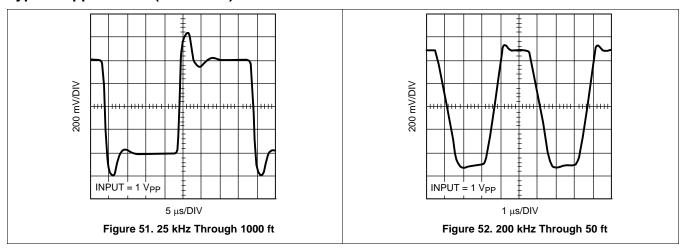
8.2.1.1 Design Requirements

When many sensors are located remotely from the control area the wiring becomes a significant expense. Using only two wires helps minimize the wiring expense in a large project such as an industrial plant. It is desired to both provide a buffered signal from the sensor as well as provide power to the sensor amplifier.

8.2.1.2 Detailed Design Procedure

TI recommends a power supply of 3 V to power this system. A1 and A2 are set up as unity gain buffers. Configuring A1 with the required gain is simple if a gain of greater than one is required. C_1 along with R_1 and R_2 are used to ensure the correct DC operating point at the input of A1.

 C_4 along with R_5 and R_6 are used to set up the correct DC operating point for A2. C_1 , C_3 , and C_4 have been selected to give about a 20% droop with a 1-kHz square wave input.


8.2.1.3 Application Curves

18

Figure 51 shows a 25-kHz signal after passing though 1000 ft of twisted-pair cable. Figure 52 shows a 200 kHz signal after passing through 50 ft of twisted-pair cable.

Typical Applications (continued)

8.2.2 Bridge Configuration Amplifier

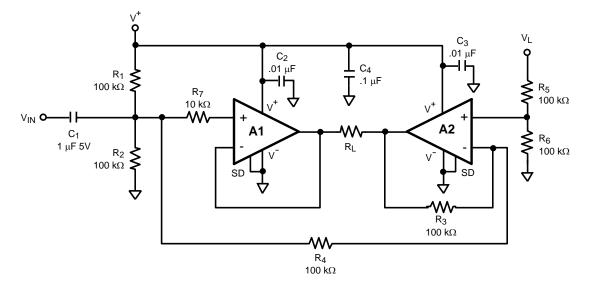


Figure 53. Bridge Amplifier

Some applications may benefit from doubling the voltage across the load. With V⁺ = 1 V a bridge configuration can provide a 2-V_{PP} output to the load with a resistance as low as 300 Ω. The output stage of the LMV951 enables it to drive a load of 120 Ω and still swing at least 70% of the supply rails.

The bridge configuration shown in Figure 53 enables the amplifier to maintain a low dropout voltage thus maximizing its dynamic range. It has been configured in a gain of 1 and uses the fewest number of parts.

Resistor values have been selected to keep the current consumption to a minimum and voltage errors due to bias currents negligible. Using the selected resistor values makes this circuit quite practical in a battery operated design. R₁, R₂ and R₅, R₆ set up a virtual ground that is half of V+. The accuracy of the resistor values will establish how well the two virtual grounds match. Any errors in the virtual grounds will show as current across R_L when there is no input signal.

Product Folder Links: LMV951

Submit Documentation Feedback

Typical Applications (continued)

AC coupling the input signal sets the DC bias point of this signal to the virtual ground of the circuit. Using the large resistor values with a 1-µF capacitor (C₁) sets the frequency rolloff of this circuit below 10 Hz.

- C₂ and C₃ are .01-µF ceramic capacitors that must be located as close as possible to pin 6, the V⁺ pin. As covered in the power supply bypassing section these capacitors must have low ESR and a self resonant frequency above 15 MHz.
- C₄ is a 1 μF tantalum or electrolytic capacitor that should also be located close to the supply pin.
- To use the shutdown feature tie pin 5 of the two parts together and connect through a 470-kΩ resistor to V⁺. Add a switch between pin 5 and ground. Closing the switch keeps the parts in the active mode, opening the switch sets the parts in the shutdown mode without adding any additional current to V+.

8.2.3 Virtual Ground Circuit

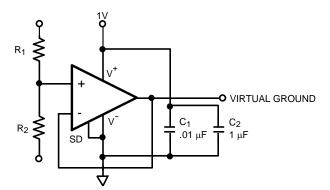


Figure 54. Virtual Ground Circuit

Figure 54 shows the LMV951 being used in a system establishing a virtual ground. Having a buffered output stage gives this part the ability to handle load currents higher than 35 mA at 1 V.

R₃ and R₄ are used to set the voltage of the virtual ground. To maintain low noise the values should be from 1 $k\Omega$ to 10 $k\Omega$. C_1 and C_2 provide the recommended bypassing for the LMV951. These capacitors must be placed as close as possible to pins 2 and 6.

