LMC6464QML Quad Micropower, Rail-to-Rail Input and Output CMOS Operational Amplifier

Check for Samples: LMC6464QML

FEATURES
- (Typical Unless Otherwise Noted)
- Low Offset Voltage 500µV
- Ultra Low Supply Current 23 µA/Amplifier
- Operates from 3V to 15V Single Supply
- Rail-to-Rail Output Swing
 - (within 10 mV of Rail, \(V_S = 5V \) and \(R_L = 25 \, K_\Omega \))
- Low Input Bias Current 150 fA

APPLICATIONS
- Battery Operated Circuits
- Transducer Interface Circuits
- Portable Communication Devices
- Medical Applications
- Battery Monitoring

DESCRIPTION
The LMC6464 is a micropower version of the popular LMC6484, combining Rail-to-Rail Input and Output Range with very low power consumption.

The LMC6464 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, ensured for loads down to 25 KΩ, assures maximum dynamic signal range. This rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6464 is an excellent upgrade for circuits using limited common-mode range amplifiers.

The LMC6464, with ensured specifications at 3V and 5V, is especially well-suited for low voltage applications. A quiescent power consumption of 60 µW per amplifier (at \(V_S = 3V \)) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mV, and 85 dB CMRR maintain accuracy in battery-powered systems.

Figure 1. 14-Pin CDIP Top View

Figure 2. Low-Power Two-Op-Amp Instrumentation Amplifier
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage ($V^+ - V^-$)</td>
<td>16V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>± Supply Voltage</td>
</tr>
<tr>
<td>Voltage at Input/Output Pin</td>
<td>($V^+ + 0.3V, V^- - 0.3V)</td>
</tr>
<tr>
<td>Current at Input Pin (2)</td>
<td>±5 mA</td>
</tr>
<tr>
<td>Current at Output Pin (3) (4)</td>
<td>±30 mA</td>
</tr>
<tr>
<td>Current at Power Supply Pin</td>
<td>40 mA</td>
</tr>
<tr>
<td>Junction Temperature (3), (5)</td>
<td>150 °C</td>
</tr>
<tr>
<td>Power Dissipation (5)</td>
<td>LMC6464 6mW</td>
</tr>
<tr>
<td>Thermal Resistance (6)</td>
<td>θJA 74 °C/W</td>
</tr>
<tr>
<td></td>
<td>θJC 37 °C/W</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65 °C ≤ T_A ≤ +150 °C</td>
</tr>
<tr>
<td>Lead Temp. (Soldering, 10 sec.)</td>
<td>260 °C</td>
</tr>
<tr>
<td>ESD Tolerance (7)</td>
<td>2.0 KV</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

(2) Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.

(3) Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150 °C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

(4) Do not short circuit output to V^+, when V^+ is greater than 13V or reliability will be adversely affected.

(5) The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J,max}$ (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{D, allowed} = (T_{J,max} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

(6) All numbers apply for packages soldered directly into a PC board.

(7) Human body model, 1.5 kΩ in series with 100 pF.

Recommended Operating Range (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>3.0V ≤ V^+ ≤ 15.5V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−55 °C ≤ T_A ≤ +125 °C</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Description</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Static tests at +25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Static tests at +125</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Static tests at -55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dynamic tests at +25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dynamic tests at +125</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dynamic tests at -55</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Functional tests at +25</td>
<td></td>
</tr>
<tr>
<td>8A</td>
<td>Functional tests at +125</td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>Functional tests at -55</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Switching tests at +25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switching tests at +125</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Switching tests at -55</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Settling time at +25</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Settling time at +125</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Settling time at -55</td>
<td></td>
</tr>
</tbody>
</table>

LMC6464 Electrical Characteristics DC Parameters: 3 Volt

The following conditions apply, unless otherwise specified. \(V^+ = 3V, V^- = 0V, V_{CM} = V_O = V^+/2 \) and \(R_L > 1M\).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Notes</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IO})</td>
<td>Input Offset Voltage</td>
<td>(0V \leq V_{CM} \leq 3.0V)</td>
<td></td>
<td>0.8 mV</td>
<td>1.7 mV</td>
<td>mV</td>
<td>1, 2</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td>(1)</td>
<td></td>
<td>25 pA</td>
<td>100 pA</td>
<td>pA</td>
<td>1, 2</td>
</tr>
<tr>
<td>(I_{IO})</td>
<td>Input Offset Current</td>
<td>(1)</td>
<td></td>
<td>25 pA</td>
<td>100 pA</td>
<td>pA</td>
<td>1, 2</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Common Mode Rejection Ratio</td>
<td>For CMRR ≥ 50 dB</td>
<td>60 dB</td>
<td>57 dB</td>
<td>dB</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>(V_{Op})</td>
<td>Output Swing</td>
<td>(R_L = 25K\Omega) to (V^+/2)</td>
<td>2.9 V 0.10</td>
<td>2.9 V 0.15</td>
<td>V</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply Current</td>
<td>(V_O = V^+/2)</td>
<td>110 (\mu A)</td>
<td>140 (\mu A)</td>
<td>(\mu A)</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>(I_{ISC})</td>
<td>Output Short Circuit Current</td>
<td>Sourcing (V_O = 0V)</td>
<td>8.0 mA</td>
<td>6.0 mA</td>
<td>mA</td>
<td>1, 2, 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking (V_O = 3V)</td>
<td>23 mA</td>
<td>17 mA</td>
<td>mA</td>
<td>1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

(1) Limits are dictated by testing limitations and not device performance.
LMC6464 Electrical Characteristics DC Parameters: 5 Volt

The following conditions apply, unless otherwise specified. \(V^+ = 5V, V^- = 0V, V_{CM} = V_O = V^+ / 2 \) and \(R_L > 1M \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Notes</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Sub-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IO})</td>
<td>Input Offset Voltage</td>
<td></td>
<td></td>
<td>0.5 (mV)</td>
<td>1.4 (mV)</td>
<td>(mV)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td></td>
<td>(1)</td>
<td>25 (pA)</td>
<td>100 (pA)</td>
<td>(pA)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{IO})</td>
<td>Input Offset Current</td>
<td></td>
<td>(1)</td>
<td>25 (pA)</td>
<td>100 (pA)</td>
<td>(pA)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>(0V \leq V_{CM} \leq 5.0V)</td>
<td></td>
<td>70 (dB)</td>
<td>67 (dB)</td>
<td>(dB)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Input Common-Mode Voltage Range</td>
<td></td>
<td></td>
<td>5.25 (V)</td>
<td>0.10 (V)</td>
<td>(V)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td>(R_L = 100K \Omega) to (V^+ / 2)</td>
<td>(1)</td>
<td>4.99 (V)</td>
<td>0.01 (V)</td>
<td>(V)</td>
<td>2, 3</td>
</tr>
<tr>
<td>(I_{IO})</td>
<td>Input Offset Current</td>
<td>(R_L = 25K \Omega) to (V^+ / 2)</td>
<td>(1)</td>
<td>4.97 (V)</td>
<td>0.02 (V)</td>
<td>(V)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Supply Current</td>
<td>(V_O = V^+ / 2)</td>
<td></td>
<td>110 (\mu A)</td>
<td>140 (\mu A)</td>
<td>(\mu A)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{SC})</td>
<td>Output Short Circuit Current</td>
<td>Sourcing (V_O = 0V)</td>
<td></td>
<td>19 (mA)</td>
<td>15 (mA)</td>
<td>(mA)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking (V_O = 5V)</td>
<td></td>
<td>22 (mA)</td>
<td>17 (mA)</td>
<td>(mA)</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

(1) Limits are dictated by testing limitations and not device performance.

LMC6464 Electrical Characteristics DC Parameters: 15 Volt

The following conditions apply, unless otherwise specified. \(V^+ = 15V, V^- = 0V, V_{CM} = V_O = V^+ / 2 \) and \(R_L > 1M \).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Notes</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Sub-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IO})</td>
<td>Input Offset Voltage</td>
<td></td>
<td></td>
<td>1.8</td>
<td>2.3</td>
<td>(mV)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{IB})</td>
<td>Input Bias Current</td>
<td></td>
<td>(1)</td>
<td>25</td>
<td>100</td>
<td>(pA)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(I_{IO})</td>
<td>Input Offset Current</td>
<td></td>
<td>(1)</td>
<td>25</td>
<td>100</td>
<td>(pA)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>(0V \leq V_{CM} \leq 15.0V)</td>
<td></td>
<td>70</td>
<td>67</td>
<td>(dB)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Input Common-Mode Voltage Range</td>
<td></td>
<td></td>
<td>15.25</td>
<td>0.15</td>
<td>(V)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00</td>
<td>0.00</td>
<td>(V)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>+PSRR</td>
<td>Positive Power Supply Rejection Ratio</td>
<td>(5V \leq V^+ \leq 15V)</td>
<td></td>
<td>70</td>
<td>67</td>
<td>(dB)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V = 0V, V_O = 2.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-PSRR</td>
<td>Negative Power Supply Rejection Ratio</td>
<td>(-15V \leq V^- \leq -5V)</td>
<td></td>
<td>70</td>
<td>67</td>
<td>(dB)</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V^+ = 0V, V_O = -2.5V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Limits are dictated by testing limitations and not device performance.
LMC6464 Electrical Characteristics DC Parameters: 15 Volt (continued)

