LMV431/LMV431A/LMV431B Low-Voltage (1.24V) Adjustable Precision Shunt Regulators

Check for Samples: LMV431, LMV431A, LMV431B

FEATURES

- Low Voltage Operation/Wide Adjust Range (1.24V/30V)
- 0.5% Initial Tolerance (LMV431B)
- Temperature Compensated for Industrial Temperature Range (39 PPM/°C for the LMV431AI)
- Low Operation Current (55µA)
- Low Output Impedance (0.25Ω)
- Fast Turn-On Response
- Low Cost

APPLICATIONS

- Shunt Regulator
- Series Regulator
- Current Source or Sink
- Voltage Monitor
- Error Amplifier
- 3V Off-Line Switching Regulator
- Low Dropout N-Channel Series Regulator

DESCRIPTION

The LMV431, LMV431A and LMV431B are precision 1.24V shunt regulators capable of adjustment to 30V. Negative feedback from the cathode to the adjust pin controls the cathode voltage, much like a non-inverting op amp configuration (Refer to Symbol and Functional diagrams). A two resistor voltage divider terminated at the adjust pin controls the gain of a 1.24V band-gap reference. Shorting the cathode to the adjust pin (voltage follower) provides a cathode voltage of a 1.24V.

The LMV431, LMV431A and LMV431B have respective initial tolerances of 1.5%, 1% and 0.5%, and functionally lends themselves to several applications that require zener diode type performance at low voltages. Applications include a 3V to 2.7V low drop-out regulator, an error amplifier in a 3V off-line switching regulator and even as a voltage detector. These parts are typically stable with capacitive loads greater than 10nF and less than 50pF.

The LMV431, LMV431A and LMV431B provide performance at a competitive price.

Connection Diagram

Figure 1. TO-92: Plastic Package
Top View

Figure 2. SOT-23-5
Top View

Figure 3. SOT-23-3
Top View

*Pin 1 is not internally connected.
*Pin 2 is internally connected to Anode pin. Pin 2 should be either floating or connected to Anode pin.
Symbol and Functional Diagrams

Simplified Schematic

DC/AC Test Circuits for Table and Curves

Note: $V_Z = V_{REF} (1 + \frac{R1}{R2}) + I_{REF} \times R1$

Figure 4. Test Circuit for $V_Z = V_{REF}$

Figure 5. Test Circuit for $V_Z > V_{REF}$
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS (1)(2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>Industrial (LMV431AI, LMV431I) −40°C to +85°C</td>
</tr>
<tr>
<td></td>
<td>Commercial (LMV431AC, LMV431C, LMV431BC) 0°C to +70°C</td>
</tr>
<tr>
<td>Lead Temperature</td>
<td>TO-92 Package/SOT-23 -5,-3 Package (Soldering, 10 sec.) 265°C</td>
</tr>
<tr>
<td>Internal Power Dissipation (3)</td>
<td>TO-92</td>
</tr>
<tr>
<td></td>
<td>SOT-23-5, -3 Package 0.28W</td>
</tr>
<tr>
<td>Cathode Voltage</td>
<td>35V</td>
</tr>
<tr>
<td>Continuous Cathode Current</td>
<td>−30 mA to +30mA</td>
</tr>
<tr>
<td>Reference Input Current range</td>
<td>−0.05mA to 3mA</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, and the SOT-23-5 at 2.2 mW/°C. See derating curve in Operating Conditions section.

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Voltage</td>
<td>V<sub>REF</sub> to 30V</td>
</tr>
<tr>
<td>Cathode Current</td>
<td>0.1 mA to 15mA</td>
</tr>
<tr>
<td>Temperature range</td>
<td>LMV431AI −40°C ≤ T<sub>A</sub> ≤ 85°C</td>
</tr>
<tr>
<td>Thermal Resistance (θ<sub>JA</sub>) (1)</td>
<td>SOT-23-5, -3 Package 455 °C/W</td>
</tr>
<tr>
<td></td>
<td>TO-92 Package</td>
</tr>
<tr>
<td></td>
<td>161 °C/W</td>
</tr>
</tbody>
</table>

Derating Curve (Slope = −1/θ_{JA})

(1) T_{J Max} = 150°C, T_J = T_A + (θ_{JA} P_D), where P_D is the operating power of the device.
Where: $T_2 - T_1 = \text{full temperature change.}$ $\propto V_{REF}$ can be positive or negative depending on whether the slope is positive or negative. Example: $V_{DEV} = 6.0mV$, $V_{REF} = 1240mV$, $T_2 - T_1 = 125^\circ C$.

\[\propto V_{REF} = \frac{6.0mV}{1240mV} = 4.87 \text{ ppm/}^\circ C \]

ΔV_{REF}/ΔV_Z Ratio of the Change in Reference Voltage to the Change in Cathode Voltage

\[I_{Z(MIN)} = 10mA \text{ to } 15mA \]

ΔV_{DEV} Deviation of Reference Input Voltage Over Temperature

\[I_{Z(OFF)} = 6V, V_{REF} = 0V \]

$\propto I_{REF}$ Deviation of Reference Input Current over Temperature

ΔV_{REF} Ratio of the Change in Reference Voltage

\[V_{Z} = 10mA \text{ (see Figure 5) } \]

ΔV_{Z} from V_{REF} to 6V

$R_1 = 10k, R_2 = \infty$ and 2.6k

$V_{Z} = V_{REF}$ (see Figure 4)

$V_{Z} = 6V, V_{REF} = 0V$ (see Figure 6)

$V_{Z(MIN)} = 10k, R_2 = \infty$

$R_1 = 10mA, T_A = \text{Full Range (see Figure 5)}$

(1) Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

\[V_{DEV} = \frac{V_{MAX} - V_{MIN}}{2} \]

\[T_1, T_2 = \text{full temperature change.} \]

(2) The dynamic output impedance, r_Z, is defined as: $
\Delta V_Z \Delta I_Z$, When the device is programmed with two external resistors, R_1 and R_2, (see Figure 5), the dynamic output impedance of the overall circuit, r_Z, is defined as:

\[r_Z = \frac{\Delta V_Z}{\Delta I_Z} = \frac{1}{T_2 \left(1 + \frac{R_1}{R_2} \right)} \]
LMV431 ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{REF} | Reference Voltage | $V_{Z} = V_{REF}, I_{Z} = 10 mA$ (See Figure 4) | $T_{A} = 25^\circ C$ | 1.222 | 1.24 | 1.258 | V
$T_{A} = Full Range$ | 1.202 | 1.278
V_{DEV} | Deviation of Reference Input Voltage Over Temperature (1) | $V_{Z} = V_{REF}, I_{Z} = 10 mA, R_{1} = 10 k\Omega, R_{2} = \infty$ (See Figure 4) | $T_{A} = Full Range$ | 6 | 20 | mV
ΔV_{REF} | Ratio of the Change in Reference Voltage to the Change in Cathode Voltage | $V_{Z} = 10 mA$ (see Figure 5) | V_{Z} from V_{REF} to 6V | $R_{1} = 10 k\Omega, R_{2} = \infty$ and 2.6k | -1.5 | -2.7 | mV/V
I_{REF} | Reference Input Current | $R_{1} = 10 k\Omega, R_{2} = \infty$ | $I_{Z} = 10 mA$ (see Figure 5) | 0.15 | 0.5 | μA
$I_{\pm I_{REF}}$ | Deviation of Reference Input Current over Temperature | $R_{1} = 10 k\Omega, R_{2} = \infty$, $I_{Z} = 10 mA, T_{A} = Full Range$ (see Figure 5) | 0.1 | 0.4 | μA
$I_{Z(MIN)}$ | Minimum Cathode Current for Regulation | $V_{Z} = V_{REF}$ (see Figure 4) | 55 | 80 | μA
$I_{Z(OFF)}$ | Off-State Current | $V_{Z} = 6V, V_{REF} = 0V$ (see Figure 6) | 0.001 | 0.1 | μA
r_{Z} | Dynamic Output Impedance (2) | $V_{Z} = V_{REF}, I_{Z} = 0.1 mA$ to 15mA | Frequency = 0Hz (see Figure 4) | 0.25 | 0.4 | Ω

(1) Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

\[V_{DEV} = V_{MAX} - V_{MIN} \]

The average temperature coefficient of the reference input voltage, $\alpha_{V_{REF}}$, is defined as:

\[\alpha_{V_{REF}} = \frac{\Delta V_{DEV}}{V_{DEV}(at 25^\circ C)} \times 10^{6} = \frac{\Delta V_{Z}}{V_{Z}(at 25^\circ C)} \times 10^{6} \]

Where: $T_{2} - T_{1} = full temperature change$. $\alpha_{V_{REF}}$ can be positive or negative depending on whether the slope is positive or negative. Example: $V_{DEV} = 6.0 mV, V_{REF} = 1240 mV, T_{2} - T_{1} = 125^\circ C$.

\[\alpha_{V_{REF}} = \frac{6.0 mV}{125^\circ C} = +39 \text{ ppm/}^\circ C \]

(2) The dynamic output impedance, r_{Z}, is defined as: $r_{Z} = \frac{\Delta V_{Z}}{\Delta V_{Z}}$. When the device is programmed with two external resistors, R_{1} and R_{2}, (see Figure 5), the dynamic output impedance of the overall circuit, r_{Z}, is defined as:

\[r_{Z} = \frac{\Delta V_{Z}}{\Delta V_{Z}} = \left[r_{Z} \left(1 + \frac{R_{1}}{R_{2}} \right) \right] \]
LMV431 AC ELECTRICAL CHARACTERISTICS

\(T_A = 25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{REF})</td>
<td>Reference Voltage</td>
<td>(V_Z = V_{REF}, I_Z = 10 \text{mA}) (See Figure 4) (T_A = 25^\circ C)</td>
<td>1.228</td>
<td>1.24</td>
<td>1.252</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = \text{Full Range})</td>
<td>1.221</td>
<td>1.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{DEV})</td>
<td>Deviation of Reference Input Voltage Over Temperature (1)</td>
<td>(V_Z = V_{REF}, I_Z = 10 \text{mA}, \ T_A = \text{Full Range}) (See Figure 4)</td>
<td>4</td>
<td>12</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(\Delta V_{REF} / \Delta V_Z)</td>
<td>Ratio of the Change in Reference Voltage to the Change in Cathode Voltage</td>
<td>(I_Z = 10 \text{mA}) (see Figure 5) (V_Z) from (V_{REF}) to 6V (R_1 = 10k, R_2 = \infty \text{ and } 2.6k)</td>
<td>-1.5</td>
<td>-2.7</td>
<td></td>
<td>mV/ V</td>
</tr>
<tr>
<td>(I_{REF})</td>
<td>Reference Input Current</td>
<td>(R_1 = 1 \text{k}\Omega, R_2 = \infty) (I_l = 10 \text{mA}) (see Figure 5)</td>
<td>0.15</td>
<td>0.50</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(= I_{REF})</td>
<td>Deviation of Reference Input Current over Temperature</td>
<td>(R_1 = 10 \text{k}\Omega, R_2 = \infty) (I_l = 10 \text{mA}, T_A = \text{Full Range}) (see Figure 5)</td>
<td>0.05</td>
<td>0.3</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Z\text{(MIN)}})</td>
<td>Minimum Cathode Current for Regulation</td>
<td>(V_Z = V_{REF}) (see Figure 4)</td>
<td>55</td>
<td>80</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Z\text{(OFF)}})</td>
<td>Off-State Current</td>
<td>(V_Z = 6V, V_{REF} = 0V) (see Figure 6)</td>
<td>0.001</td>
<td>0.1</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(r_Z)</td>
<td>Dynamic Output Impedance (2)</td>
<td>(V_Z = V_{REF}, I_Z = \text{0.1mA to 15mA}) Frequency = 0 Hz (see Figure 4)</td>
<td>0.25</td>
<td>0.4</td>
<td></td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

(1) Deviation of reference input voltage, \(V_{DEV} \), is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

\[
V_{DEV} = V_{MAX} - V_{MIN}
\]

The average temperature coefficient of the reference input voltage, \(\alpha_{V_{REF}} \), is defined as:

\[
\alpha_{V_{REF}} = \frac{V_{REF} \text{ppm} / ^\circ C}{T_2 - T_1} = \frac{V_{DEV}}{V_{REF} \text{at } 25^\circ C} \left(\frac{T_2 - T_1}{10^6} \right)
\]

Where: \(T_2 - T_1 = \text{full temperature change} \). \(\alpha_{V_{REF}} \) can be positive or negative depending on whether the slope is positive or negative. Example: \(\Delta V_{DEV} = 6.0 \text{mV}, V_{REF} = 1240 \text{mV}, T_2 - T_1 = 125^\circ C \).

\[
\alpha_{V_{REF}} = \frac{6.0 \text{mV}}{1240 \text{mV}} \left(\frac{125^\circ C - 25^\circ C}{10^6} \right) = +39 \text{ppm/}^\circ C
\]

(2) The dynamic output impedance, \(r_Z \), is defined as:

\[
r_Z = \frac{\Delta V_Z}{\Delta I_Z}
\]

When the device is programmed with two external resistors, \(R_1 \) and \(R_2 \), (see Figure 5), the dynamic output impedance of the overall circuit, \(r_Z \), is defined as:

\[
r_Z = \frac{\Delta V_Z}{\Delta I_Z} = \left[r_Z \left(1 + \frac{R_1}{R_2} \right) \right]
\]
LMV431A ELECTRICAL CHARACTERISTICS

\(T_A = 25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{REF})</td>
<td>Reference Voltage</td>
<td>(\frac{V_Z}{V_{REF}} = 10mA) (T_A = 25^\circ C) (T_A = \text{Full Range})</td>
<td>1.228</td>
<td>1.24</td>
<td>1.252</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DEV})</td>
<td>Deviation of Reference Input Voltage over Temperature ((1))</td>
<td>(V_Z = V_{REF}, I_Z = 10mA) (T_A = \text{Full Range}) (See Figure 4)</td>
<td>20</td>
<td>6</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(\Delta V_{REF}/ \Delta V_Z)</td>
<td>Ratio of the Change in Reference Voltage to the Change in Cathode Voltage</td>
<td>(I_Z = 10mA) (see Figure 5) (V_Z) from (V_{REF}) to 6V (R_1 = 10k, R_2 = \infty) and 2.6k</td>
<td>-1.5</td>
<td>-2.7</td>
<td></td>
<td>mV/V</td>
</tr>
<tr>
<td>(I_{REF})</td>
<td>Reference Input Current</td>
<td>(R_1 = 10k \Omega, R_2 = \infty) (I_I = 10mA) (see Figure 5)</td>
<td>0.15</td>
<td>0.5</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(= I_{REF})</td>
<td>Deviation of Reference Input Current over Temperature</td>
<td>(R_1 = 10k \Omega, R_2 = \infty) (I_I = 10mA) (T_A = \text{Full Range}) (see Figure 5)</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Z(MIN)})</td>
<td>Minimum Cathode Current for Regulation</td>
<td>(V_Z = V_{REF}(\text{see Figure 4}))</td>
<td>55</td>
<td>80</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Z(OFF)})</td>
<td>Off-State Current</td>
<td>(V_Z = 6V, V_{REF} = 0V) (see Figure 6)</td>
<td>0.001</td>
<td>0.1</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(r_Z)</td>
<td>Dynamic Output Impedance ((2))</td>
<td>(V_Z = V_{REF}, I_Z = 0.1mA) to 15mA Frequency = 0Hz (see Figure 4)</td>
<td>0.25</td>
<td>0.4</td>
<td></td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

\((1) \) Deviation of reference input voltage, \(V_{DEV} \), is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

\[
V_{DEV} = V_{MAX} - V_{MIN}
\]

The average temperature coefficient of the reference input voltage, \(\propto V_{REF} \), is defined as:

\[
\propto V_{REF} = \frac{V_{MAX} - V_{MIN}}{T_2 - T_1} = \left[\frac{V_{DEV}}{T_2 - T_1} \right] \quad \text{ppm/}^\circ C
\]

Where: \(T_2 - T_1 = \text{full temperature change} \). \(\propto V_{REF} \) can be positive or negative depending on whether the slope is positive or negative. Example: \(V_{DEV} = 6.0mV, \propto V_{REF} = 1240mV, T_2 - T_1 = 125^\circ C \).

\(\propto V_{REF} = \frac{6.0 \text{mV}}{1240 \text{mV}} \left[\frac{125^\circ C}{125^\circ C} \right] = +39 \text{ ppm/}^\circ C \)

\((2) \) The dynamic output impedance, \(r_Z \), is defined as: \(r_Z = \frac{\Delta V_Z}{\Delta I_Z} \). When the device is programmed with two external resistors, \(R_1 \) and \(R_2 \), (see Figure 5), the dynamic output impedance of the overall circuit, \(r_Z \), is defined as: \(r_Z = \frac{\Delta V_Z}{\Delta I_Z} = \left[r_Z \left(1 + \frac{R_1}{R_2} \right) \right] \)

LMV431, LMV431A, LMV431B

Copyright © 2004–2005, Texas Instruments Incorporated

Submit Documentation Feedback 7

Product Folder Links: LMV431 LMV431A LMV431B
Where:

\[T_2 - T_1 = \text{full temperature change}. \]

\[\Delta V_{REF}/\Delta V_Z = \text{Ratio of the Change in Reference Voltage to the Change in Cathode Voltage} \]

\[I_{REF} = \text{Reference Input Current} \]

\[I_{Z(MIN)} = \text{Minimum Cathode Current for Regulation} \]

\[I_{Z(OFF)} = \text{Off-State Current} \]

\[r_Z = \text{Dynamic Output Impedance} \]

Deviation of reference input voltage, \(V_{DEV} \), is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

\[V_{DEV} = V_{MAX} - V_{MIN} \]

The average temperature coefficient of the reference input voltage, \(\alpha V_{REF} \), is defined as:

\[\alpha V_{REF} = \frac{V_{MAX} - V_{MIN}}{V_{REF} (at 25°C)} \times 10^6 \]

Where: \(T_2 - T_1 = \text{full temperature change} \). \(\alpha V_{REF} \) can be positive or negative depending on whether the slope is positive or negative. Example: \(V_{DEV} = 6.0 \text{mV}, V_{REF} = 1240 \text{mV}, T_2 - T_1 = 125°C \).

\[\alpha V_{REF} = \frac{6.0 \text{mV}}{1240 \text{mV}} \times 10^6 = +39 \text{ ppm/°C} \]

The dynamic output impedance, \(r_Z \), is defined as:

\[r_Z = \frac{\Delta V_Z}{\Delta V_2} \]

When the device is programmed with two external resistors, \(R_1 \) and \(R_2 \), (see Figure 5), the dynamic output impedance of the overall circuit, \(r_Z \), is defined as:

\[r_Z = \frac{\Delta V_2}{\Delta V_Z} = r_Z \left(1 + \frac{R_1}{R_2} \right) \]
Where: \(T_2 - T_1 = \) full temperature change.

\(\propto V_{REF} \) can be positive or negative depending on whether the slope is positive or negative. Example: \(V_{DEV} = 6.0 \text{mV}, V_{REF} = 1240 \text{mV}, T_2 - T_1 = 125 \degree \text{C}. \)

\[\Delta V_{REF}/\Delta V_Z = \frac{V_Z}{I_Z} \]

\(V_Z = V_{REF} \text{ to 6V} \)
\(R_1 = 10k, R_2 = \infty \text{ and 2.6k} \)

\(\Delta V_{REF}/\Delta V_Z \)

\[\propto I_{REF} \]

\(I_{IREF} \)

\(I_{Z(MIN)} \)

\(I_{Z(OFF)} \)

\(r_Z \)

\[r_Z = \frac{\Delta V_Z}{\Delta V_{REF}} = I_Z \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

(1) Deviation of reference input voltage, \(V_{DEV} \), is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

The average temperature coefficient of the reference input voltage, \(\propto V_{REF} \), is defined as:

\[\frac{V_{REF}}{T_2 - T_1} \]

Where: \(T_2 - T_1 = \) full temperature change. \(\propto V_{REF} \) can be positive or negative depending on whether the slope is positive or negative. Example: \(V_{DEV} = 6.0 \text{mV}, V_{REF} = 1240 \text{mV}, T_2 - T_1 = 125 \degree \text{C}. \)

(2) The dynamic output impedance, \(r_Z \), is defined as:

\[r_Z = \frac{\Delta V_Z}{\Delta V_{REF}} = I_Z \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Reference Voltage vs. Junction Temperature

Figure 8. Reference Input Current vs. Junction Temperature

Figure 9. Cathode Current vs. Cathode Voltage 1

Figure 10. Cathode Current vs. Cathode Voltage 2

Figure 11. Delta Reference Voltage Per Off-State Cathode Current vs. Junction Temperature

Figure 12. Delta Reference Voltage Per Delta Cathode Voltage vs. Junction Temperature
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Input Voltage Noise

Test Circuit for Input Voltage Noise

Figure 13.

Figure 14.

Low Frequency Peak to Peak Noise

Test Circuit for Peak to Peak Noise (BW= 0.1Hz to 10Hz)

Figure 15.

Figure 16.

Small Signal Voltage Gain and Phase Shift

Test Circuit For Voltage Gain and Phase Shift

Figure 17.

Figure 18.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Reference Impedance

Reference Impedance vs. Frequency

![Graph showing Reference Impedance vs. Frequency](image)

Figure 19.

Test Circuit for Reference Impedance

![Test Circuit](image)

Figure 20.

Reference Impedance vs. Frequency

Test Circuit for Pulse Response 1

![Test Circuit for Pulse Response 1](image)

Figure 21.

Pulse Response 1

![Pulse Response 1](image)

Time (μs)

Figure 22.

Pulse Generator

f = 100 kHz

Test Circuit for Pulse Response 2

![Test Circuit for Pulse Response 2](image)

Figure 23.

Pulse Generator

f = 100 kHz
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 25. LMV431 Stability Boundary Condition

- STABLE
- UNSTABLE REGION

TA = 25°C, IZ = 15mA

VZ = 2V
VZ = 3V

FOR VZ = VREF, STABLE FOR CL = 1pF TO 10k nF

LOAD CAPACITANCE CL (nF)

CATHODE CURRENT IZ (mA)

Figure 26. Test Circuit for VZ = VREF

Figure 27. Test Circuit for VZ = 2V, 3V

Percentage Change in VREF vs. Operating Life at 55°C

Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7eV.

Figure 28.
TYPICAL APPLICATIONS

Series Regulator

Output Control of a Three Terminal Fixed Regulator

\[V_O \approx \left(1 + \frac{R_1}{R_2}\right) V_{REF} \]

\[V_O = \left(1 + \frac{R_1}{R_2}\right) V_{REF} \]

\[V_{O\ MIN} = V_{REF} + 5V \]

Higher Current Shunt Regulator

Crow Bar

\[V_O \approx \left(1 + \frac{R_1}{R_2}\right) V_{REF} \]

\[V_{LIMIT} \approx \left(1 + \frac{R_1}{R_2}\right) V_{REF} \]

Over Voltage/Under Voltage Protection Circuit

Voltage Monitor

LOW LIMIT = \(V_{REF} \left(1 + \frac{R_{1B}}{R_{2B}}\right) + V_{BE} \)

HIGH LIMIT = \(V_{REF} \left(1 + \frac{R_{1A}}{R_{2A}}\right) \)

LOW LIMIT = \(V_{REF} \left(1 + \frac{R_{1B}}{R_{2B}}\right) \)

LED ON WHEN LOW LIMIT < \(V^+ \) < HIGH LIMIT

LOW LIMIT = \(V_{REF} \left(1 + \frac{R_{1B}}{R_{2B}}\right) \)

HIGH LIMIT = \(V_{REF} \left(1 + \frac{R_{1A}}{R_{2A}}\right) \)
Delay Timer

\[\text{DELAY} = R \cdot C \cdot \ln \left(\frac{V}{V^+} \right) - \frac{V}{V^+} \]

Current Limiter or Current Source

\[i_0 = \frac{V_{\text{REF}}}{R_{\text{CL}}} \]

Constant Current Sink

\[i_0 = \frac{V_{\text{REF}}}{R_S} \]
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV431ACM5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>N09A</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431ACM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>N09A</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431ACM5X/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>N09A</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIM5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>N08A</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>N08A</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIM5X</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>RLA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIM5X/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>RLA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIMF</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>RLA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIMFX</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>RLA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIMFX/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>RLA</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431AIZ/LFT3</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>2000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>LMV431 AIZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMV431AIZ/NOPB</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>LMV431 AIZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMV431BCM5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>N09C</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>LMV431BCM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>N09C</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>LMV431BIMF</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>RLB</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431BIMF/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>RLB</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431BIMFX</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>RLB</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431CM5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>0 to 70</td>
<td>N09B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431CM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>N09B</td>
<td>Samples</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>Package Qty</td>
<td>Eco Plan</td>
<td>Lead/Ball Finish</td>
<td>MSL Peak Temp</td>
<td>Op Temp (°C)</td>
<td>Device Marking</td>
<td>Samples</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>LMV431CM5X/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>N09B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431CZ/NOPB</td>
<td>ACTIVE</td>
<td>TO-92</td>
<td>LP</td>
<td>3</td>
<td>1800</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>LMV431CZ</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431M5</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>N08B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431IM5/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td>-40 to 85</td>
<td>N08B</td>
<td>Samples</td>
</tr>
<tr>
<td>LMV431IM5X/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>N08B</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBsolete: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV431ACM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431ACM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431ACM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIM5X</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIMF</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIMF/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIMFX</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431AIMFX/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431BCM5/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431BCM5X/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431BIMF</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431BIMF/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431BIMFX/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.3</td>
<td>2.9</td>
<td>1.22</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431CM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LMV431CM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

All dimensions are nominal.
<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV431CM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>LMV431IM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
<tr>
<td>LMV431IM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
<td></td>
</tr>
</tbody>
</table>

TAPE AND REEL BOX DIMENSIONS

All dimensions are nominal

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMV431ACM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431ACM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431ACM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIM5X</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIMF</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIMF/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIMFX</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431AIMFX/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431BCM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431BCM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Device</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>Pins</td>
<td>SPQ</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Height (mm)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LMV431BIMF</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431BIMF/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431BIMFX/NOPB</td>
<td>SOT-23</td>
<td>DBZ</td>
<td>3</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431CM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431CM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431CM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431IM5</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431IM5/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LMV431IM5X/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration TO-236, except minimum foot length.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Lead dimensions are not controlled within this area.
4. Reference JEDEC TO-226, variation AA.
5. Shipping method:
 a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 c. Specific products can be offered in limited combinations of shipping medium and lead options.
 d. Consult product folder for more information on available options.
TAPE SPECIFICATIONS

LP0003A
TO-92 - 5.34 mm max height

FOR FORMED LEAD OPTION PACKAGE
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated