1 Features
- 2.2-V to 7-V Input Range
- 150-mA, 0.7-Ω Internal Switch
- Adjustable Output Voltage up to 20 V
- Input Undervoltage Lockout
- 0.01-µA Shutdown Current
- Uses Small Surface-Mount Components
- Small 5-Pin SOT-23 Package

2 Applications
- LCD Bias Supplies
- White-LED Backlighting
- Handheld Devices
- Digital Cameras
- Portable Applications

3 Description
The LM2705 is a micropower step-up DC-DC converter in a small 5-pin SOT-23 package. A current-limited, fixed-off-time control scheme conserves operating current, which results in high efficiency over a wide range of load conditions. The 21-V switch allows for output voltages as high as 20 V. The low 400-ns off-time permits the use of tiny, low-profile inductors and capacitors to minimize footprint and cost in space-conscious portable applications. The LM2705 is ideal for LCD panels requiring low current and high efficiency as well as white-LED applications for cellular phone backlighting. The LM2705 device can drive up to 3 white LEDs from a single Li-Ion battery. The low peak-inductor current of the LM2705 makes it ideal for USB applications.

Device Information\(^{1}\)

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2705</td>
<td>SOT-23 (5)</td>
<td>2.90 mm × 1.60 mm</td>
</tr>
</tbody>
</table>

\(^{1}\) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated
Table of Contents

1 Features .......................................................... 1
2 Applications ...................................................... 1
3 Description ........................................................ 1
4 Revision History .................................................. 2
5 Pin Configuration and Functions .......................... 3
6 Specifications ..................................................... 4
   6.1 Absolute Maximum Ratings ............................. 4
   6.2 ESD Ratings .................................................. 4
   6.3 Recommended Operating Conditions .................. 4
   6.4 Thermal Information ...................................... 4
   6.5 Electrical Characteristics ............................... 5
   6.6 Typical Characteristics .................................... 6
7 Detailed Description ............................................ 8
   7.1 Overview .................................................... 8
   7.2 Functional Block Diagram ................................ 8
   7.3 Feature Description ....................................... 8
   7.4 Device Functional Modes ............................... 8
8 Application and Implementation .......................... 9
   8.1 Application Information ................................. 9
   8.2 Typical Application ....................................... 9
   8.3 Additional Applications ................................. 12
9 Power Supply Recommendations .......................... 15
10 Layout ............................................................. 15
   10.1 Layout Guidelines ........................................ 15
   10.2 Layout Example ........................................... 15
11 Device and Documentation Support ...................... 16
   11.1 Device Support ............................................ 16
   11.2 Receiving Notification of Documentation Updates 16
   11.3 Community Resources ................................... 16
   11.4 Trademarks ................................................ 16
   11.5 Electrostatic Discharge Caution ....................... 16
   11.6 Glossary ................................................... 16
12 Mechanical, Packaging, and Orderable Information 16

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (May 2013) to Revision F .......................... Page

• Added Device Information and Pin Configuration and Functions sections, ESD Ratings and Thermal Information tables, Feature Description, Device Functional Modes, Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and Orderable Information sections................................................................. 1

• Deleted pin definition list - added content to Pin Functions .......................................................... 3

• Changed RθJA value from "220°C/W" to "164.9°C/W" ........................................................................ 4

Changes from Revision D (May 2013) to Revision E .................................. Page

• Changed layout of National Semiconductor data sheet to TI format.................................................. 14
5 Pin Configuration and Functions

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>Input</td>
<td>Power switch input. This is the drain of the internal NMOS power switch. Minimize the metal trace area connected to this pin to minimize EMI.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>—</td>
<td>Ground - tie directly to ground plane.</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Input</td>
<td>Output voltage feedback input — set the output voltage by selecting values for R1 and R2 using: R1 = R2 x (V_{OUT} / 1.237 V) –1</td>
</tr>
<tr>
<td>4</td>
<td>SHDN</td>
<td>Input</td>
<td>Active low shutdown - drive this pin to &gt; 1.1 V to enable the device. Drive this pin to &lt; 0.3 V to lace the device in a low-power shutdown.</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>Input</td>
<td>Analog and power input supply pin</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)\(^{(2)}\)