Submit Documentation Feedback

9 Power Supply Recommendations

As in any high performance IC, proper power supply bypassing is necessary for optimizing the performance of the LMV951.

The internal 15-MHz voltage generator needs proper supply bypassing for optimum operation. A surface mount ceramic .01- μ F capacitor must be located as close as possible to the V⁺ and V⁻ pins (pins 2 and 6). This capacitor needs to have low ESR and a self resonant frequency above 15 MHz. A small tantalum or electrolytic capacitor with a value from 1 μ F to 10 μ F must also be located close to the LMV951.

10 Layout

10.1 Layout Guidelines

- The V+ pin must be bypassed to ground with a low-ESR capacitor. The optimum placement is closest to the V+ and ground pins.
- Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground.
- The ground pin should be connected to the PCB ground plane at the pin of the device.
- The feedback components should be placed as close to the device as possible minimizing strays.

10.2 Layout Example

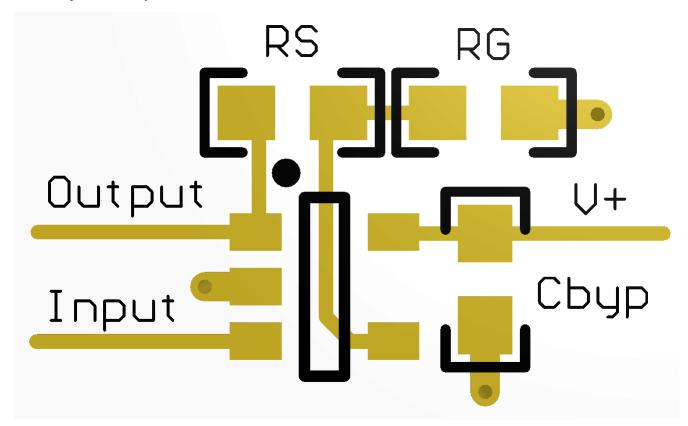


Figure 55. Layout Recommendation

Product Folder Links: LMV951

orated Submit Documentation Feedback

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

LMV951 PSPICE Model, http://www.ti.com/lit/zip/snom029

TINA-TI SPICE-Based Analog Simulation Program, http://www.ti.com/tool/tina-ti

DIP Adapter Evaluation Module, http://www.ti.com/tool/dip-adapter-evm

TI Universal Operational Amplifier Evaluation Module, http://www.ti.com/tool/opampevm

TI Filterpro Software, http://www.ti.com/tool/filterpro

WEBENCH® Amplifier Designer, http://www.ti.com/lsds/ti/analog/webench/amplifiers.page

11.2 Documentation Support

11.2.1 Related Documentation

For additional applications, see the following: AN-31 Op Amp Circuit Collection, SNLA140

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMV951MK/NOPB	ACTIVE	SOT-23-THIN	DDC	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	AS3A	Samples
LMV951MKX/NOPB	ACTIVE	SOT-23-THIN	DDC	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	AS3A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

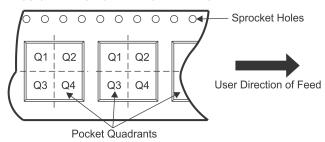
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

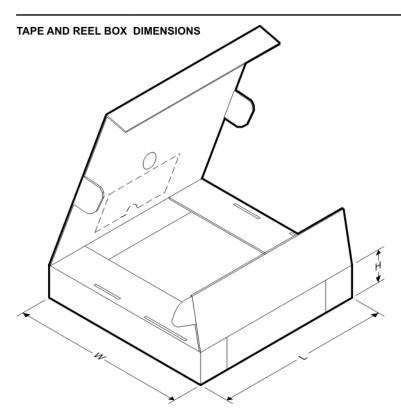
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