The following conditions apply, unless otherwise specified. $V^{+} = 15V$, $V^{-} = 0V$, $V_{CM} = V_{O} = V^{+}/2$ and $R_L > 1M$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Notes</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Sub-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OP}</td>
<td>Output Swing</td>
<td>$R_L = 100K\Omega$ to $V^{+}/2$</td>
<td>14.975</td>
<td>0.02</td>
<td>V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L = 25K\Omega$ to $V^{+}/2$</td>
<td>14.900</td>
<td>0.05</td>
<td>V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.850</td>
<td>0.15</td>
<td>V</td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply Current</td>
<td>$V_O = V^{+}/2$</td>
<td>120</td>
<td>μA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>μA</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>Output Short Circuit Current</td>
<td>Sourcing $V_O = 0V$</td>
<td>24</td>
<td>mA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking $V_O = 12V$</td>
<td>17</td>
<td>mA</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 55</td>
<td>mA</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 45</td>
<td>mA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_V</td>
<td>Large Signal Voltage Gain</td>
<td>Sourcing $R_L = 100K\Omega$</td>
<td>(3) 110</td>
<td>dB</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) 80</td>
<td>dB</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking $R_L = 100K\Omega$</td>
<td>(3) 100</td>
<td>dB</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) 70</td>
<td>dB</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sourcing $R_L = 25K\Omega$</td>
<td>(3) 110</td>
<td>dB</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) 70</td>
<td>dB</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinking $R_L = 25K\Omega$</td>
<td>(3) 95</td>
<td>dB</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) 60</td>
<td>dB</td>
<td>2, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Do not short circuit output to V^{+}, when V^{+} is greater than 13V or reliability will be adversely affected.

(3) $V_{CM} = 7.5V$ and R_L connected to 7.5V. For Sourcing tests, $7.5V \leq V_O \leq 11.5V$. For Sinking tests, $3.5V \leq V_O \leq 7.5V$.

LMC6464 Electrical Characteristics AC Parameters: 15 Volt

The following conditions apply, unless otherwise specified.

DC: $V^{+} = 15V$, $V^{-} = 0V$, $V_{CM} = V_{O} = V^{+}/2$ and $R_L > 1M$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Notes</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Sub-groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td></td>
<td>(1)</td>
<td>15</td>
<td>V/mS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1)</td>
<td>7.0</td>
<td>V/mS</td>
<td>5, 6</td>
<td></td>
</tr>
<tr>
<td>GBW</td>
<td>Gain-Bandwidth</td>
<td></td>
<td>60</td>
<td>KHz</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>KHz</td>
<td>5, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Device configured as a Voltage Follower with a 10V input step. For positive slew, V_l swing is 2.5V to 12.5V, V_O is measured between 6.0V and 9.0V. For negative slew, V_l swing is 12.5V to 2.5V, V_O is measured between 9.0V and 6.0V.
Typical Performance Characteristics

$V_S = +5V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Supply Current vs. Supply Voltage

Sourcing Current vs. Output Voltage

Sourcing Current vs. Output Voltage

Sinking Current vs. Output Voltage

Sinking Current vs. Output Voltage
Typical Performance Characteristics (continued)

$V_S = +5V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Sinking Current

Figure 9.

Output Voltage vs. Frequency

Figure 10.

Input Voltage Noise vs. Input Voltage

Figure 11.

Input Voltage Noise vs. Frequency

Figure 12.

Input Voltage Noise vs. Common Mode Input Voltage

Figure 13.

Input Voltage Noise vs. Common Mode Input Voltage

Figure 14.

Copyright © 2010–2013, Texas Instruments Incorporated

Submit Documentation Feedback 7

Product Folder Links: LMC6464QML
Typical Performance Characteristics (continued)

\(V_S = +5\,\text{V}, \) Single Supply, \(T_A = 25^\circ\text{C} \) unless otherwise specified

Input Voltage vs. Output Voltage

![Input Voltage vs. Output Voltage](image)

Open Loop Frequency Response

![Open Loop Frequency Response](image)

Open Loop Frequency Response vs. Temperature

![Open Loop Frequency Response vs. Temperature](image)

Gain and Phase vs. Capacitive Load

![Gain and Phase vs. Capacitive Load](image)

Slew Rate vs. Supply Voltage

![Slew Rate vs. Supply Voltage](image)

Non-Inverting Large Signal Pulse Response

![Non-Inverting Large Signal Pulse Response](image)
Typical Performance Characteristics (continued)

$V_S = +5V$, Single Supply, $T_A = 25^\circ C$ unless otherwise specified

Non-Inverting Large Signal Pulse Response

![Non-Inverting Large Signal Pulse Response](image1)

Figure 21.

Non-Inverting Small Signal Pulse Response

![Non-Inverting Small Signal Pulse Response](image2)

Figure 22.

Inverting Large Signal Pulse Response

![Inverting Large Signal Pulse Response](image3)

Figure 23.
Typical Performance Characteristics (continued)

\(V_S = +5V, \) Single Supply, \(T_A = 25^\circ C \) unless otherwise specified

Inverting Large Signal Pulse Response

Figure 27.

![Inverting Large Signal Pulse Response](image1.png)

Figure 28.

![Inverting Large Signal Pulse Response](image2.png)

Inverting Small Signal Pulse Response

Figure 29.

![Inverting Small Signal Pulse Response](image3.png)

Figure 30.

![Inverting Small Signal Pulse Response](image4.png)

Figure 31.

![Inverting Small Signal Pulse Response](image5.png)
APPLICATION INFORMATION

INPUT COMMON-MODE VOLTAGE RANGE

The LMC6464 has a rail-to-rail input common-mode voltage range. Figure 32 shows an input voltage exceeding both supplies with no resulting phase inversion on the output.

![Figure 32. An Input Voltage Signal Exceeds the LMC6464 Power Supply Voltage with No Output Phase Inversion](image)

The absolute maximum input voltage at \(V^+ = 3V \) is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 33, can cause excessive current to flow in or out of the input pins, possibly affecting reliability. The input current can be externally limited to ±5 mA, with an input resistor, as shown in Figure 34.

![Figure 33. A ±7.5V Input Signal Greatly Exceeds the 3V Supply in Figure 34 Causing No Phase Inversion Due to \(R_i \)](image)

RAIL-TO-RAIL OUTPUT

The approximated output resistance of the LMC6464 is 180Ω sourcing, and 130Ω sinking at \(V_S = 3V \), and 110Ω sourcing and 83Ω sinking at \(V_S = 5V \). The maximum output swing can be estimated as a function of load using the calculated output resistance.
CAPACITIVE LOAD TOLERANCE

The LMC6464 can typically drive a 200 pF load with $V_S = 5V$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 35. If there is a resistive component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a voltage divider at the output. This introduces a DC error at the output.

Figure 35. Resistive Isolation of a 300 pF Capacitive Load

Figure 36 displays the pulse response of the LMC6464 circuit in Figure 35.

Figure 36. Pulse Response of the LMC6464 Circuit Shown in Figure 35

Another circuit, shown in Figure 37, is also used to indirectly drive capacitive loads. This circuit is an improvement to the circuit shown in Figure 35 because it provides DC accuracy as well as AC stability. R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 should be experimentally determined by the system designer for the desired pulse response. Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop.

Figure 37. LMC6464 Non-Inverting Amplifier, Compensated to Handle a 300 pF Capacitive and 100 KΩ Resistive Load
The pulse response of the circuit shown in Figure 37 is shown in Figure 38.

COMPENSATING FOR INPUT CAPACITANCE

It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6464. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 39), C_F, is first estimated by:

$$\frac{1}{2\pi R_1 C_{IN}} \geq \frac{1}{2\pi R_2 C_F}$$

(1)

or

$$R_1 C_i \leq R_2 C_F$$

(2)

which typically provides significant overcompensation.

Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_F may be different. The values of C_F should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

OFFSET VOLTAGE ADJUSTMENT

Offset voltage adjustment circuits are illustrated in Figure 40 and Figure 41. Large value resistances and potentiometers are used to reduce power consumption while providing typically ± 2.5 mV of adjustment range, referred to the input, for both configurations with $V_S = \pm 5V$.

Figure 38. Pulse Response of LMC6464 Circuit in Figure 37

Figure 39. Canceling the Effect of Input Capacitance

Figure 39: Diagram showing the circuit with added feedback capacitor C_F.
SPICE MACROMODEL

A Spice macromodel is available for the LMC6464. This model includes a simulation of:

- Input common-mode voltage range
- Frequency and transient response
- GBW dependence on loading conditions
- Quiescent and dynamic supply current
- Output swing dependence on loading conditions

and many more characteristics as listed on the macromodel disk.

Contact the Texas Instruments Customer Response Center to obtain an operational amplifier Spice model library disk.

PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK

It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6464, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable.

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6464's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 42. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12}\Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 30 times degradation from the LMC6464's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current. See Typical Connections of Guard Rings for standard op-amp configurations.
The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 46.
INSTRUMENTATION CIRCUITS

The LMC6464 has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6464 can reject a larger range of common-mode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice for noisy or industrial environments. Other applications that benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and silicon-based transducers.

A small valued potentiometer is used in series with R_G to set the differential gain of the three op-amp instrumentation circuit in Figure 47. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.

A two op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 48. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.

Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.
Typical Single-Supply Applications

TRANSDUCER INTERFACE CIRCUITS

Photocells can be used in portable light measuring instruments. The LMC6464, which can be operated off a battery, is an excellent choice for this circuit because of its very low input current and offset voltage.

LMC6464 AS A COMPARATOR

Figure 50 shows the application of the LMC6464 as a comparator. The hysteresis is determined by the ratio of the two resistors. The LMC6464 can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter.

HALF-WAVE AND FULL-WAVE RECTIFIERS

Figure 51. Half-Wave Rectifier with Input Current Protection (R₁)
In Figure 51, Figure 52, \(R_i \) limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage.

PRECISION CURRENT SOURCE

The output current \(I_{OUT} \) is given by:

\[
I_{OUT} = \left(\frac{V^+ - V_{IN}}{R} \right)
\]

(3)

OSCILLATORS

For single supply 5V operation, the output of the circuit will swing from 0V to 5V. The voltage divider set up \(R_2 \), \(R_3 \) and \(R_4 \) will cause the non-inverting input of the LMC6464 to move from 1.67V (\(\frac{1}{3} \) of 5V) to 3.33V (\(\frac{2}{3} \) of 5V). This voltage behaves as the threshold voltage.

\(R_1 \) and \(C_1 \) determine the time constant of the circuit. The frequency of oscillation, \(f_{Osc} \) is

\[
\left(\frac{1}{2\Delta t} \right)
\]

(4)

where \(\Delta t \) is the time the amplifier input takes to move from 1.67V to 3.33V. The calculations are shown below.
\[1.67 = 5 \left(1 - e^{-\frac{t_1}{\tau}} \right) \]

where \(\tau = RC = 0.68 \) seconds
\[\rightarrow t_1 = 0.27 \text{ seconds}. \]

and
\[3.33 = 5 \left(1 - e^{-\frac{t_2}{\tau}} \right) \]

\[\rightarrow t_2 = 0.75 \text{ seconds} \]

Then,
\[f_{osc} = \left(\frac{1}{2\Delta t} \right) \]

\[= \frac{1}{2 (0.75 - 0.27)} \]

\[= 1 \text{ Hz} \]

LOW FREQUENCY NULL

![Diagram of High Gain Amplifier with Low Frequency Null](image)

Figure 55. High Gain Amplifier with Low Frequency Null

Output offset voltage is the error introduced in the output voltage due to the inherent input offset voltage \(V_{OS} \) of an amplifier.

Output Offset Voltage = (Input Offset Voltage) \cdot (Gain)

In the above configuration, the resistors \(R_5 \) and \(R_6 \) determine the nominal voltage around which the input signal, \(V_i \) should be symmetrical. The high frequency component of the input signal \(V_i \) will be unaffected while the low frequency component will be nulled since the DC level of the output will be the input offset voltage of the LMC6464 plus the bias voltage. This implies that the output offset voltage due to the top amplifier will be eliminated.
Table 1. Revision History

<table>
<thead>
<tr>
<th>Released</th>
<th>Revision</th>
<th>Section</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/08/2010</td>
<td>A</td>
<td>New Release, Corporate format</td>
<td>1 MDS data sheets converted into one Corp. data sheet format. MNLMC6464AM-X Rev 1A1 will be archived.</td>
</tr>
<tr>
<td>03/26/2013</td>
<td>A</td>
<td>All</td>
<td>Changed layout of National Data Sheet to TI format.</td>
</tr>
</tbody>
</table>
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>PINS</th>
<th>Package Qty</th>
<th>Econ Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Top-Side Markings (4)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5962-9560302QCA</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-55 to 125</td>
<td>LMC6464AMJ-QML</td>
<td>Samples</td>
</tr>
<tr>
<td>LMC6464AMJ-QML</td>
<td>ACTIVE</td>
<td>CDIP</td>
<td>J</td>
<td>14</td>
<td>25</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-55 to 125</td>
<td>LMC6464AMJ-QML</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
EXAMPLE BOARD LAYOUT

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

DETAL A
SCALE: 15X

 DETAIL B
13X, SCALE: 15X

4214771/A 05/2017
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.