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>SW voltage</td>
<td>21</td>
<td>V</td>
</tr>
<tr>
<td>FB voltage</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>SHDN voltage</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature, (T_J)(^{(3)})</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead temperature</td>
<td>Soldering (10 seconds)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Vapor phase (60 seconds)</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Infrared (15 seconds)</td>
<td>220</td>
</tr>
<tr>
<td>Storage temperature, (T_{stg})</td>
<td>–65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.
(3) The maximum allowable power dissipation is a function of the maximum junction temperature, \(T_J\)\(^{(3)}\), the junction-to-ambient thermal resistance, \(R_{\theta JA}\), and the ambient temperature, \(T_A\). See Thermal Information for the thermal resistance. The maximum allowable power dissipation at any ambient temperature is calculated using: \(P_{D(MAX)} = (T_J - T_A) / R_{\theta JA}\). Exceeding the maximum allowable power dissipation will cause excessive die temperature.

6.2 ESD Ratings

<table>
<thead>
<tr>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)}) Electrostatic discharge</td>
<td>Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
</tr>
<tr>
<td></td>
<td>Machine model(^{(2)})</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) ESD susceptibility using the machine model is 150 V for SW pin.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>2.2</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>SW voltage, maximum</td>
<td></td>
<td>20.5</td>
<td>V</td>
</tr>
<tr>
<td>Junction temperature(^{(1)})</td>
<td>–40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) All limits specified at room temperature and at temperature extremes. All room temperature limits are 100% production tested or specified through statistical analysis. All limits at temperature extremes are specified via correlation using standard statistical quality control (SQC) methods. All limits are used to calculate average outgoing quality level (AOQL).

6.4 Thermal Information

<table>
<thead>
<tr>
<th>THERMAL METRIC(^{(1)})</th>
<th>LM2705</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\theta JA}) Junction-to-ambient thermal resistance</td>
<td>164.9</td>
</tr>
<tr>
<td>(R_{\theta JC(top)}) Junction-to-case (top) thermal resistance</td>
<td>116.8</td>
</tr>
<tr>
<td>(R_{\theta JB}) Junction-to-board thermal resistance</td>
<td>27.8</td>
</tr>
<tr>
<td>(\psi_{JT}) Junction-to-top characterization parameter</td>
<td>13.6</td>
</tr>
<tr>
<td>(\psi_{JB}) Junction-to-board characterization parameter</td>
<td>27.3</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
## 6.5 Electrical Characteristics

Unless otherwise specified, specifications apply for $T_J = 25^\circ C$ and $V_{IN} = 2.2$ V.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN$^{(1)}$</th>
<th>TYP$^{(2)}$</th>
<th>MAX$^{(1)}$</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_Q$</td>
<td>Device disabled</td>
<td>$FB = 1.3$ V</td>
<td>40</td>
<td>70</td>
<td>\mu A</td>
</tr>
<tr>
<td></td>
<td>$FB = 1.3$ V, $-40^\circ$C to $125^\circ$C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device enabled</td>
<td>$FB = 1.2$ V</td>
<td>235</td>
<td>300</td>
<td>\mu A</td>
</tr>
<tr>
<td></td>
<td>$FB = 1.2$ V, $-40^\circ$C to $125^\circ$C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shutdown</td>
<td>$SHDN = 0$ V</td>
<td>0.01</td>
<td>2.5</td>
<td>\mu A</td>
</tr>
<tr>
<td>$V_{FB}$</td>
<td>Feedback trip point</td>
<td></td>
<td>1.237</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td></td>
<td>1.189</td>
<td>1.269</td>
<td></td>
</tr>
<tr>
<td>$I_{CL}$</td>
<td>Switch current limit</td>
<td></td>
<td>150</td>
<td>180</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td></td>
<td>100</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>$I_B$</td>
<td>$FB$ pin bias current</td>
<td></td>
<td>30</td>
<td>120</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>$FB = 1.23$ V$^{(3)}$</td>
<td></td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$FB = 1.23$ V, $-40^\circ$C to $125^\circ$C$^{(3)}$</td>
<td></td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>$V_{IN}$</td>
<td>Input voltage</td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td>2.2</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS\text{ON}}$</td>
<td>Switch $R_{DS\text{ON}}$</td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td>0.7</td>
<td>1.6</td>
<td>\Omega</td>
</tr>
<tr>
<td>$T_{OFF}$</td>
<td>Switch off time</td>
<td></td>
<td>400</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$I_{SD}$</td>
<td>$SHDN$ pin current</td>
<td>SHDN = $V_{IN}$, $T_J = 25^\circ$C</td>
<td>0</td>
<td>80</td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>SHDN = $V_{IN}$, $T_J = 125^\circ$C</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHDN = GND</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_L$</td>
<td>Switch leakage current</td>
<td>$V_{SW} = 20$ V</td>
<td>0.05</td>
<td>5</td>
<td>\mu A</td>
</tr>
<tr>
<td>$UVP$</td>
<td>Input undervoltage lockout</td>
<td>ON/OFF threshold</td>
<td>1.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{FB}$</td>
<td>hysteresis</td>
<td>Feedback hysteresis</td>
<td>8</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$SHDN$</td>
<td>threshold</td>
<td>SHDN low</td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHDN high</td>
<td>$-40^\circ$C to $125^\circ$C</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) All limits specified at room temperature and at temperature extremes. All room temperature limits are 100% production tested or specified through statistical analysis. All limits at temperature extremes are specified via correlation using standard statistical quality control (SQC) methods. All limits are used to calculate average outgoing quality level (AOQL).

(2) Typical numbers are at $25^\circ$C and represent the most likely norm.

(3) Feedback current flows into the pin.
6.6 Typical Characteristics

Figure 1. Enable Current vs $V_{IN}$ (Device Switching)

Figure 2. Disable Current vs $V_{IN}$ (Device Not Switching)

Figure 3. SHDN Threshold vs $V_{IN}$

Figure 4. Switch Current Limit vs $V_{IN}$

Figure 5. Switch $R_{DS(ON)}$ vs $V_{IN}$

Figure 6. FB Trip Point and FB Pin Current vs Temperature
Typical Characteristics (continued)

**Figure 7. Output Voltage vs Load Current**

- **1)** Load: 0.5 mA to 5 mA to 0.5 mA, DC
- **2)** $V_{OUT} = 20$ V
- **3)** $I_L$: 100 mA/div, DC

**Figure 8. Off Time vs Temperature**

- **1)** $T = 100$ µs/div
- **2)** $V_{IN}$: 2.2 V, 2.5 V, 3.3 V, 4.2 V, 6.0 V
- **3)** $V_{OUT}$: 340 to 400

**Figure 9. Step Response**

- **1)** SHDN: 1 V/div, DC
- **2)** $V_{OUT}$: 10 V/div, AC
- **3)** $I_L$: 100 mA/div, DC

**Figure 10. Start-Up and Shutdown**

- **1)** $V_{SW}$: 20 V/div, DC
- **2)** Inductor Current: 100 mA/div, DC
- **3)** $V_{OUT}$: 200 mV/div, AC

**Figure 11. Typical Switching Waveform**

- **1)** $V_{IN}$ = 2.7 V
- **2)** $I_{OUT}$ = 2.5 mA
7 Detailed Description

7.1 Overview
The LM2705 is a small boost converter utilizing a constant off time architecture. The device can provide up to 20.5 V at the output with up to 150 mA of peak switch current.

7.2 Functional Block Diagram

![Functional Block Diagram](image)

7.3 Feature Description
The LM2705 device features a constant off-time control scheme. Operation can be best understood by referring to Functional Block Diagram and Figure 11. Transistors Q1 and Q2 and resistors R3 and R4 of Functional Block Diagram form a bandgap reference used to control the output voltage. When the voltage at the FB pin is less than 1.237 V, the Enable Comp in Functional Block Diagram enables the device, and the NMOS switch is turned on pulling the SW pin to ground. When the NMOS switch is on, current begins to flow through inductor L while the load current is supplied by the output capacitor C\text{OUT}. Once the current in the inductor reaches the current limit, the CL comp trips, and the 400-ns one shot turns off the NMOS switch. The SW voltage then rises to the output voltage plus a diode drop, and the inductor current begins to decrease as shown in Figure 11. During this time the energy stored in the inductor is transferred to C\text{OUT} and the load. After the 400-ns off-time the NMOS switch is turned on, and energy is stored in the inductor again. This energy transfer from the inductor to the output causes a stepping effect in the output ripple as shown in Figure 11.

This cycle is continued until the voltage at FB reaches 1.237 V. When FB reaches this voltage, the Enable Comp disables the device, turning off the NMOS switch and reducing the I\text{Q} of the device to 40 µA. The load current is then supplied solely by C\text{OUT} indicated by the gradually decreasing slope at the output as shown in Figure 11. When the FB pin drops slightly below 1.237 V, the Enable Comp enables the device and begins the cycle described previously.

7.4 Device Functional Modes
The SHDN pin can be used to turn off the LM2705 and reduce the I\text{Q} to 0.01 µA. In shutdown mode the output voltage is a diode drop lower than the input voltage.
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM2705 is a 20-V boost designed for low power boost applications. Typical input voltage range makes this ideal for standard single cell Li+ batteries or 2 to 4 series alkaline batteries.

8.2 Typical Application

Figure 12 shows a typical Li+ voltage range to 20-V application. The 68-μH inductor allows for a low ripple current and high light-load efficiency.

8.2.1 Design Requirements

For typical DC-DC converter applications, use the parameters listed in Table 1.

Table 1. Design Parameters

<table>
<thead>
<tr>
<th>DESIGN PARAMETER</th>
<th>EXAMPLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>2.5 V to 4.2 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Output current</td>
<td>up to 8 mA</td>
</tr>
<tr>
<td>Inductor</td>
<td>33 μH</td>
</tr>
</tbody>
</table>

8.2.2 Detailed Design Procedure

8.2.2.1 Inductor Selection - Boost Regulator

The appropriate inductor for a given application is calculated using Equation 1:

\[ L = \left( \frac{V_{\text{OUT}} - V_{\text{IN(min)}} + V_D}{I_{\text{CL}}} \right) T_{\text{OFF}} \]

where

- \( V_D \) is the Schottky diode voltage
- \( I_{\text{CL}} \) is the switch current limit found in the Typical Characteristics
\[ T_{OFF} \text{ is the switch off time} \]  

When using this equation be sure to use the minimum input voltage for the application, such as for battery powered applications. For the LM2705 constant-off time control scheme, the NMOS power switch is turned off when the current limit is reached. There is approximately a 100-ns delay from the time the current limit is reached in the NMOS power switch and when the internal logic actually turns off the switch. During this 100-ns delay, the peak inductor current increases. This increase in inductor current demands a larger saturation current rating for the inductor. This saturation current can be approximated by Equation 2:

\[ I_{PK} = I_{CL} + \left( \frac{V_{IN(max)}}{L} \right) 100 \text{ ns} \]  

Choosing inductors with low ESR decrease power losses and increase efficiency.

Take care when choosing an inductor. For applications that require an input voltage that approaches the output voltage, such as when converting a Li-Ion battery voltage to 5 V, the 400-ns off time may not be enough time to discharge the energy in the inductor and transfer the energy to the output capacitor and load. This can cause a ramping effect in the inductor current waveform and an increased ripple on the output voltage. Using a smaller inductor causes the \( I_{PK} \) to increase and increases the output voltage ripple further.

For typical curves and evaluation purposes the DT1608C series inductors from Coilcraft were used. Other acceptable inductors include, but are not limited to, the SLF6020T series from TDK, the NP05D series from Taiyo Yuden, the CDRH4D18 series from Sumida, and the P1166 series from Pulse.

### 8.2.2.2 Inductor Selection - SEPIC Regulator

Equation 3 can be used to calculate the approximate inductor value for a SEPIC regulator:

\[ L_2 = 2 \left( \frac{V_{OUT} + V_D}{I_{CL}} \right) T_{OFF} \]  

The boost inductor, \( L_1 \), can be smaller or larger but is generally chosen to be the same value as \( L_2 \). See Figure 23 and Figure 24 for typical SEPIC applications.

### 8.2.2.3 Diode Selection

To maintain high efficiency, the average current rating of the Schottky diode should be larger than the peak inductor current, \( I_{PK} \). Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown of the Schottky diode larger than the output voltage.

### 8.2.2.4 Capacitor Selection

Choose low equivalent series resistance (ESR) capacitors for the output to minimize output voltage ripple. Multilayer ceramic capacitors are the best choice. For most applications, a 1-µF ceramic capacitor is sufficient. For some applications a reduction in output voltage ripple can be achieved by increasing the output capacitor. Output voltage ripple can further be reduced by adding a 4.7-pF feed-forward capacitor in the feedback network placed in parallel with RF1 (see Functional Block Diagram).

Local bypassing for the input is needed on the LM2705. Multilayer ceramic capacitors are a good choice for this as well. A 4.7-µF capacitor is sufficient for most applications. For additional bypassing, a 100-nF ceramic capacitor can be used to shunt high frequency ripple on the input.
8.2.3 Application Curves

**Figure 13. Efficiency vs Load Current**

**Figure 14. Efficiency vs Load Current**

**Figure 15. Output Ripple Voltage**

Copt, Ropt Included

**Figure 16. Output Ripple Voltage**

Copt, Ropt Excluded

**Figure 17. Two White-LED Efficiency**

**Figure 18. Three White-LED Efficiency**
8.3 Additional Applications

Figure 19. Two White-LED Application

Figure 20. Three White-LED Application
Additional Applications (continued)

Figure 21. Li-Ion 12-V Application

Figure 22. 5-V to 12-V Application
Additional Applications (continued)

![3.3-V SEPIC Application](attachment:image1)

**Figure 23. 3.3-V SEPIC Application**

![5-V SEPIC Application](attachment:image2)

**Figure 24. 5-V SEPIC Application**
9 Power Supply Recommendations

The LM2705 is designed to operate from an input voltage supply range from 2.2 V to 7 V. This input supply must be well regulated and capable to supply the required input current. If the input supply is located far from the LM2705, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

10 Layout

10.1 Layout Guidelines

The input bypass capacitor C\text{IN}, as shown in Figure 25, must be placed close to the device. This reduces copper trace resistance, which affects input voltage ripple of the LM2705 device. For additional input voltage filtering, a 100-nF bypass capacitor can be placed in parallel with C\text{IN} to shunt any high frequency noise to ground. The output capacitor, C\text{OUT}, must also be placed close to the device. Any copper trace connections for the C\text{OUT} capacitor can increase the series resistance, which directly affects output voltage ripple. Keep the feedback network, resistors R1 and R2, close to the FB pin to minimize copper trace connections that can inject noise into the system. The ground connection for the feedback resistor network must connect directly to an analog ground plane. Tie the analog ground plane directly to the GND pin. If no analog ground plane is available, the ground connection for the feedback network must tie directly to the GND pin. Minimize trace connections made to the inductor and Schottky diode to reduce power dissipation and increase overall efficiency.

10.2 Layout Example

![Figure 25. LM2705 Layout Example](image-url)
11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
### PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2705MF-ADJ</td>
<td>NRND</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>TBD</td>
<td></td>
<td>Call TI</td>
<td></td>
<td>-40 to 85</td>
<td>S59B</td>
<td></td>
</tr>
<tr>
<td>LM2705MF-ADJ/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>S59B</td>
<td>Samples</td>
</tr>
<tr>
<td>LM2705MFX-ADJ/NOPB</td>
<td>ACTIVE</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS &amp; no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 85</td>
<td>S59B</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish** - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer**: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION

### TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

### REEL DIMENSIONS

### PACKAGE MATERIALS INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2705MF-ADJ/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
<tr>
<td>LM2705MFX-ADJ/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>178.0</td>
<td>8.4</td>
<td>3.2</td>
<td>3.2</td>
<td>1.4</td>
<td>4.0</td>
<td>8.0</td>
<td>Q3</td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
**Package Materials Information**

**Tape and Reel Box Dimensions**

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM2705MF-ADJ/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>1000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
<tr>
<td>LM2705MFX-ADJ/NOPB</td>
<td>SOT-23</td>
<td>DBV</td>
<td>5</td>
<td>3000</td>
<td>210.0</td>
<td>185.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

*All dimensions are nominal*
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
7. Board assembly site may have different recommendations for stencil design.
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

7. Board assembly site may have different recommendations for stencil design.
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers’ applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY TECHNOLOGY, PATENT, COPYRIGHT, TRADE SECRETS, TRADE NAME, TRADemark OR OTHER INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designers may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designers must fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.