www.ti.com 29-Oct-2021


TAPE AND REEL INFORMATION

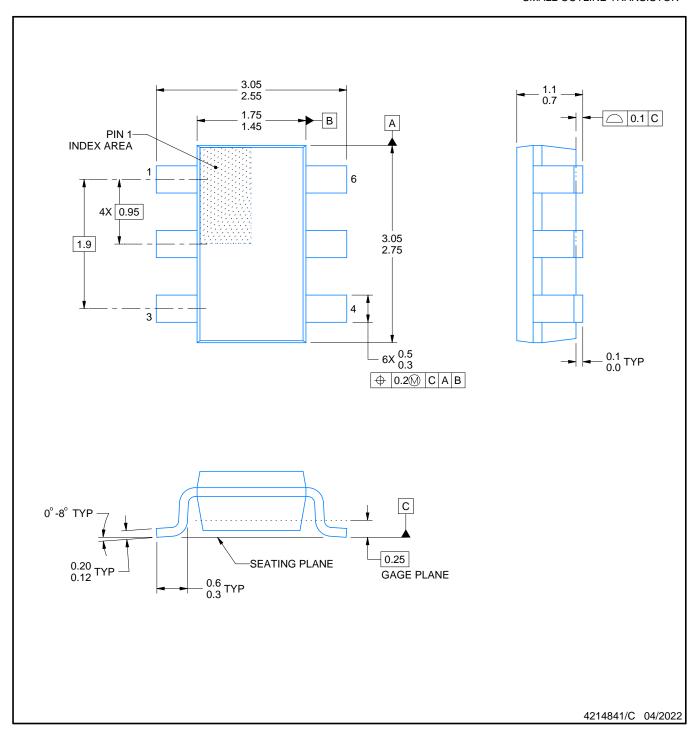
Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMV951MK/NOPB	SOT- 23-THIN	DDC	6	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMV951MKX/NOPB	SOT- 23-THIN	DDC	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

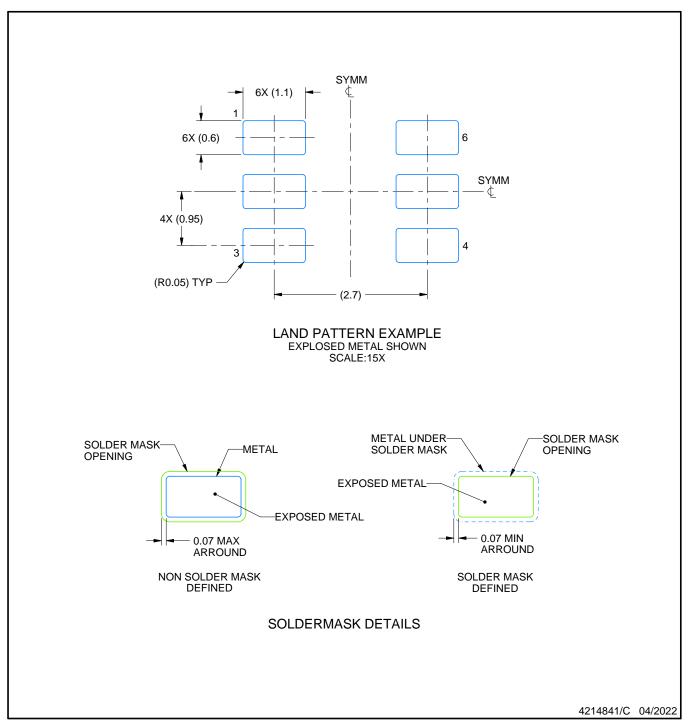
www.ti.com 29-Oct-2021



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LMV951MK/NOPB	SOT-23-THIN	DDC	6	1000	208.0	191.0	35.0	
LMV951MKX/NOPB	SOT-23-THIN	DDC	6	3000	208.0	191.0	35.0	

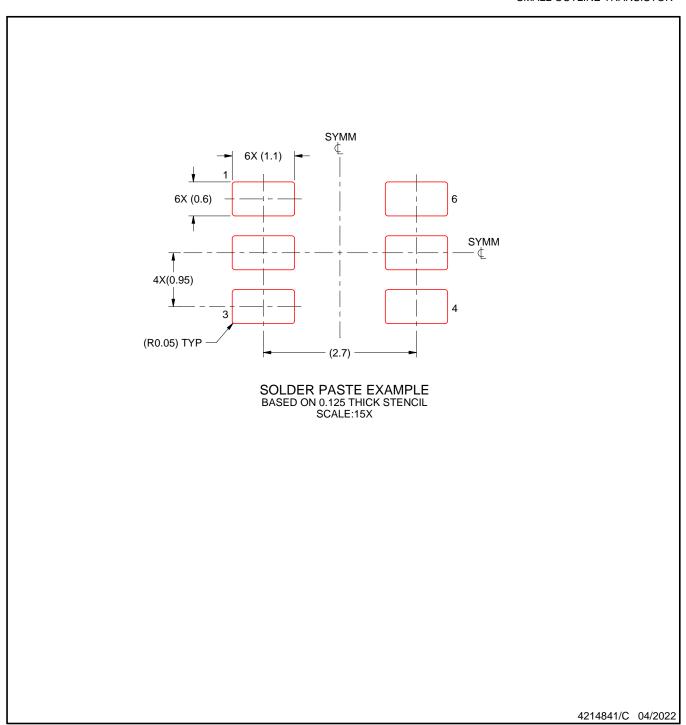
SMALL OUTLINE TRANSISTOR



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-193.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated